Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated computer-aided engineering and design for DNA assemblies

Abstract

Recently, DNA has been used to make nanodevices for a myriad of applications across fields including medicine, nanomanufacturing, synthetic biology, biosensing and biophysics. However, current DNA nanodevices rely primarily on geometric design, and it remains challenging to rationally design functional properties such as force-response or actuation behaviour. Here we report an iterative design pipeline for DNA assemblies that integrates computer-aided engineering based on coarse-grained molecular dynamics with a versatile computer-aided design approach that combines top-down automation with bottom-up control over geometry. This intuitive framework allows for rapid construction of large, multicomponent assemblies from three-dimensional models with finer control over the geometrical, mechanical and dynamical properties of the DNA structures in an automated manner. This approach expands the scope of structural complexity and enhances mechanical and dynamic design of DNA assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the proposed design framework for multicomponent DNA origami assemblies.
Fig. 2: Parametric design of functional nanodevices.
Fig. 3: Design of multicomponent complex structures.
Fig. 4: Reconfigurable devices by hierarchical design.
Fig. 5: Broadening the design spectrum by integrating wireframe, lattice and surface-based components.
Fig. 6: Multiscaffold designs.

Similar content being viewed by others

Swarup Dey, Chunhai Fan, … Pengfei Zhan

Data availability

Original data for TEM images and gel electrophoresis are included as Source data. The remaining data supporting the findings of this study are available within the Article and its supplementary information files or available from the corresponding author upon reasonable request.

Code availability

The developed design software MagicDNA is available from GitHub at https://github.com/cmhuang2011/MagicDNA.

References

  1. Chang, K.-H. e-Design: Computer-Aided Engineering Design (Academic, 2016).

  2. Olson, G. B. Computational design of hierarchically structured materials. Science 277, 1237–1242 (1997).

    Article  CAS  Google Scholar 

  3. Panchal, J. H., Kalidindi, S. R. & McDowell, D. L. Key computational modeling issues in integrated computational materials engineering. Comput. Aided Des. 45, 4–25 (2013).

    Article  Google Scholar 

  4. Backman, D. G. et al. ICME at GE: accelerating the insertion of new materials and processes. JOM 58, 36–41 (2006).

    Article  Google Scholar 

  5. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  Google Scholar 

  6. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  7. Williams, S. et al. in DNA Computing (eds Goel, A., Simmel, F. C. & Sosík, P.) 90–101 (Springer, 2008).

  8. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  CAS  Google Scholar 

  9. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, aaf4388 (2016).

    Article  CAS  Google Scholar 

  10. Doye, J. P. K. et al. Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15, 20395–20414 (2013).

    Article  CAS  Google Scholar 

  11. Snodin, B. E. K. et al. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142, 234901 (2015).

    Article  CAS  Google Scholar 

  12. Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res. 48, 5135–5146 (2020).

    Article  CAS  Google Scholar 

  13. Reshetnikov, R. V. et al. A coarse-grained model for DNA origami. Nucleic Acids Res. 46, 1102–1112 (2018).

    Article  CAS  Google Scholar 

  14. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  15. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  16. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  17. Jiang, Q. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article  CAS  Google Scholar 

  18. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  CAS  Google Scholar 

  19. Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    Article  CAS  Google Scholar 

  20. Shaw, A. et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods 11, 841–846 (2014).

    Article  CAS  Google Scholar 

  21. Shen, B. et al. Plasmonic nanostructures through DNA-assisted lithography. Sci. Adv. 4, eaap8978 (2018).

    Article  CAS  Google Scholar 

  22. Le, J. V. et al. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 10, 7073–7084 (2016).

    Article  CAS  Google Scholar 

  23. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  CAS  Google Scholar 

  24. Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).

    Article  CAS  Google Scholar 

  25. Zhou, L., Marras, A. E., Huang, C.-M., Castro, C. E. & Su, H.-J. Paper origami-inspired design and actuation of DNA nanomachines with complex motions. Small 14, 1802580 (2018).

    Article  CAS  Google Scholar 

  26. Jun, H. et al. Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 13, 2083–2093 (2019).

    CAS  Google Scholar 

  27. Jun, H. et al. Autonomously designed free-form 2D DNA origami. Sci. Adv. 5, eaav0655 (2019).

    Article  CAS  Google Scholar 

  28. Jun, H., Wang, X., Bricker, W. P. & Bathe, M. Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nat. Commun. 10, 5419 (2019).

    Article  CAS  Google Scholar 

  29. Zhou, L., Marras, A. E., Su, H.-J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).

    Article  CAS  Google Scholar 

  30. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  Google Scholar 

  31. Pandey, S. et al. Algorithmic design of self-folding polyhedra. Proc. Natl Acad. Sci. USA 108, 19885–19890 (2011).

    Article  CAS  Google Scholar 

  32. Castro, C. E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).

    Article  CAS  Google Scholar 

  33. Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    Article  CAS  Google Scholar 

  34. Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 48, e72 (2020).

    Article  CAS  Google Scholar 

  35. Snodin, B. E. K., Schreck, J. S., Romano, F., Louis, A. A. & Doye, J. P. K. Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res. 47, 1585–1597 (2019).

    Article  CAS  Google Scholar 

  36. Shi, Z., Castro, C. E. & Arya, G. Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11, 4617–4630 (2017).

    Article  CAS  Google Scholar 

  37. Sharma, R., Schreck, J. S., Romano, F., Louis, A. A. & Doye, J. P. K. Characterizing the motion of jointed DNA nanostructures using a coarse-grained model. ACS Nano 11, 12426–12435 (2017).

    Article  CAS  Google Scholar 

  38. Huang, C.-M., Kucinic, A., Le, J. V., Castro, C. E. & Su, H.-J. Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. Nanoscale 11, 1647–1660 (2019).

    Article  CAS  Google Scholar 

  39. Engelhardt, F. A. S. et al. Custom-size, functional, and durable DNA origami with design-specific scaffolds. ACS Nano 13, 5015–5027 (2019).

    Article  CAS  Google Scholar 

  40. Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. Int. Ed. 51, 4864–4867 (2012).

    Article  CAS  Google Scholar 

  41. Johnson, J. A., Dehankar, A., Winter, J. O. & Castro, C. E. Reciprocal control of hierarchical DNA origami–nanoparticle assemblies. Nano Lett. 19, 8469–8475 (2019).

    Article  CAS  Google Scholar 

  42. Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

    Article  CAS  Google Scholar 

  43. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  44. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    Article  CAS  Google Scholar 

  45. Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article  CAS  Google Scholar 

  46. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 1–23 (2017).

    Google Scholar 

  47. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  CAS  Google Scholar 

  48. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  CAS  Google Scholar 

  49. Marchi, A. N. et al. Origami. Nano Lett. 14, 5740–5747 (2014).

    Article  CAS  Google Scholar 

  50. Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

    Article  CAS  Google Scholar 

  51. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  52. Sobczak, J.-P. J., Martin, T. G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338, 1458–1461 (2012).

    Article  CAS  Google Scholar 

  53. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  54. Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics International 11, 36–42 (2004).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation (NSF) grant 1536862 to H.-J.S. and C.E.C. and grant 1921881 to C.E.C. We acknowledge F. Engelhardt and H. Dietz for providing custom scaffolds, T. Aksel and S. Douglas for sharing the caDNAno toolkit, C. Maffeo and A. Aksimentiev for supporting the interface to MrDNA, T. MacCulloch and N. Stephanopoulos for providing K10 peptide and A. Tran, P. Le and P. Lukeman for testing MagicDNA Runtime packages. We thank the Campus Microscopy and Imaging Facility (CMIF) of The Ohio State University for imaging support. We also thank W. Pfeifer and C. Maffeo for critiques on the manuscript and supplementary material. Funding provided by NSF (NSF CMMI) 1536862 and NSF (NSF CMMI) 1921881.

Author information

Authors and Affiliations

Authors

Contributions

C.-M.H. developed the software and the algorithm, designed and simulated all the structures, analysed the data, prepared the tutorial and supported experiments. A.K. conducted the majority of experiments and analysed the experimental results. J.A.J. was an initial user and provided critical early feedback on software features, interface and instructions. H.-J.S. supervised the development of the software and interpreted the data. C.E.C. supervised the experimental validation and the entire study, supported the development of the software and interpreted the data. C.-M.H., A.K., H.-J.S. and C.E.C. wrote the manuscript. All authors commented on and edited the manuscript.

Corresponding authors

Correspondence to Hai-Jun Su or Carlos E. Castro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Ebbe Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–87, Table 1, captions for Videos 1 and 2, and References 1–27.

Supplementary Video 1

Top-down parametric design for a hinge structure performed by converting two lines into bundles and specifying the connectivity to assemble the components.

Supplementary Video 2

The final design profile of the airplane and the CG simulation with 3 × 108 steps.

Supplementary Data 3

The Excel sheets for the staple list of the 14 structures for fabrication.

Supplementary Data 4

Unprocessed gels and gel-intensity analysis for yield determination.

Source data

Source Data Fig. 1

MagicDNA design file and unprocessed TEM image.

Source Data Fig. 2

DNA origami structure raw TEM images.

Source Data Fig. 2d

Source data for motion analysis of 4 bar mechanism.

Source Data Fig. 3

DNA origami structure raw TEM images.

Source Data Fig. 4

DNA origami structure raw TEM images.

Source Data Fig. 6

DNA origami structure raw TEM images and gel electrophoresis image depicting robot arm assembly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CM., Kucinic, A., Johnson, J.A. et al. Integrated computer-aided engineering and design for DNA assemblies. Nat. Mater. 20, 1264–1271 (2021). https://doi.org/10.1038/s41563-021-00978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00978-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research