Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessment of disease outcome measures in systemic sclerosis

Abstract

The assessment of disease activity in systemic sclerosis (SSc) is challenging owing to its heterogeneous manifestations across multiple organ systems, the variable rate of disease progression and regression, and the relative paucity of patients in early-phase therapeutic trials. Despite some recent successes, most clinical trials have failed to show efficacy, underscoring the need for improved outcome measures linked directly to disease pathogenesis, particularly applicable for biomarker studies focused on skin disease. Current outcome measures in SSc-associated interstitial lung disease and SSc skin disease are largely adequate, although advancing imaging technology and the incorporation of skin mRNA biomarkers might provide opportunities for earlier detection of the therapeutic effect. Biomarkers can further inform pathogenesis, enabling early phase trials to act as reverse translational studies through the incorporation of routine high-throughput sequencing.

Key points

  • The majority of clinical trials for systemic sclerosis (SSc) focus on skin disease, interstitial lung disease (ILD), or pulmonary arterial hypertension, with modified Rodnan skin score (MRSS), forced vital capacity and 6-min walk distance being the primary clinical end points assessed, respectively.

  • Increased variability in the natural history of SSc skin disease impedes the identification of treatment-related effects, and strategies for shorter duration trials might improve the separation of treatment effect from variation in disease natural history.

  • Forced vital capacity is an FDA-accepted surrogate outcome measure for SSc-ILD, whereas novel imaging technologies and serum biomarkers present opportunities for future additional SSc-ILD outcome measures to show significant changes at earlier timepoints.

  • Skin mRNA biomarkers, including THBS1 and COMP, could be considered as surrogate outcome measures in early-phase clinical trials, to more rapidly assess target engagement by therapeutic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity of SSc skin pathology.
Fig. 2: Skin cell populations expressing biomarkers in SSc skin disease.
Fig. 3: Lung cell populations expressing biomarkers in SSc-ILD.

Similar content being viewed by others

References

  1. Bournia, V. K. et al. All-cause mortality in systemic rheumatic diseases under treatment compared with the general population, 2015–2019. RMD Open https://doi.org/10.1136/rmdopen-2021-001694 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mantero, J. C. et al. Randomised, double-blind, placebo-controlled trial of IL1-trap, rilonacept, in systemic sclerosis. A phase I/II biomarker trial. Clin. Exp. Rheumatol. 36 (Suppl. 113), 146–149 (2018).

    PubMed  Google Scholar 

  3. Campochiaro, C. & Allanore, Y. An update on targeted therapies in systemic sclerosis based on a systematic review from the last 3 years. Arthritis Res. Ther. 23, 155 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gordon, J. K. & Domsic, R. T. Clinical trial design issues in systemic sclerosis: an update. Curr. Rheumatol. Rep. 18, 38 (2016).

    Article  PubMed  Google Scholar 

  5. Denton, C. P. Challenges in systemic sclerosis trial design. Semin. Arthritis Rheum. 49, S3–S7 (2019).

    Article  PubMed  Google Scholar 

  6. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  7. Wipff, J. et al. Association of a KCNA5 gene polymorphism with systemic sclerosis-associated pulmonary arterial hypertension in the European Caucasian population. Arthritis Rheum. 62, 3093–3100 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Ouboussad, L., Burska, A. N., Melville, A. & Buch, M. H. Synovial tissue heterogeneity in rheumatoid arthritis and changes with biologic and targeted synthetic therapies to inform stratified therapy. Front. Med. 6, 45 (2019).

    Article  Google Scholar 

  9. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merkel, P. A. et al. Patterns and predictors of change in outcome measures in clinical trials in scleroderma: an individual patient meta-analysis of 629 subjects with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 64, 3420–3429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Domsic, R. T. Scleroderma: the role of serum autoantibodies in defining specific clinical phenotypes and organ system involvement. Curr. Opin. Rheumatol. 26, 646–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pendergrass, S. A. et al. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J. Invest. Dermatol. 132, 1363–1373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Correia, C. et al. High-throughput quantitative histology in systemic sclerosis skin disease using computer vision. Arthritis Res. Ther. 22, 48 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Lescoat, A. et al. Considerations for a combined index for limited cutaneous systemic sclerosis to support drug development and improve outcomes. J. Scleroderma Relat. Disord. 6, 66–76 (2021).

    Article  PubMed  Google Scholar 

  16. Ziemek, J. et al. The relationship between skin symptoms and the scleroderma modification of the health assessment questionnaire, the modified Rodnan skin score, and skin pathology in patients with systemic sclerosis. Rheumatology 55, 911–917 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Man, A. et al. Development and validation of a patient-reported outcome instrument for skin involvement in patients with systemic sclerosis. Ann. Rheum. Dis. 76, 1374–1380 (2017).

    Article  PubMed  Google Scholar 

  18. Matsuda, K. M. et al. Skin thickness score as a surrogate marker of organ involvements in systemic sclerosis: a retrospective observational study. Arthritis Res. Ther. 21, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumanovics, G. et al. Assessment of skin involvement in systemic sclerosis. Rheumatology 56, v53–v66 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khanna, D. et al. Standardization of the modified Rodnan skin score for use in clinical trials of systemic sclerosis. J. Scleroderma Relat. Disord. 2, 11–18 (2017).

    Article  PubMed  Google Scholar 

  21. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Clements, P. et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J. Rheumatol. 22, 1281–1285 (1995).

    CAS  PubMed  Google Scholar 

  23. Naredo, E. et al. Performance of ultra-high-frequency ultrasound in the evaluation of skin involvement in systemic sclerosis: a preliminary report. Rheumatology 59, 1671–1678 (2020).

    Article  PubMed  Google Scholar 

  24. Santiago, T. et al. Ultrasonography for the assessment of skin in systemic sclerosis: a systematic review. Arthritis Care Res. 71, 563–574 (2019).

    Article  Google Scholar 

  25. Sulli, A. et al. Subclinical dermal involvement is detectable by high frequency ultrasound even in patients with limited cutaneous systemic sclerosis. Arthritis Res. Ther. 19, 61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y. et al. Quantification of skin stiffness in patients with systemic sclerosis using real-time shear wave elastography: a preliminary study. Clin. Exp. Rheumatol. 36 (Suppl. 113), 118–125 (2018).

    PubMed  Google Scholar 

  27. Kissin, E. Y. et al. Durometry for the assessment of skin disease in systemic sclerosis. Arthritis Rheum. 55, 603–609 (2006).

    Article  PubMed  Google Scholar 

  28. Merkel, P. A. et al. Validity, reliability, and feasibility of durometer measurements of scleroderma skin disease in a multicenter treatment trial. Arthritis Rheum. 59, 699–705 (2008).

    Article  PubMed  Google Scholar 

  29. Palamar, D. et al. Disease activity, handgrip strengths, and hand dexterity in patients with rheumatoid arthritis. Clin. Rheumatol. 36, 2201–2208 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Stoenoiu, M. S., Houssiau, F. A. & Lecouvet, F. E. Tendon friction rubs in systemic sclerosis: a possible explanation-an ultrasound and magnetic resonance imaging study. Rheumatology 52, 529–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Sandler, R. D., Matucci-Cerinic, M. & Hughes, M. Musculoskeletal hand involvement in systemic sclerosis. Semin. Arthritis Rheum. 50, 329–334 (2020).

    Article  PubMed  Google Scholar 

  32. Torok, K. S. et al. Reliability and validity of the delta finger-to-palm (FTP), a new measure of finger range of motion in systemic sclerosis. Clin. Exp. Rheumatol. 28, S28–S36 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Javinani, A. et al. The clinical value of the delta finger to palm distance in systemic sclerosis. Reumatismo 72, 44–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sandqvist, G., Nilsson, J. A., Wuttge, D. M. & Hesselstrand, R. Development of a modified hand mobility in scleroderma (HAMIS) test and its potential as an outcome measure in systemic sclerosis. J. Rheumatol. 41, 2186–2192 (2014).

    Article  PubMed  Google Scholar 

  35. Sandqvist, G. & Eklund, M. Validity of HAMIS: a test of hand mobility in scleroderma. Arthritis Care Res. 13, 382–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Mittoo, S. et al. Patient perspectives in OMERACT provide an anchor for future metric development and improved approaches to healthcare delivery in connective tissue disease related interstitial lung disease (CTD-ILD). Curr. Respir. Med. Rev. 11, 175–183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saketkoo, L. A. et al. Reconciling healthcare professional and patient perspectives in the development of disease activity and response criteria in connective tissue disease-related interstitial lung diseases. J. Rheumatol. 41, 792–798 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Man, A., Dgetluck, N., Conley, B. & White, B. FRI0334 performance of the scleroderma skin patient-reported outcome (SSPRO) in a phase 2 trial with lenabasum. Ann. Rheum. Dis. 78 (Suppl. 2), 848.3–849 (2019).

    Google Scholar 

  39. Rannou, F. et al. Assessing disability and quality of life in systemic sclerosis: construct validities of the Cochin Hand Function Scale, Health Assessment Questionnaire (HAQ), Systemic Sclerosis HAQ, and medical outcomes study 36-item short form health survey. Arthritis Rheum. 57, 94–102 (2007).

    Article  PubMed  Google Scholar 

  40. Levis, A. W. et al. Using optimal test assembly methods for shortening patient-reported outcome measures: development and validation of the cochin hand function scale-6: a scleroderma patient-centered intervention network cohort study. Arthritis Care Res. 68, 1704–1713 (2016).

    Article  Google Scholar 

  41. Schouffoer, A. A. et al. Validity and responsiveness of the Michigan Hand Questionnaire in patients with systemic sclerosis. Rheumatology 55, 1386–1393 (2016).

    Article  PubMed  Google Scholar 

  42. Mouthon, L. et al. Psychometric validation of the hand disability in systemic sclerosis-digital ulcers (HDISS-DU®) patient-reported outcome instrument. Arthritis Res. Ther. 22, 3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clements, P., Allanore, Y., Furst, D. E. & Khanna, D. Points to consider for designing trials in systemic sclerosis patients with arthritic involvement. Rheumatology 56, v23–v26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Becker, M. O. et al. Development and validation of a patient-reported outcome measure for systemic sclerosis: the EULAR systemic sclerosis impact of disease (ScleroID) questionnaire. Ann. Rheum. Dis. 81, 507–515 (2022).

    Article  PubMed  Google Scholar 

  45. Benan, M., Hande, I. & Gul, O. The natural course of progressive systemic sclerosis patients with interstitial lung involvement. Clin. Rheumatol. 26, 349–354 (2007).

    Article  PubMed  Google Scholar 

  46. Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 66, 940–944 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann-Vold, A. M. et al. Tracking impact of interstitial lung disease in systemic sclerosis in a complete nationwide cohort. Am. J. Respir. Crit. Care Med. 200, 1258–1266 (2019).

    Article  PubMed  Google Scholar 

  48. Distler, O. et al. Predictors of progression in systemic sclerosis patients with interstitial lung disease. Eur. Respir. J. https://doi.org/10.1183/13993003.02026-2019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khanna, D. & Merkel, P. A. Outcome measures in systemic sclerosis: an update on instruments and current research. Curr. Rheumatol. Rep. 9, 151–157 (2007).

    Article  PubMed  Google Scholar 

  50. Tashkin, D. P. et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 354, 2655–2666 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Caron, M., Hoa, S., Hudson, M., Schwartzman, K. & Steele, R. Pulmonary function tests as outcomes for systemic sclerosis interstitial lung disease. Eur. Respir. Rev. https://doi.org/10.1183/16000617.0102-2017 (2018).

    Article  PubMed  Google Scholar 

  54. Suliman, Y. A. et al. Brief report: pulmonary function tests: high rate of false-negative results in the early detection and screening of scleroderma-related interstitial lung disease. Arthritis Rheumatol. 67, 3256–3261 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Wells, A. U. et al. Fibrosing alveolitis in systemic sclerosis: indices of lung function in relation to extent of disease on computed tomography. Arthritis Rheum. 40, 1229–1236 (1997).

    CAS  PubMed  Google Scholar 

  56. Tashkin, D. P. et al. Relationship between quantitative radiographic assessments of interstitial lung disease and physiological and clinical features of systemic sclerosis. Ann. Rheum. Dis. 75, 374–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Wells, A. U., Behr, J. & Silver, R. Outcome measures in the lung. Rheumatology 47 (Suppl. 5), v48–v50 (2008).

    Article  PubMed  Google Scholar 

  58. Khanna, D. et al. Systemic sclerosis-associated interstitial lung disease: lessons from clinical trials, outcome measures, and future study design. Curr. Rheumatol. Rev. 6, 138–144 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kafaja, S. et al. Reliability and minimal clinically important differences of forced vital capacity: results from the scleroderma lung studies (SLS-I and SLS-II). Am. J. Respir. Crit. Care Med. 197, 644–652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Winstone, T. A. et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest 146, 422–436 (2014).

    Article  PubMed  Google Scholar 

  61. Moore, O. A. et al. Quantifying change in pulmonary function as a prognostic marker in systemic sclerosis-related interstitial lung disease. Clin. Exp. Rheumatol. 33, S111–S116 (2015).

    PubMed  Google Scholar 

  62. Goh, N. S. et al. Short-term pulmonary function trends are predictive of mortality in interstitial lung disease associated with systemic sclerosis. Arthritis Rheumatol. 69, 1670–1678 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Khanna, D. et al. Connective tissue disease-associated interstitial lung diseases (CTD-ILD) — report from OMERACT CTD-ILD Working Group. J. Rheumatol. 42, 2168–2171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kowal-Bielecka, O. et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 76, 1327–1339 (2017).

    Article  PubMed  Google Scholar 

  65. Hoffman-Vold, A. M. et al. The identification and management of interstitial lung disease in systemic sclerosis: evidence-based European consensus statements. Lancet Rheum. 2, E71–E83 (2020).

    Article  Google Scholar 

  66. Molberg, O. & Hoffmann-Vold, A. M. Interstitial lung disease in systemic sclerosis: progress in screening and early diagnosis. Curr. Opin. Rheumatol. 28, 613–618 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Mehrabi, S., Moradi, M. M., Khodamoradi, Z. & Nazarinia, M. A. Effects of N-acetylcysteine on pulmonary functions in patients with systemic sclerosis: a randomized double blind, placebo controlled study. Curr. Rheumatol. Rev. 16, 149–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Buch, M. H. et al. Submaximal exercise testing in the assessment of interstitial lung disease secondary to systemic sclerosis: reproducibility and correlations of the 6-min walk test. Ann. Rheum. Dis. 66, 169–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Schoindre, Y. et al. Lack of specificity of the 6-minute walk test as an outcome measure for patients with systemic sclerosis. J. Rheumatol. 36, 1481–1485 (2009).

    Article  PubMed  Google Scholar 

  70. Sanges, S. et al. A prospective study of the 6 min walk test as a surrogate marker for haemodynamics in two independent cohorts of treatment-naive systemic sclerosis-associated pulmonary arterial hypertension. Ann. Rheum. Dis. 75, 1457–1465 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Ewert, R. et al. Prognostic value of cardiopulmonary exercise testing in patients with systemic sclerosis. BMC Pulm. Med. 19, 230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hemelein, R. A. et al. Evaluation of cardiopulmonary exercise test in the prediction of disease progression in systemic sclerosis. Clin. Exp. Rheumatol. 39 (Suppl. 131), 94–102 (2021).

    Article  PubMed  Google Scholar 

  73. Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 8, 963–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Sperandeo, M. et al. Ultrasound signs of pulmonary fibrosis in systemic sclerosis as timely indicators for chest computed tomography. Scand. J. Rheumatol. 44, 389–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Tardella, M. et al. Ultrasound in the assessment of pulmonary fibrosis in connective tissue disorders: correlation with high-resolution computed tomography. J. Rheumatol. 39, 1641–1647 (2012).

    Article  PubMed  Google Scholar 

  77. Gutierrez, M. et al. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders-preliminary results. Arthritis Res. Ther. 13, R134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gutierrez, M. et al. Ultrasound in the assessment of interstitial lung disease in systemic sclerosis: a systematic literature review by the OMERACT Ultrasound Group. J. Rheumatol. 47, 991–1000 (2020).

    Article  PubMed  Google Scholar 

  79. Ledoult, E. et al. 18F-FDG positron emission tomography scanning in systemic sclerosis-associated interstitial lung disease: a pilot study. Arthritis Res. Ther. 23, 76 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jacquelin, V. et al. FDG-PET/CT in the prediction of pulmonary function improvement in nonspecific interstitial pneumonia. A pilot study. Eur. J. Radiol. 85, 2200–2205 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Schniering, J. et al. Evaluation of 99mTc-rhAnnexin V-128 SPECT/CT as a diagnostic tool for early stages of interstitial lung disease associated with systemic sclerosis. Arthritis Res. Ther. 20, 183 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schniering, J. et al. Visualisation of interstitial lung disease by molecular imaging of integrin αvβ3 and somatostatin receptor 2. Ann. Rheum. Dis. 78, 218–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Wallace, B. et al. Reliability, validity and responsiveness to change of the Saint George’s respiratory questionnaire in early diffuse cutaneous systemic sclerosis. Rheumatology 54, 1369–1379 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hoffmann-Vold, A. M. & Molberg, O. Detection, screening, and classification of interstitial lung disease in patients with systemic sclerosis. Curr. Opin. Rheumatol. 32, 497–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Saketkoo, L. A., Scholand, M. B., Lammi, M. R. & Russell, A. M. Patient-reported outcome measures in systemic sclerosis-related interstitial lung disease for clinical practice and clinical trials. J. Scleroderma Relat. Disord. 5, 48–60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Farina, G., Lafyatis, D., Lemaire, R. & Lafyatis, R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 62, 580–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Xue, D. et al. Expansion of FCGR3A+ macrophages, FCN1+ mo-DC, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis Rheumatol. https://doi.org/10.1002/art.41813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stifano, G. et al. Skin gene expression is prognostic for the trajectory of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 70, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, G., Ning, B. & Shi, T. Single-cell RNA-Seq technologies and related computational data analysis. Front. Genet. 10, 317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rice, L. M. et al. A longitudinal biomarker for the extent of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 67, 3004–3015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shirai, Y., Fukue, R., Kaneko, Y. & Kuwana, M. Clinical relevance of the serial measurement of Krebs von den Lungen — 6 levels in patients with systemic sclerosis-associated interstitial lung disease. Diagnostics https://doi.org/10.3390/diagnostics11112007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Khanna, D. et al. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care Med. 201, 650–660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Elhai, M. et al. Performance of candidate serum biomarkers for systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol. 71, 972–982 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Yamakawa, H. et al. Serum KL-6 and surfactant protein-D as monitoring and predictive markers of interstitial lung disease in patients with systemic sclerosis and mixed connective tissue disease. J. Thorac. Dis. 9, 362–371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Volkmann, E. R. et al. Progression of interstitial lung disease in systemic sclerosis: the importance of pneumoproteins Krebs von den Lungen 6 and CCL18. Arthritis Rheumatol. 71, 2059–2067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Greene, K. E. et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am. J. Respir. Crit. Care Med. 160, 1843–1850 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Yanaba, K., Hasegawa, M., Takehara, K. & Sato, S. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J. Rheumatol. 31, 1112–1120 (2004).

    CAS  PubMed  Google Scholar 

  103. Sumida, H. et al. Prediction of therapeutic response before and during i.v. cyclophosphamide pulse therapy for interstitial lung disease in systemic sclerosis: a longitudinal observational study. J. Dermatol. 45, 1425–1433 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Abignano, G. & Del Galdo, F. Biomarkers as an opportunity to stratify for outcome in systemic sclerosis. Eur. J. Rheumatol. 7, S193–S202 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tiev, K. P. et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur. Respir. J. 38, 1355–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Kuwana, M., Shirai, Y. & Takeuchi, T. Elevated serum Krebs von den Lungen-6 in early disease predicts subsequent deterioration of pulmonary function in patients with systemic sclerosis and interstitial lung disease. J. Rheumatol. 43, 1825–1831 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Schupp, J. et al. Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis. Eur. Respir. J. 43, 1530–1532 (2014).

    Article  PubMed  Google Scholar 

  108. Hoffmann-Vold, A. M. et al. High level of chemokine CCL18 is associated with pulmonary function deterioration, lung fibrosis progression, and reduced survival in systemic sclerosis. Chest 150, 299–306 (2016).

    Article  PubMed  Google Scholar 

  109. Fernando, M. R., Reyes, J. L., Iannuzzi, J., Leung, G. & McKay, D. M. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 9, e94188 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lorenzen, J. M. et al. Osteopontin in the development of systemic sclerosis-relation to disease activity and organ manifestation. Rheumatology 49, 1989–1991 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Valenzi, E. et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12, 595811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. https://doi.org/10.1183/13993003.02441-2018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sproston, N. R. & Ashworth, J. J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 9, 754 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Liu, X. et al. Does C-reactive protein predict the long-term progression of interstitial lung disease and survival in patients with early systemic sclerosis? Arthritis Care Res. 65, 1375–1380 (2013).

    Article  Google Scholar 

  115. Ross, L. et al. The role of inflammatory markers in assessment of disease activity in systemic sclerosis. Clin. Exp. Rheumatol. 36 (Suppl. 113), 126–134 (2018).

    PubMed  Google Scholar 

  116. Chowaniec, M., Skoczynska, M., Sokolik, R. & Wiland, P. Interstitial lung disease in systemic sclerosis: challenges in early diagnosis and management. Reumatologia 56, 249–254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann. Rheum. Dis. 77, 212–220 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Ronnblom, L. & Alm, G. V. A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J. Exp. Med. 194, F59–F63 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon- α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    Article  PubMed  CAS  Google Scholar 

  121. Kafaja, S. et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight https://doi.org/10.1172/jci.insight.98380 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Volkmann, E. R. et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res. Ther. 18, 305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lande, R. et al. CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-alpha production in systemic sclerosis. Nat. Commun. 10, 1731 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Guiot, J. et al. Serum IGFBP-2 in systemic sclerosis as a prognostic factor of lung dysfunction. Sci. Rep. 11, 10882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, M. et al. CCL2 in the circulation predicts long-term progression of interstitial lung disease in patients with early systemic sclerosis: data from two independent cohorts. Arthritis Rheumatol. 69, 1871–1878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. De Lauretis, A. et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J. Rheumatol. 40, 435–446 (2013).

    Article  PubMed  CAS  Google Scholar 

  127. Moinzadeh, P. et al. Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement. Exp. Dermatol. 20, 770–773 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, W. U. et al. Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res. Ther. 7, R71–R79 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Abignano, G. et al. The enhanced liver fibrosis test: a clinical grade, validated serum test, biomarker of overall fibrosis in systemic sclerosis. Ann. Rheum. Dis. 73, 420–427 (2014).

    Article  PubMed  Google Scholar 

  130. Abignano, G. et al. European multicentre study validates enhanced liver fibrosis test as biomarker of fibrosis in systemic sclerosis. Rheumatology 58, 254–259 (2019).

    CAS  PubMed  Google Scholar 

  131. Liu, X. et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 65, 226–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Assassi, S. et al. Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures. Ann. Rheum. Dis. 78, 1371–1378 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Dobrota, R. et al. Prediction of improvement in skin fibrosis in diffuse cutaneous systemic sclerosis: a EUSTAR analysis. Ann. Rheum. Dis. 75, 1743–1748 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Mihai, C., Dobrota, R., Assassi, S., Mayes, M. D. & Distler, O. Enrichment strategy for systemic sclerosis clinical trials targeting skin fibrosis: a prospective, multiethnic cohort study. ACR Open. Rheumatol. 2, 496–502 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang, Y. & Michelakis, E. D. A phase-2 NIH-sponsored randomized clinical trial of rituximab in scleroderma-associated pulmonary arterial hypertension did not reach significance for its endpoints: end of story? Not so fast! Am. J. Respir. Crit. Care Med. 204, 123–125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Khanna, D. et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 72, 125–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Zamanian, R. T. et al. Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension: a multicenter, double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 204, 209–221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Galie, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Furie, R. et al. Two-year, randomized, controlled trial of Belimumab in lupus nephritis. N. Engl. J. Med. 383, 1117–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Bombardier, C., Gladman, D. D., Urowitz, M. B., Caron, D. & Chang, C. H. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 35, 630–640 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. Khanna, D. et al. Measures of response in clinical trials of systemic sclerosis: the combined response index for systemic sclerosis (CRISS) and outcome measures in pulmonary arterial hypertension related to systemic sclerosis (EPOSS). J. Rheumatol. 36, 2356–2361 (2009).

    Article  PubMed  Google Scholar 

  144. Valentini, G. et al. European Scleroderma Study Group to define disease activity criteria for systemic sclerosis. III. Assessment of the construct validity of the preliminary activity criteria. Ann. Rheum. Dis. 62, 901–903 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Valentini, G. et al. European multicentre study to define disease activity criteria for systemic sclerosis. II. Identification of disease activity variables and development of preliminary activity indexes. Ann. Rheum. Dis. 60, 592–598 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Groseanu, L. et al. Do we have good activity indices in systemic sclerosis? Curr. Rheumatol. Rev. https://doi.org/10.2174/1573397117666210913102759 (2021).

    Article  Google Scholar 

  147. Nevskaya, T., Baron, M. & Pope, J. E., Canadian Scleroderma Research Group. Predictive value of European Scleroderma Group Activity Index in an early scleroderma cohort. Rheumatology 56, 1111–1122 (2017).

    Article  PubMed  Google Scholar 

  148. Ross, L. et al. Performance of the 2017 EUSTAR activity index in an scleroderma cohort. Clin. Rheumatol. 39, 3701–3705 (2020).

    Article  PubMed  Google Scholar 

  149. Valentini, G. et al. The European Scleroderma Trials and Research Group (EUSTAR) task force for the development of revised activity criteria for systemic sclerosis: derivation and validation of a preliminarily revised EUSTAR activity index. Ann. Rheum. Dis. 76, 270–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Fasano, S. et al. Revised European Scleroderma Trials and Research Group Activity Index is the best predictor of short-term severity accrual. Ann. Rheum. Dis. 78, 1681–1685 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Freemantle, N., Calvert, M., Wood, J., Eastaugh, J. & Griffin, C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA 289, 2554–2559 (2003).

    Article  PubMed  Google Scholar 

  152. FDA. Surrogate endpoint resources for drug and biologic development. US Food & Drug Administration. https://www.fda.gov/drugs/development-resources/surrogate-endpoint-resources-drug-and-biologic-development (2018).

  153. FDA. Table of surrogate endpoints that were the basis of drug approval or licensure. US Food & Drug Administration. https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure (2022).

  154. Sumpton, D. et al. Scope and consistency of outcomes reported in trials of patients with systemic sclerosis. Arthritis Care Res. 72, 1449–1458 (2020).

    Article  Google Scholar 

  155. Pulido, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Khanna, D. et al. Reliability and validity of the University of California, Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument. Arthritis Rheum. 61, 1257–1263 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Low, A. H. L. et al. A double-blind randomized placebo-controlled trial of probiotics in systemic sclerosis associated gastrointestinal disease. Semin. Arthritis Rheum. 49, 411–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Zampatti, N. et al. Performance of the UCLA Scleroderma clinical trials consortium gastrointestinal tract 2.0 instrument as a clinical decision aid in the routine clinical care of patients with systemic sclerosis. Arthritis Res. Ther. 23, 125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Thurm, R. H. & Alexander, J. C. Captopril in the treatment of scleroderma renal crisis. Arch. Intern. Med. 144, 733–735 (1984).

    Article  CAS  PubMed  Google Scholar 

  160. Valentini, G. et al. Vasodilators and low-dose acetylsalicylic acid are associated with a lower incidence of distinct primary myocardial disease manifestations in systemic sclerosis: results of the DeSScipher inception cohort study. Ann. Rheum. Dis. 78, 1576–1582 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Daoussis, D., Antonopoulos, I., Liossis, S. N., Yiannopoulos, G. & Andonopoulos, A. P. Treatment of systemic sclerosis-associated calcinosis: a case report of rituximab-induced regression of CREST-related calcinosis and review of the literature. Semin. Arthritis Rheum. 41, 822–829 (2012).

    Article  PubMed  Google Scholar 

  162. Reiter, N., El-Shabrawi, L., Leinweber, B., Berghold, A. & Aberer, E. Calcinosis cutis: part II. Treatment options. J. Am. Acad. Dermatol. 65, 15–22; quiz 23–24 (2011).

    Article  PubMed  Google Scholar 

  163. Chung, L. et al. Validation of a novel radiographic scoring system for calcinosis affecting the hands of patients with systemic sclerosis. Arthritis Care Res. 67, 425–430 (2015).

    Article  Google Scholar 

  164. Jones, D. K., Higenbottam, T. W. & Wallwork, J. Treatment of primary pulmonary hypertension intravenous epoprostenol (prostacyclin). Br. Heart J. 57, 270–278 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Williamson, D. J. et al. Hemodynamic effects of bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation 102, 411–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Bhatia, S., Frantz, R. P., Severson, C. J., Durst, L. A. & McGoon, M. D. Immediate and long-term hemodynamic and clinical effects of sildenafil in patients with pulmonary arterial hypertension receiving vasodilator therapy. Mayo Clin. Proc. 78, 1207–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Hsu, V., Varga, J. & Schlesinger, N. Calcinosis in scleroderma made crystal clear. Curr. Opin. Rheumatol. 31, 589–594 (2019).

    Article  PubMed  Google Scholar 

  168. Pokeerbux, M. R., Farhat, M. M., Merger, M., Launay, D. & Hachulla, E. Calcinosis in systemic sclerosis. Jt. Bone Spine 88, 105180 (2021).

    Article  Google Scholar 

  169. Roofeh, D. et al. Outcome measurement instrument selection for lung physiology in systemic sclerosis associated interstitial lung disease: a systematic review using the OMERACT filter 2.1 process. Semin. Arthritis Rheum. 51, 1331–1341 (2021).

    Article  PubMed  Google Scholar 

  170. Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.L. is supported by the National Institutes of Health. E.V. is supported by the National Scleroderma Foundation and the Pulmonary Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Robert Lafyatis.

Ethics declarations

Competing interests

R.L. has served as a consultant for Pfizer, Bristol Myers Squibb, Boehringer-Ingelheim, Formation, Sanofi, Boehringer-Mannheim, Merck and Genentech/Roche, and holds or recently had research grants from Corbus, Formation, Moderna, Regeneron, Pfizer, and Kiniksa. E.V. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafyatis, R., Valenzi, E. Assessment of disease outcome measures in systemic sclerosis. Nat Rev Rheumatol 18, 527–541 (2022). https://doi.org/10.1038/s41584-022-00803-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00803-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research