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How are people affected by a period of forced social isolation? 
Chronic social isolation and loneliness are associated with 
lower physical1,2 and mental2–4 health, but little is known 

about the consequences of acute mandatory isolation. Positive social 
interactions in and of themselves may be basic human needs, analo-
gous to other basic needs like food consumption or sleep5,6. If so, the 
absence of positive social interaction may create a want, or ‘craving’, 
that motivates behavior to repair what is lacking5. Cues associated 
with positive social interaction (for example, smiling faces) activate 
neural reward systems7. However, research on the neural represen-
tation of unmet human social needs is scarce8.

In social animals, social interactions act as primary rewards9–11: 
they are inherently pleasurable and motivate behavior in the 
absence of any other reward. Extended periods of isolation, espe-
cially during development, can dramatically disrupt behavior and 
brain function12–14. Even a brief acute period of social isolation 
causes an aversive, ‘loneliness-like’ brain state in adult mice, causing 
the mice to seek social interaction15 which is mediated specifically 
by dopaminergic (DA) midbrain neurons16, similar to other kinds 
of craving17.

However, the similarity to human loneliness has been disputed8, 
and it is not possible to assess whether a mouse subjectively feels 
lonely when isolated. Would acute isolation evoke a similar response 
in humans? The intuitive idea that depriving social needs evokes 
social craving, analogous to the way fasting evokes food craving and 
is mediated by similar DA midbrain regions, has never been directly 
tested in humans. The few previous studies investigating the corre-
lation between self-reported chronic loneliness and brain responses 
to social stimuli yield contradictory findings18–20, and are limited by 
the ambiguity of observed correlations: if brain responses do differ, 
are the differences antecedents or effects of loneliness?

Results
To address these questions, we experimentally induced social  
isolation in a within-subject design; 40 healthy, socially connected 
young adults (ages 18–40, 27 women) underwent 10 h of social  

isolation and functional magnetic resonance imaging (fMRI)  
with a cue-induced craving (CIC) paradigm. Each participant 
also underwent 10 h of food fasting and subsequent MRI. Figure 1  
shows an overview of the experimental procedures (see Methods 
for details). All predictions and methods were preregistered on the 
Open Science Framework (OSF; https://osf.io/cwg9e).

All participants were within a healthy weight range (body mass 
index (BMI) mean (s.d.) = 22.8 (2.2)), reported frequent social 
interactions (monthly interactions, mean = 49.1 (31.7); mini-
mum = 10) and close relationships (number of close relationships, 
mean = 12.3 (5.1); minimum = 3). Participants reported relatively21 
low levels of pre-existing loneliness (University of California, Los 
Angeles (UCLA) loneliness scale, mean = 33.2 (6.3), maximum = 47 
out of 80).

Subjective social craving can be evoked by acute objective social 
isolation. Could we experimentally induce the subjective experi-
ence of social isolation in human participants? Human loneliness 
is not a simple product of objective isolation: people can be alone 
without feeling lonely or feel lonely even in a crowd22. Moreover, 
experimentally induced isolation would be brief, relative to the 
human lifespan, and, for ethical reasons, human participants (unlike 
rodents) would be able to predict when the isolation would end. 
In all, the first challenge of this research was to develop an experi-
mental induction of objective isolation that created the subjective 
experience of unmet social needs in human participants. To address 
this challenge, we had socially connected healthy human adults 
spend 10 h (9:00 to 19:00) alone, with no social interaction and no 
other social stimulation (for example, social media, email, fiction).  
We used self-report questionnaires to assess people’s resulting  
subjective experience of loneliness and social craving.

After 10 h of social isolation, participants reported substantially 
increased social craving (Student’s t-test, t(39) = 5.00, P < 0.001), 
loneliness (t(39) = 5.17, P < 0.001), discomfort (t(39) = 5.57, 
P < 0.001) and dislike of isolation (t(39) = 4.13, P < 0.001), and 
decreased happiness (t(39) = −4.21, P < 0.001) compared with 
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when they started isolation. Of the 40 individual participants, 36 
reported feeling more lonely after isolation. As expected, after 
10 h of food fasting, participants reported increased food crav-
ing (t(36) = 17.40, P < 0.001), hunger (t(36) = 23.90, P < 0.001), 
discomfort (t(36) = 13.56, P < 0.001) and dislike of fasting 
(t(36) = 6.28, P < 0.001), and decreased happiness (t(36) = −3.05, 
P = 0.004) compared with when they started fasting. Thus, both 
forms of abstinence evoked craving for the specifically deprived 
need, along with general discomfort and decreased happiness. 
However, we note that social craving after isolation was more vari-
able across participants than food craving after fasting (mean(s.d.) 
of craving ratings, after 10 h: food craving = 80.25(19.39);  
social craving = 66.38(24.52), Fig. 2; Levene’s test indicated unequal 
variances (F(76) = 15.86, P < 0.001)).

After isolation, social cues evoke neural signatures of craving. In 
primates, aversive motivation (that is, a negative state such as hun-
ger or pain that motivates behavior to relieve the state23) is repre-
sented in the substantia nigra pars compacta and ventral tegmental 
area (SN/VTA24), and the SN/VTA is activated by craving for food 
and for drugs of addiction25–27. In the SN, in particular, ~70% of  
the neurons are DA, so fMRI signals in this brain area probably 

mainly reflect DA neuron activity28. We therefore hypothesized  
that acute isolation in humans might produce a social craving 
response in the SN/VTA. Neuroimaging of the SN/VTA poses a 
technical challenge, however, because it is a small structure, adja-
cent to the sphenoid sinus (a large, air-filled cavity located anterior 
to the brainstem), and is therefore prone to distortions and signal 
loss28. To address this challenge, we optimized MR image acquisi-
tion parameters, and used a newly developed atlas (see Methods for 
details) to identify the SN/VTA in individual participants’ brains. 
We also included an independent functional localizer task to iden-
tify voxels in each participant’s midbrain that are maximally sensi-
tive to expected reward and novelty, consistent with DA activity29.

To measure DA midbrain responses to food cues and social cues, 
we developed a CIC paradigm, in which participants viewed pic-
tures of their favorite social activities, favorite foods and a pleas-
ant control (flowers). We included favorite foods so that we could 
compare social craving, within participants, to a well-established 
neural craving response, evoked by viewing food cues after several 
hours of fasting26. In the anatomically defined SN/VTA (Fig. 3a), 
responses to food cues were higher after fasting than after isolation 
(beta (b) = 0.06, t = 3.1, 95% confidence interval (CI) = (0.0.02,0.09), 
P = 0.002), but responses to social cues were not significantly 
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Fig. 1 | overview of the experimental procedures. First, individuals underwent screening for their social connectedness (measured by social network 
size and self-reported loneliness; see Methods for details). each participant (n = 40) then underwent three experimental sessions: fasting, baseline 
and isolation (the order of sessions was counterbalanced across participants) and subsequently an MR scan with the CIC task. On the baseline day, 
participants also underwent a functional localizer task. In the CIC task, participants saw cues for social contact, food and control cues depicting flowers. 
After each block of cues (showing three images), participants rated their self-reported social craving (after social blocks), food craving (after food blocks) 
and how much they liked the flower pictures (after control blocks). In the functional localizer task, participants memorized a set of five images before 
the scan (four different sets of images were counterbalanced across participants). Immediately before the localizer task, participants were shown the 
memorized pictures again. During the task, participants saw either one of the memorized pictures or a new picture indicating whether or not they would 
be able to win money.
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higher after isolation than after fasting (b = 0.006, t = 0.7, 95% 
CI = (−0.01,0.03), P = 0.50; for full results of the model including 
all main effects, see Supplementary Table 1). In the midbrain func-
tional region of interest (ROI) (voxels maximally sensitive to reward 
and novelty; Fig. 3b), responses to food cues were higher after 
fasting than after isolation (b = 0.03, t = 3.3, 95% CI = (0.01,0.05), 
P = 0.001), and responses to social cues were higher after isolation 
than after fasting (b = 0.03, t = 2.5, 95% CI = (0.006,0.05), P = 0.01; 
see Supplementary Table 2 for full results).

We also compared SN/VTA responses with food and social cues 
after fasting and isolation to responses to the same cue on the base-
line day (when participants’ food intake and social interactions were 
not controlled or measured). Unexpectedly, when compared with 
the baseline day, deprivation led to a decreased response to the non-
deprived cue, rather than an enhanced response to the deprived cue 
(Fig. 3 and Supplementary Fig. 2). In the anatomically defined SN/
VTA, responses to food cues were numerically but not significantly 
higher after fasting than baseline, but significantly lower after iso-
lation than baseline (b = −0.05, t = −2.1, 95% CI = (−0.11,−0.003), 
P = 0.038); responses to social cues did not significantly differ 
from responses at baseline for any of the sessions. In the midbrain 
functional ROI, responses to food cues were numerically but not 
significantly higher after fasting and significantly lower after iso-
lation than baseline (b = −0.06, t = −2.4, 95% CI = (−0.12,−0.01), 

P = 0.02), whereas social cues were numerically but not significantly 
higher after isolation than baseline and showed a trend to be lower 
after fasting (b = 0.01, t = −1.8, 95% CI = (−0.11,−0.004), P = 0.07; 
see Supplementary Tables 3 and 4 for full results)

SN/VTA activity was correlated with self-reported craving, 
for both food and social cues. However, this correlation was sig-
nificant for different measures in the two conditions. We mea-
sured self-reported craving in two ways: craving ratings during 
the task directly in response to the craving cues (Food_Craving_
CIC/Social_Craving_CIC) and craving ratings on the questionnaire 
before participants went into the scanner (Food_Craving_Q/Social_
Craving_Q). The two craving measures (Craving_CIC and 
Craving_Q) were correlated across participants in both condi-
tions (food, Pearson’s r: r(36) = 0.52; P < 0.001; social: r(38) = 0.30; 
P = 0.030; see Methods for details). We consider the two self-report 
measures to be estimates of the same hypothesized psychological 
process, and report results as significant after Bonferroni’s correc-
tion for the two tests. After fasting, in the anatomical SN/VTA, 
the response to food cues (versus flowers) was positively corre-
lated with the participant’s self-reported food craving measured 
during the CIC task (Food_Craving_CIC: r(38) = 0.31; P = 0.025;  
Fig. 3c), but not with food craving on the final questionnaire  
(Food_Craving_Q, r(36) = 0.05; P = 0.375). As the data for food 
craving measured during the CIC task is truncated at the upper 
limit of 10, we also analyzed the correlation using a truncated 
regression model (see Methods for details): SN/VTA activity 
in response to food cues remained associated with higher crav-
ing ratings during the task (Food_Craving_CIC: b = 0.04, t = 2.10, 
P = 0.038). After isolation, the SN/VTA response to social cues 
(versus flowers) was positively correlated with self-reported social 
craving on the final questionnaire (Social_Craving_Q, r(38) = 0.36; 
P = 0.011; Fig. 3c), but not with social craving measured during the 
CIC task (Social_Craving_CIC: r(38) = 0.054; P = 0.370).

As a direct test of the similarity of activity patterns for food 
cues after fasting, and social cues after isolation, we implemented 
a multivoxel pattern analysis. We trained a classifier on the pat-
tern of activity in the SN/VTA after fasting to food cues and flower 
images. This trained classifier then generalized to above-chance 
decoding (α = 0.001; see Methods for details and Fig. 4 for an 
illustration of our multivariate analysis approach) of social cues 
from flower images after isolation (mean accuracy = 0.542, boot-
strapped CI = (0.505,0.581), P < 0.001), but did not show significant 
above-chance accuracy at baseline (mean accuracy = 0.534, boot-
strapped CI = (0.497,0.573), P = 0.007). However, it is important to 
note that the classification accuracy for social cues did not differ 
between the isolation and baseline sessions.

In addition, the classifier was able to decode food from 
flower images after isolation and baseline (isolation: mean accu-
racy = 0.540, bootstrapped CI = (0.494,0.584), P < 0.001; baseline: 
mean accuracy = 0.545, bootstrapped CI = (0.509,0.594), P < 0.001). 
Given that the classification algorithm was always used to dis-
tinguish between a target stimulus and flowers, one might worry 
that the generalization is simply due to learning about flowers.  
We addressed this concern using a representational similarity  
analysis that directly compared food and social cues in deprived or 
nondeprived states.

The pattern of SN/VTA activity in response to social cues 
on the isolation day was more similar to the pattern of food 
cues on the fasting day than to food cues on the baseline day 
(mean Fisher-transformed dissimilarity: social_craved-food_
craved = 0.87, social_craved-food_noncraved = 1.09; t(39) = 2.0, 
P = 0.025). Indeed, SN/VTA responses to different stimuli in a simi-
lar motivational state (social_craved-food_craved) trended toward 
being more similar to each other than the responses to the same 
stimuli across different motivational states (food_craved–food_
noncraved; mean correlation = 1.03; t(39) = 1.4, P = 0.08).
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Correlations with chronic loneliness. In summary, these results sug-
gest that, across all participants, the SN/VTA shows an increased 
response to social cues after objective social isolation compared 
with after fasting, with a spatial pattern that is similar to the 
response to food cues when hungry. The magnitude of this response 
was variable across participants, and larger in those who reported 
more social craving after the acute isolation period. We predicted 
that individual variability in response to objective isolation might 
reflect pre-existing differences in participants’ social network size 
and/or chronic loneliness. Consistent with this prediction, par-
ticipants with higher levels of chronic loneliness during the initial 
screening reported less craving for social contact in response to 
the social cues in the CIC task (Social_Craving_CIC: r(38) = −0.37; 
P = 0.020), and somewhat less craving after 10 h of isolation on the 
online questionnaire (Social_Craving_Q: r(38) = −0.30; P = 0.059). 
People with higher pre-existing chronic loneliness also showed 
a muted response in SN/VTA to social cues after acute isolation 
(r(38) = −0.33; P = 0.036). Individual differences in social net-
work size did not predict either self-reported or neural responses 
to acute social isolation (all P values ⋝0.33). We explored whether 
pre-existing loneliness was associated with different responses 
to food cues after fasting and found that, although loneliness did 
not affect self-reported food craving (P = 0.431), higher loneliness 

was associated with a trend toward lower post-fasting SN/VTA 
responses to food cues (r(38) = −0.30; P = 0.062).

SN/VTA: correlations with cravings. In our preregistration, we 
planned to test whether the magnitude of the SN/VTA response 
to a specific deprived cue (food or social) was correlated with 
self-reported craving for that cue. As reported in After isolation, 
social cues evoke neural signatures of craving, these predicted 
correlations were observed. In addition to these preregistered 
analyses, as prompted by a reviewer, we explored the broader 
structure of correlations between behavioral and neural measures 
of craving.

We tested whether the correlations between the SN/VTA and 
self-reported craving (on the CIC task) were restricted to the 
deprived day. We found that they were not. Self-reported craving 
for food was correlated with the SN/VTA response to food cues on 
both nonfasted sessions (baseline session: r(38) = 0.32; P = 0.045; 
isolation session: r(38) = 0.43, P = 0.006). As the data for food crav-
ing measured during the CIC task were truncated at the upper limit 
of 10, we also analyzed the correlations using a truncated regres-
sion model (see Methods for details): for both nonfasted sessions, 
SN/VTA activity in response to food cues remained associated  
with higher craving ratings during the task (baseline: b = 0.02, 
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t = 2.11, P = 0.034; isolation: b = 0.02, t = 3.00, P = 0.003). 
Self-reported craving for social interaction was correlated with 
the SN/VTA response to social cues on both the nonisolated ses-
sions (baseline session: r(38) = 0.37; P = 0.018; fasting session: 

r(38) = 0.35, P = 0.027). Thus, individual differences in the magni-
tude of the SN/VTA response to a cue are correlated with simulta-
neously measured self-reported craving for that cue, whether or not 
that cue has been selectively deprived.
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baseline day. d, We directly compared the spatial pattern of activity for deprived and nondeprived cues. Note that these results show Fisher-transformed 
dissimilarity, a measure of representational distance, so lower numbers indicate a more similar spatial pattern. The violin plots illustrate the distribution of 
the data, the white dots indicate the median, the bold dark-gray vertical line the IQR and the thin gray lines the 1.5× IQR minima and maxima. Social cues 
after isolation were more similar to food cues after fasting than to food cues at baseline. Food cues after fasting were (trending) more similar to social cues 
after isolation than food cues after isolation. Both c and d show that the pattern of activity in SN/VTA is determined not only by the category of visual 
stimulus, but also by the motivational salience of the category, with craved cues evoking a similar pattern whether what is craved is food or social interaction.
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Mixed-effects model: striatum. Although our primary hypoth-
eses focused on the DA midbrain, and particularly the SN/VTA, 
we also investigated responses in the striatum, a major target of 
projections from midbrain DA neurons30. A mixed-effects regres-
sion model tested effects of cue (food, social, flowers) and session  
(fasting, isolation) for each subregion of the striatum separately 
(nucleus accumbens (NAcc), caudate nucleus (Ca) and putamen 
(Pu)). We report results as significant at P < 0.017 (0.05/3).

Food cues (compared with flowers) evoked a stronger response 
after fasting (compared with after isolation) in NAcc (b = 0.08, 
t = 4.7, 95% CI = (0.05, 0.11), P < 0.001; Fig. 5) and Pu (b = 0.03, 
t = 3.2, 95% CI = (0.01,0.05), P = 0.002), but not in Ca (b = 0.025, 
t = 1.9, 95% CI = (−0.001,0.05), P = 0.061). Social cues evoked a 
stronger response after isolation (compared with after fasting) in Ca 
(b = 0.04, t = 3.0, 95% CI = (0.01,0.06), P = 0.003) but not in NAcc 
(b = 0.04, t = 2.1, 95% CI = (0.002,0.07), P = 0.04) and Pu (b = 0.02, 
t = 1.4, 95% CI = (−0.007,0.04), P = 0.17). Similar to the SN/VTA, 
when compared with the baseline day, deprivation led to a decreased 
response to the nondeprived cue in striatal subregions, rather than 
an enhanced response to the deprived cue (an enhanced response to 
social cues after isolation compared with baseline in the caudate did 
not survive correction for multiple comparisons). For full results, 
see Supplementary Tables 5–12.

Thus, although the responses in SN/VTA were similar and 
overlapping for food craving and social craving, responses in the 
striatum were dissociable. We conducted exploratory analyses to 
test whether subjective craving of food and social contact (Craving_
CIC) was correlated with striatal activity for any condition or any 
of the three subregions (reporting results significant at α < 0.017  
to correct for multiple comparisons) and found no significant  
correlation in the striatum ROIs (all P values >0.038).

Exploratory analyses: downstream targets of the SN/VTA. We 
also conducted exploratory analyses testing the effects of food and 
social craving in other brain regions associated with craving. We 
selected four ROIs based on meta-analyses of craving across differ-
ent modalities (see Methods for details): amygdala, insular cortex, 
anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC).  
A mixed-effects regression model tested effects of cue (food, social, 
flowers) and session (fasting, isolation) for each region and we 

reported results as significant at P < 0.0125 (0.05/4), to account  
for the four regions tested.

Food cues (compared with flowers) evoked a stronger response 
after fasting (compared with after isolation) in the ACC (b = 0.07, 
t = 2.9, 95% CI = (0.02,0.12), P = 0.005) and trending stron-
ger responses after fasting in the insula (b = 0.03, t = 2.0, 95% 
CI = (0.0003,0.07), P = 0.052) and amygdala (b = 0.04, t = 1.9, 95% 
CI = (0.0007,0.07), P = 0.055), but not in the OFC (b = 0.03, t = 1.0, 
95% CI = (−0.1,0.04), P = 0.337).

Social cues evoked a stronger response after isolation (compared 
with after fasting) in the OFC (b = 0.11, t = 2.53, 95% CI = (0.03,0.20), 
P = 0.012), but in none of the other ROIs (ACC: b = −0.007, 
t = −0.3, 95% CI = (−0.06,0.05), P = 0.787; insula: b = 0.02, t = 1.0, 
95% CI = (−0.06,0.02), P = 0.324; amygdala: b = 0.02, t = 1.0, 95% 
CI = (−0.02,0.06), P = 0.334). When compared with the baseline 
day, we found no significant effects in the exploratory ROIs. For full 
results, see Supplementary Tables 13–20.

An exploratory whole-brain, random-effects analysis yielded 
converging results: selective responses to food craving in the NAcc, 
ACC, periaqueductal gray and amygdala, and selective responses 
to social craving in the Ca, OFC and dorsomedial prefrontal cor-
tex (Supplementary Tables 21 and 22 and Supplementary Fig. 4). 
A conjunction analysis assessing overlapping activation between 
the food contrast (fasting > isolation) and the social contrast (isola-
tion > fasting) did not show any suprathreshold voxels.

We also calculated exploratory whole-brain contrasts against 
baseline (that is, food: fasting > baseline and social: isolation > base-
line) but found no suprathreshold activity in this analysis. This 
result is in line with our ROI analysis in the SN/VTA showing simi-
lar magnitude of activity in in response to food cues after fasting and 
baseline, and in response to social cues after isolation and baseline.

Exploratory behavioral analyses. Correlations between craving rat-
ings. We explored whether individual differences in self-reported 
cravings for different cues are correlated with each other. We com-
puted Pearson’s correlation between each pair of average craving 
ratings (that is, for food and social cues, measured after fasting, iso-
lation and baseline). These correlations revealed some interesting 
structures (Supplementary Fig. 5). First, self-reported cravings for 
food and social interaction were moderately correlated at baseline 
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(r = 0.48), but less correlated after either need was deprived (mean 
r = 0.14, z = 1.64, P = 0.05). Second, individual differences in crav-
ings for social interaction were somewhat, but not significantly, 
more stable across the three sessions (mean r = 0.33) than craving 
for food (mean r = 0.06, z = 1.26, P = 0.10). Finally, the strongest 
correlation of all was between self-reported craving for food after 
fasting and for social interaction after isolation (r = 0.64). These 
results suggest that there is a reliable individual difference in crav-
ing responses after deprivation, shared across both fasting and isola-
tion, consistent with our observation of a common neural response 
to both modes of deprivation.

Differences in craving measures. To explore the differences in the 
results for the two craving measures (Craving_CIC and Craving_Q) 
in more detail, we included the following exploratory analyses: (1) 
we assessed the correlation between these measures and found that, 
for both food and social craving, the CIC and Q measures were 
correlated within session, across individuals (food r(38) = 0.52; 
P < 0.001; social: r(38) = 0.30; P < 0.032). (2) We tested whether the 
correlations between craving measures and SN/VTA activity was 
different for these two measures. We implemented two regression 
models, one for the fasting session and one for the isolation session. 
The interaction between SN/VTA activity and craving measure (that 
is, Craving_CIC and Craving_Q) and its main effects were entered 
as predictors. We did not find a significant interaction of craving 
measure × SN/VTA activity for social craving ratings (b = 37.65, 
t = 1.03, 95% CI = (−35.44,110.74), P = 0.31) or for food craving 
ratings (b = 3.16, t = 0.11, 95% CI = (−58.63,52.31), P = 0.91). This 
suggests that for social craving and food craving the correlations 
between the two ways of measuring craving and SN/VTA activity 
were not significantly different.

Craving ratings baseline. Self-reported food craving on fasting days 
and social contact craving on isolation days were both higher than 
on the baseline day (Food_Craving_CIC: t(39) = 7.94, P < 0.001, 
two tailed; Social_Craving_CIC: t(39) = 4.15, P < 0.001, two tailed). 
Self-reported food craving on the isolation day was lower than on the 
baseline day (t(39) = 3.59, P = 0.001, two tailed), but self-reported 
social craving on the fasting day was not lower than on the  
baseline day (t(39) = 0.64, P = 0.526, two tailed). Supplementary 
Figure 1 shows the craving ratings for each session including the 
baseline day.

Associations between isolation and chronic loneliness. Participants 
who reported higher levels of chronic loneliness showed a muted 
response in the SN/VTA to both social cues (r(38) = −0.46, 
P = 0.003) and food cues (r(38) = −0.37, P = 0.018, two tailed) dur-
ing the baseline scan.

Similar to responses after isolation (see “Correlations with 
chronic loneliness” above), on the baseline day participants higher 
in chronic loneliness reported less social craving immediately before 
the scan (Social_Craving_Q, r(38) = −0.40, P = 0.011, two tailed), 
although chronic loneliness did not affect craving ratings during 
the task (Social_Craving_CIC, r(38) = −0.15, P = 0.367, two tailed).

Discussion
In humans, acute mandatory social isolation evokes a neural ‘craving’ 
response to social cues. Midbrain regions showed selective responses 
to food cues after fasting and to social cues after isolation. SN/VTA 
activity was higher in people who self-reported wanting food or 
social interaction more, after deprivation. The multivariate pattern of 
SN/VTA response was similar for food and social interaction when 
craved. People who are forced to be isolated crave social interactions 
similarly to the way in which a hungry person craves food.

Our findings are consistent with results from the mouse  
showing that DA neurons in the midbrain represent the neural 

substrate of social isolation16. In mice, DA neurons in the midbrain 
appear to encode an aversive ‘loneliness-like’ state that motivates 
social engagement. Our findings suggest that there is a similar 
mechanism underlying social craving in humans.

Despite the fact that isolation lasted only 10 h, and the partici-
pants knew exactly when it would end, participants reported more 
loneliness and social craving at the end of the day than they did at 
the beginning. For people who are highly socially connected, a day 
of social isolation is a large deviation from typical rates of social 
interaction. Although when chosen intentionally, solitude can be 
restful and rejuvenating31,32, the externally mandated isolation was 
subjectively aversive.

Our primary, preregistered hypotheses concerned activity in 
the SN/VTA. The SN/VTA includes almost exclusively DA neu-
rons, which respond with phasic firing to motivationally relevant 
cues (see ref. 28 for review) and is activated by craving for food and 
drugs of addiction25–27. Using a CIC task, we found that the SN/
VTA responded more to food cues after fasting and more to social 
cues after isolation, that is, although participants reported general 
discomfort and reduced happiness after both fasting and isolation,  
SN/VTA responses were selective to the deprived cue. The magni-
tude of the SN/VTA response varied across participants, and was 
correlated with self-reported craving for the corresponding cue:  
SN/VTA responses to food cues were correlated with self-reported 
craving for food (in all sessions), and SN/VTA responses to social 
cues were correlated with self-reported craving for social contact 
(also in all sessions). These results fit with the intuitive prediction 
that the deprivation of a need causes increased craving for the spe-
cific need33. The specific cravings evoke a generalizable pattern of 
activity in the SN/VTA: patterns of response to food when hungry 
were more similar to the pattern of response to social cues when 
isolated than to responses to food when sated. Thus, a common 
signal at the core of the ‘craving circuit’ in the SN/VTA responds 
selectively to motivationally salient deprived cues, independent of 
their specific content.

By contrast, food and social craving led to dissociable responses 
almost everywhere else in the brain. Both whole-brain and explor-
atory ROI analyses revealed that food craving evokes selective 
responses in the ACC and (less reliably) in the insula and amyg-
dala, but not in the OFC, whereas social craving evokes selective 
responses in the OFC but not the ACC, insula or amygdala. Even in 
the striatum, the major target of DA projections from the SN/VTA, 
craving for food and social contact was spatially dissociated. Fasting 
enhanced responses to food cues mostly in the NAcc, whereas iso-
lation enhanced response to social cues mostly in the Ca. The Ca 
activity during social craving is consistent with prior evidence of 
caudate activity when people re-live experiences of rejection by a 
spouse or partner34, for meta-analysis. Although social rejection 
(being deliberately and specifically excluded from social interac-
tion) is conceptually distinct from social isolation (being unable to 
access social interaction), both rejection and isolation could lead to 
increased social motivation8.

Food craving and social craving thus evoke both shared  
(SN/VTA) and unshared (striatum, cortical regions) neural 
responses. One open question concerns how these two kinds of 
craving might interact, that is, how does inducing food craving 
affect social motivation, or vice versa?

On the one hand, there is some evidence that deprivation of one 
need leads to a narrowed focus on the deprived need to the exclu-
sion of other needs. An unexpected finding of our study was that, 
compared with the baseline (no deprivation) session, neural activ-
ity for the nondeprived need was decreased, rather than activity for  
the deprived need being selectively increased. This pattern of nar-
rowing activity was observed for both food and social cues. For 
example, the midbrain response to food cues was highest after 
fasting, slightly but not significantly lower at baseline, and lowest 
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after social isolation and eating to satiety. Pu and NAcc responses  
to food cues were the same: not significantly higher after fasting 
than baseline, but significantly lower after isolation. These results 
fit with previous fMRI studies that find increased activity in the 
midbrain and the ‘craving circuit’ (that is, striatum, OFC, ACC, 
amygdala and insula) in response to food cues after fasting com-
pared with carefully induced satiety (for example, see refs. 25,35,36), 
but not reliably when compared with baseline (for example, see  
refs. 37–39). In the present study, we observed a similar pattern for 
social craving: midbrain responses to social cues were highest after 
isolation, slightly but not significantly lower at baseline and low-
est after fasting. Thus, at baseline participants’ motivation may 
be spread across multiple sources of reward, and specific acute 
deprivation may serve to narrow and focus the brain’s motiva-
tional responses to the deprived target, rather than to enhance it. 
Depriving one need might thus reduce motivation to pursue other 
needs. Indeed, there is some evidence that people are less proso-
cial when hungry40, consistent with a reduction in social motivation 
caused by acute hunger, although see ref. 41.

On the other hand, there is also some evidence that deprivation 
of one need leads to increased motivation to pursue other sources of 
reward. In animal models social isolation can cause increased food 
consumption42, increased susceptibility to substance addictions and 
other general changes in motivational systems8, that is, deprivation 
of social needs can result in generalized reward-seeking behavior, 
potentially as a form of compensation.

These two possibilities are not mutually exclusive: deprivation 
could lead to a narrowed focus (reduced pursuit of other needs) or 
compensation (increased pursuit of other needs), depending on the 
duration and developmental timing of the deprivation. For example, 
short-term acute isolation in adults may cause a temporary narrow 
focus on social connection, whereas long-term or developmen-
tal isolation could result in a shut-down of these adaptive efforts, 
resulting in social withdrawal and other compensatory changes in 
nonsocial motivation43. In our study, people who reported higher 
levels of pre-existing chronic loneliness showed reduced activity in 
the SN/VTA in response to social cues, consistent with the idea that 
chronic isolation can lead to social withdrawal18,44 (but see refs. 19,20). 
However, the causal mechanism underlying the correlation with 
chronic loneliness remains unclear: it might as well be that individ-
uals with generally reduced sensitivity of motivational brain areas 
are more prone to becoming lonely. Indeed, people reporting high 
chronic loneliness in our study also had lower SN/VTA responses to 
food cues. Chronic loneliness could thus be a consequence, rather 
than a cause, of general low responsiveness in the SN/VTA.

In addition, the effects of chronic loneliness on social approach 
motivation might also be mediated via other factors affecting 
approach behavior more broadly, such as anxiety or depression.

This ambiguity of correlational observations highlights the 
importance of our design, experimentally inducing acute isolation 
to disentangle direct effects of isolation as such from individual  
differences in reward-seeking behavior more generally.

There are two key limitations in the present study that could 
be addressed in future research. First, we measured craving using 
passive viewing of craving-related cues and self-report measures of 
craving, rather than a direct test of motivation, such as participants’ 
willingness to expend effort or money to fulfill a need. Responses 
in the passive CIC task could also be influenced by low-level pro-
cesses such as increased visual attention to the deprived category 
(although the robust prior literature in both humans and animals 
makes visual attention an unlikely explanation of SN/VTA engage-
ment28). We used two different measures of self-reported crav-
ing and, although these were correlated with each other, different  
craving measures were significantly correlated with SN/VTA  
activity for food craving and social craving. Thus, future stud-
ies should investigate the changes in subsequent behaviors that 

are predicted by SN/VTA responses after acute social isolation. 
Note, however, that, also in domains such as drug addiction and  
hunger, researchers have struggled to establish a gold-standard 
behavioral metric of subjective craving with better external validity 
than self-report45.

A second limitation is that we studied a small sample (n = 40) of 
healthy, well-connected young adults, mostly students, in one cul-
tural context. Chronic loneliness disproportionately affects people 
older (that is, elderly people46) and younger (that is, adolescents14) 
than the participants studied here; future studies should test whether 
the current results generalize to those more vulnerable populations. 
Yet despite our restricted sample, we observed substantial variability 
between individuals at baseline, in both self-reported social crav-
ing and in SN/VTA response to social cues. We did not measure 
people’s social behaviors at baseline (for example, number and qual-
ity of social interactions) or other traits broadly relevant to social 
interaction (for example, trait extroversion, depression, anxiety). 
Future studies should investigate how social craving and SN/VTA 
responses to social cues respond to changes in people’s social envi-
ronment over both short (hours) and medium (weeks or months) 
time scales, within individuals47.

In all, our finding of a more selective SN/VTA response to social 
cues after isolation, as well as to food cues after fasting, fits the intui-
tive idea that positive social interactions are a basic human need, 
and acute loneliness is an aversive state that motivates people to 
repair what is lacking, similar to hunger. Thus, our research provides 
empirical support in human participants for the ‘social homeostasis’ 
hypothesis developed based on animal models43. Despite differences 
in the duration and setting of social isolation, and in the anatomy of 
DA midbrain structures, both humans and mice seem to show mid-
brain craving responses for social interaction, as well as for food. 
Even this broad similarity of neural responses in mice and humans 
is encouraging for the translational prospects of mouse models of 
mental health disorders that affect social motivation—for example, 
autism spectrum disorder48.

A vital question is how much, and what kinds of, positive social 
interaction is sufficient to fulfill our social needs and thus eliminate 
the neural craving response. Technological advances offer inces-
sant opportunities to be virtually connected with others, despite 
physical separations. Yet, some have argued that using social media 
only exacerbates subjective feelings of isolation49 (but see ref. 50). 
The potential for virtual interactions to fulfill social needs is par-
ticularly relevant when large populations are required to self-isolate, 
for example during a global pandemic. In early 2020, millions of 
humans experienced a sudden, externally mandated period of rela-
tive or complete physical isolation from others, as public health offi-
cials sought to slow the spread of an infectious new coronavirus. 
This unprecedented upheaval in people’s social routines emphasized 
the need for a better understanding of human social needs and the 
neural mechanisms underlying social motivation.
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Methods
Participants. Participants (n = 40) were healthy, right-handed adults, ranging 
in age from 18 years to 40 years (mean age 26 years; n = 27 females). An initial 
power analysis in G*Power 3.0 (ref. 51) targeted on the detection of medium 
effects (d = 0.5, α = 0.05 and 1 − β = 0.80) suggested a sample size of n = 34. The 
targeted-effect size was chosen based on findings from studies employing CIC 
paradigms for drug craving52, food cravings25,37,53,54 and internet gaming craving27, 
which report medium-to-large effect sizes in cue reactivity52. We performed power 
calculations for medium effects because social craving might be less intense or 
more variable than cue reactivity in drug craving and food craving. We therefore 
recruited 42 participants to account for potential attrition or exclusion for MRI 
data quality; 2 participants were unable to complete all experimental sessions and 
so were dropped from analysis, leaving 40 complete datasets.

Participants were recruited via email lists and through online advertisements 
and flyers. Interested individuals filled out a screening questionnaire to assess 
eligibility for the study (questionnaire data were collected using REDCap Software, 
v.5.5.17). People were eligible if they reported a healthy BMI (16–30), no current 
calorie-restricting diet, no permanently implanted metal in their body, no history 
of brain damage, and no currently diagnosed mental health disorder or substance 
abuse. As we aimed to study social motivation in a sample of adults who have 
frequent and regular social interactions, we also excluded people who (1) lived 
alone, (2) reported current feelings of loneliness on the UCLA loneliness scale21 
(that is, we excluded people with scores >50, which is 1 s.d. above the mean for 
a student sample21), or (3) reported smaller social network sizes than typically 
expected of adults55 according to a social network size measure56 and the Social 
Support Questionnaire57 (that is, we excluded people with social networks ⋝2 s.d. 
below mean, based on prior measured distributions from Von der Heide et al.58). 
All experimental procedures were approved by MIT’s institutional review board, 
COUHES (Committee on the Use of Humans as Experimental Subjects; https://
couhes.mit.edu/). Participants signed a consent form describing all experimental 
procedures before participating in the study. Each participant was compensated 
with US$350 for participating in three fMRI sessions and completing the 10 h of 
food fasting and 10 h of social isolation.

Experimental procedures. Each participant was scanned in three fMRI sessions, 
separated by at least 24 h. Figure 1 shows an overview of the experimental 
procedures. One session followed 10 h of food fasting, one session followed 10 h 
of social isolation and one session was a baseline without any mandated prior 
abstinence. All participants underwent all the three experimental conditions 
(baseline, food fasting and social isolation). Between participants, the order of 
sessions was counterbalanced; each participant was pseudo-randomly assigned to 
one of the possible orders of the three different sessions, with the restriction that  
all six possible sequences were approximately equally likely in the full sample.  
Data collection was not performed blind to the conditions of the experiments.

Food fasting. Participants were asked to abstain from consuming any food or 
drinks/coffee (except water) for 10 h before the fMRI session. We scheduled 
each fMRI session at 19:00; thus, participants were asked to refrain from eating 
after 9:00 on the day of the fasting session. We followed methods of previous 
food-craving studies (for a review, see ref. 26) in which participants were instructed 
to fast at home. Fasting was confirmed through self-report on arrival. We also 
asked participants to abstain from all forms of exercising on the day of food fasting 
to avoid exhaustion. Participants filled out an online questionnaire, rating their 
momentary food craving, hunger, discomfort, happiness and dislike of fasting 
(on a visual analog scale anchored at 0 (not at all) to 100 (extremely)), every 2 h 
during the food-fasting period. Before the scan, participants were asked to select 
a meal that they would receive after the scan on an online food-ordering platform 
(Grubhub). Participants selected their food while they were still fasted, and we  
gave no restrictions for what or how much to order.

Social isolation. Participants were socially isolated for 10 h. On the day of the 
isolation session, participants arrived at the McGovern Institute for Brain Research, 
MIT building 46, at 8.15am. As we aimed to keep all social interactions between 
the social isolation and the fMRI session to a minimum, participants were given 
extensive instructions about the paradigm and MRI session, and a mock scanner 
session, before starting social isolation. Subsequently, participants gave their 
phones and laptops to the experimenter and were guided to a room containing 
an armchair, a desk and an office chair, and a fridge with a selection of food, 
snacks and beverages. Participants remained in that room from 9:00 until 19:00. 
In advance of the session, participants were invited to send us text documents 
(without any social content) to read or work on during isolation; approved 
documents were printed or transferred to the provided laptop. In addition, we 
provided puzzles, Sudoku, coloring pages, nonsocial games (for example, Tetris, 
Bubble Shooter) and drawing/writing supplies. Participants were provided with 
a laptop (with parental controls enabled), allowing them to visit only our Slack 
channel (that is, an online messenger software allowing communication between 
a group of people (www.slack.com)) and the webpage containing our online 
questionnaire. Messaging in Slack was restricted to informing participants about 
the arrival of food delivery and for emergencies (that is, in case participants ran 

into problems that required assistance from the research team during isolation). 
Participants filled out an online questionnaire rating their momentary social 
craving, loneliness, discomfort, happiness and how much they disliked isolation 
(visual analog scale anchored at 0 (not at all) to 100 (extremely)) every 2 h during 
the social isolation period. The fMRI session was conducted immediately after the 
social isolation. After the scan, a member of the research team chatted with the 
participants about their experiences during isolation and made sure participants 
were not feeling troubled. As living in a shared household was a prerequisite for 
participating in the experiment, participants were expecting to meet with at least 
one other person after the experiment.

Baseline. Participants came into the lab at 19:00 and completed the same fMRI 
tasks as in the other two conditions (in addition to a functional localizer task,  
see “Functional localizer task”). Participants were asked not to be hungry at the 
time of the scan.

Functional MRI. Participants were in the scanner for around 1 h in each session. 
We started with anatomical scanning. For each participant, structural, whole-head, 
T2*-weighted structural images were collected in 176 interleaved sagittal slices with 
1-mm isotropic voxels (field of view (FOV): 256 mm). In addition, whole-head 
T1-weighted structural images in 176 interleaved sagittal slices with 1-mm 
isotropic voxels (FOV: 256 mm) were collected. The T2*-weighted anatomical scan 
was collected for anatomical identification of midbrain nuclei (that is, the high 
content of iron in SN/VTA and red nucleus makes the T2* shorter and darker 
in these areas28,59). We confirmed the identification of midbrain structures by 
registering with the newly available atlas of subcortical nuclei from Pauli et al.60 
and defined separate ROIs in the dorsal and ventral striatum. We also collected 
a field map (phase-difference B0 estimation; echo time 1 (TE1) = 3.47 ms, echo 
time 2 (TE2) = 5.93 ms) to control for spatial distortions, which are particularly 
problematic in midbrain fMRI28,59. During acquisition of the anatomical images 
and the field map (~15 min in total) participants lay quietly in the dark.

Subsequently, we collected functional data during six runs of a CIC task (see 
“CIC task” for details). Each functional run consisted of 147 volumes with 58 T2*- 
weighted echo planar slices (TR = 2,000 ms, TE = 30 ms, FOV = 210 mm, 70 × 70 
matrix, yielding a voxel size of 3 × 3 × 3 mm3) acquired as a partial-head volume in 
an anteroposterior phase-encoding direction using interleaved slices. The scanning 
parameters were extensively piloted (n = 11) using the functional localizer task  
(see “Functional localizer task”) and the parameters showing the best 
signal-to-noise ratio were selected for the study. Despite the small structure 
of the SN/VTA, we thus chose 3-mm isotropic voxels because of their higher 
signal-to-noise ratio compared with smaller voxels61. The angle of the slices was 
approximately 20° away from the plane of the standard anterior commissure–
posterior commissure to avoid placing the SN/VTA and the sphenoid sinus in 
the same slice plane. This reduced geometric distortion to the point that standard 
distortion correction methods could be applied28. The CIC paradigm took 
approximately 26 min in total.

CIC task. We designed a new CIC task to simultaneously measure craving for 
both food and social interaction, relative to a control. Participants viewed colored 
images depicting: (1) groups of individuals as they meet, talk, laugh, smile, etc.; (2) 
different kinds of highly palatable foods such as cake, pizza, chocolate, etc.; and (3) 
attractive flowers as the control condition.

On each trial, participants saw a single photograph and a three- to five-word 
verbal description, for 5 s. The combination of visual and verbal cues was intended 
to maximize deep semantic processing of the relevant attributes. Each trial was 
followed by a 1-s rest period (during which a fixation cross was displayed). Three 
consecutive trials were presented in a block of the same condition (food, social, 
control). Each block was followed by a jittered 2- to 6-s rest period. Subsequently, 
participants self-reported how much they were currently craving food (on food 
blocks) or social interaction (on social blocks). After control blocks, participants 
rated how much they liked the flower image, to match the demand for response 
preparation. A second jittered 2- to 6-s rest period preceded the onset of the 
next block. In total, participants saw 18 blocks (54 trials) per condition, per scan 
session. The trials on each day were unique, so in total participants saw 36 blocks 
(108 unique images with descriptions) per condition. The duration of the task was 
approximately 30 min—divided into six runs, with each run having a duration of 
approximately 5 min.

The stimuli for the CIC task were tailored to each individual’s preferred foods 
and modes of social interaction. During the initial screening, participants were 
asked to list their top ten favorite foods and social activities. Stock photographs 
illustrating these specific foods and activities were selected from a large public 
database (https://www.pexels.com/), and then verbal labels were added using the 
participant’s own descriptions. Food descriptions included ‘fluffy syrup-drenched 
pancakes’, ‘creamy cheesy macaroni’, ‘refreshing mixed fruit salad’ and ‘yummy 
vanilla cake with sprinkles’. Social descriptions included ‘chatting and laughing 
together’, ‘joking around with friends’, ‘supporting each other through workouts’ 
and ‘enjoying a conversation together’. Social pictures were all matched for gender 
of participants (that is, for a male participant, all social photographs included at 
least one man). The stimuli were images of strangers, rather than images of the 
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participant’s own friends and family, to (1) match the food and control images for 
novelty, because SN/VTA activity is sensitive to novelty62, (2) match image quality 
across conditions and participants, and (3) avoid unmeasured variability in the 
quality or current status of participants’ relationships with specific individuals. 
Control trials presented attractive photographs of flowers accompanied by positive 
valence verbal descriptions (Fig. 1). For group-level results in response to cues 
(across sessions), see Supplementary Table 23 and Supplementary Fig. 6.

Functional localizer task. During the baseline session, each participant completed 
a functional localizer at the end of the scan. We anticipated that anatomical 
localization of SN/VTA might be difficult, given the strong susceptibility 
to magnetic distortions in the midbrain28,59. We therefore designed a task to 
functionally identify relevant midbrain regions in each participant individually. 
The task was an adapted version of Krebs et al.62. As midbrain DA neurons in 
the SN/VTA respond to both novelty and reward62–64, we contrasted new and 
rewarding stimuli against familiar and nonrewarding stimuli. However, our 
preregistered hypotheses focus on the anatomical localization strategy, so we treat 
analyses of the functionally localized regions as exploratory.

A potential limitation of this approach is that it was targeting voxels responding 
to secondary reinforcers (that is, money) rather than primary reinforcers (such as 
food and social contact). In animal models, dopamine neurons in the midbrain 
exhibit burst firing in response to both primary reinforcers and conditioned 
stimuli once the conditioning has been established (for example, see refs. 65,66). 
Conditioned stimuli are somewhat less effective than primary rewards in terms 
of response magnitude and fractions of neurons activated67. Thus, by localizing 
the SN/VTA based on activity in response to anticipated financial rewards, we 
may have identified only a subset of voxels that respond to primary rewards. 
Importantly, both food and social cues would be similarly affected, so our key 
claim of similarity between these responses would not be undermined. In addition, 
our functional localization method was complementary to an anatomical ROI, 
which would not be affected by this issue.

Before beginning the localizer task, participants memorized a set of five 
images depicting abstract art (all images taken from the free stock pictures site 
(https://www.pexels.com)). During the task, the abstract art images served as cues 
to the condition of the current trial. The task had two conditions: a reward/loss 
condition (reward) in which participants could earn or lose money depending on 
whether their responses were correct and fast enough, and a nonreward condition 
(nonreward) in which participants always received US$0 regardless of their 
response. Each trial started with an abstract art image. The previously memorized 
(familiar) images indicated a nonreward trial. Abstract art images that were not 
previously observed (new) indicated a reward trial. After the cue, participants saw 
a number between 1 and 9 (excluding 5) for 100 ms on the screen. Their task was 
to press an assigned button indicating whether the number is <5 or >5 as fast as 
possible. Initially, correct responses were required in <500 ms; after 10 consecutive 
correct answers, this window was reduced to 400 ms. After they pressed the button, 
participants saw the outcome indicating whether they won US$1 (reward trial, 
correct response, fast enough), lost US$0.20 (reward trial, wrong response or too 
slow) or received US$0 (nonreward trial). In total, participants played 80 trials 
(40 trials per condition) and the duration of the task was approximately 10 min. 
Participants responded correctly and within the time limit on 87% of reward 
trials and 69% of nonreward trials. The earnings from this task were added to 
participants’ compensation after the baseline session. This design allowed us 
to compare responses to new stimuli predicting reward versus familiar stimuli 
predicting no possibility of reward. For group-level results within the midbrain in 
response to reward > nonreward, see Supplementary Fig. 7.

Behavioral data analysis. Questionnaire data. For each participant we collected 
two measures of social network size (that is, number of monthly interactions and 
number of close relationships). These scores indicate the size of participant’s social 
network on different hierarchical levels55. However, because the measures were 
highly correlated (r(39) = 0.58, P < 0.001), we z-transformed and averaged the 
two measures for each participant. This gave us an indicator of participant’s social 
network size relative to the sample’s average social network size. In addition, we 
calculated a loneliness score for each participant using the UCLA loneliness scale21. 
We tested how self-reported ratings of hunger, food craving, discomfort, happiness 
and dislike of fasting provided during food fasting changed over the course of 
10 h using paired Student’s t-tests comparing the first rating (collected at the 
start of fasting) and last rating (collected after 10 h of fasting). We used the same 
analysis for the ratings provided during social isolation: loneliness, social craving, 
discomfort, happiness and dislike of isolation. Data distribution was assumed to be 
normal but this was not formally tested. Three participants missed filling out the 
first or last round of the online questionnaire during fasting, so statistical analyses 
involving this questionnaire were conducted with a sample size of n = 37.

Data analysis of fMRI. Preprocessing. We used open source preprocessing pipelines 
for fMRI data, developed through the nipy and nipype68 initiatives. We used the 
heudiconv python application which uses dcm2niix to convert raw scanner data 
into the NIFTI image file format, then organizes these data into a BIDS-formatted 
directory structure. The FMRIPrep application69 was used to minimally 

preprocess the anatomical and functional data (using default settings but 
including susceptibility distortion correction using fieldmaps). Using FMRIPrep, 
we skull-stripped anatomical images first roughly using the atlas-based ANTS 
program70, and then refined it using information from FreeSurfer surfaces after 
reconstruction was completed71. Brain tissue segmentation was performed with the 
FMRIB Software Library (FSL) FAST program72. Images were spatially normalized 
to 2-mm isotropic MNI-space using the multiscale, mutual-information-based, 
nonlinear registration scheme implemented in ANTS. We visually inspected brain 
masks, tissue segmentation and FreeSurfer surfaces. Susceptibility distortion 
correction was performed using phase-difference B0 estimation73.

A reference image for each run was generated from the input BOLD timeseries. 
A functional brain mask was created using a combination of FSL, ANTS, AFNI 
and nilearn tools74. Using FSL’s MCFLIRT program75, we estimated and corrected 
for head motion, resulting in a coregistered BOLD series as well as motion-based 
confound regressors. Any run containing a framewise displacement >0.4 mm 
on >25% of the total frames was excluded from additional analyses. Additional 
confound regressors were generated, including other measures of motion 
(framewise displacement and DVARS and anatomical CompCor76 timeseries 
derived from cerebrospinal fluid and white matter tissue segments). The reference 
image of each run was aligned with the anatomical image using FreeSurfer’s 
program ‘bbregister’77. The timepoint-to-functional reference transformation, the 
functional reference to anatomical transformation and the anatomical-to-MNI 
transformation were concatenated into a single transformation, and used to 
transform each functional timeseries into MNI template space. Spatial smoothing 
was performed on the FMRIPrep outputs with a 6-mm smoothing kernel using 
FSL’s SUSAN tool78, which uses segmentation boundaries to avoid smoothing 
across tissue types. MRIQC, an open source quality assurance software tool79,  
was used to generate additional reports that display image quality metrics.

Modeling. Analyses were conducted using the nipype framework68. For run-level 
analyses, the preprocessed timeseries was assessed with algorithms from the 
Artifact Removal Toolbox (ART)80 to identify frames within the run that have an 
abnormal amount of motion (0.4 mm of total displacement, or an intensity spike 
>3 s.d. from the mean). The design matrix included boxcars for the experimental 
conditions convolved with a double-gamma hemodynamic response function 
(HRF), and nuisance regressors representing framewise motion, the anatomical 
CompCor regressors derived from white matter and cerebrospinal fluid, as well 
as impulse regressors for volumes identified by ART. A high-pass filter (120 Hz) 
was applied to the design matrix and the smoothed data. The model was evaluated 
using FSL’s FILM program81. Subject-level contrast maps were generated using  
FSL’s FLAME81 in mixed-effects mode.

Data exclusion. Exclusion criteria were pre-established in our preregistration 
(https://osf.io/cwg9e). We excluded three runs of fMRI data from the overall 
sample (from two participants from the CIC task) based on the following criterion: 
any run containing a framewise displacement >0.4 mm on >25% of the total 
frames will be excluded from additional analyses.

ROI definition. We included functional voxels that overlapped at least 75% with the 
SN and the VTA region (no. of voxels = 161) from the probabilistic atlas of human 
subcortical nuclei60. As the striatum is a major target of projections from midbrain 
neurons, and their firing results in increased DA transmission in the striatum30,82,83, 
we expected to see the same pattern of results in the striatum, that is, increased 
activation to food cues after food deprivation and to social cues after social 
isolation, and a positive correlation between activity in striatum and self-reported 
craving (for both food and social craving). Thus, we also included three additional 
ROIs in our analysis: Pu (no. of voxels = 2,530), Ca (no. of voxels = 2,523) and 
NAcc (no. of voxels = 300) also using the probabilistic subcortical atlas60.

Functional ROI definition. To define subject-specific ROIs, we used individual 
activations of each participant in the localizer task. The fMRI timeseries was 
analyzed using an event-related design approach implemented in the context of the 
GLM. The model contained two regressors separately modeling the presentation 
of new/reward cues, and familiar/nonreward cues (that is, when the abstract 
art images were presented, 2 s). We also included one regressor for the time 
period of button press and outcome (1.1 s). As we did not add any jitter between 
button press and presentation of outcome (because this was not the contrast of 
interest), we modeled the whole segment as one block. For each participant, we 
calculated the target contrast new reward > familiar nonreward. We then used a 
mask encompassing the whole midbrain as the search space for the selection of 
individual voxels. In each participant we selected the top 100 active voxels within 
the search space in response to the target contrast.

Spatial and functional differences in anatomical and functional ROIs. We explored 
the overlap in voxels between functional and anatomical SN/VTA ROIs in each 
participant and found that it was variable across participants, with the maximum 
overlap being approximately one-third of the voxels. Supplementary Figure 8 shows 
a histogram of the overlap between the two masks across subjects. On the other 
hand, these two methods are probably measuring a similar underlying function 
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because the mean activity in response to social cues after isolation was highly 
correlated across subjects (r(38) = 0.81; P < 0.001), as shown in the scatterplot 
in Supplementary Fig. 9. Thus, we interpret the difference in results between 
functional and anatomical masks as reflecting the uncertainty of the measurement.

Definition of exploratory ROIs. We selected ROIs based on converging results from 
five meta-analyses of craving across different modalities26,84–86 identifying signals 
of craving in the OFC, amygdala, ACC and insula. As the meta-analyses report 
varying coordinates for the foci of activation, we chose to create ROIs based on 
an anatomical atlas instead (that is, Harvard–Oxford cortical and subcortical 
probabilistic anatomical atlases; included in the FSL). We selected all voxels  
that showed a minimum probability of 50% of being in the respective area,  
and extracted the mean activity from those voxels in response to food, social  
and control cues for each session (fasting, baseline and isolation). We then 
calculated a mixed-model regression for each region within this ‘craving circuit’ 
(and reported results as significant at P < 0.0125 (0.05/4)). In addition, due to 
previous findings showing that the ventral striatum and NAcc are activated during 
craving for food and drugs85 and associated with altered responses in chronic 
loneliness18,20, we explored this region further at the suggestion of a reviewer by 
selecting the top 100 voxels within the NAcc that were active in response to the 
midbrain localizer task (that is, active in response to reward anticipation) and 
assessed whether these voxels code for food and social craving (see Supplementary 
Materials for results).

Univariate analyses. For our planned analyses, we used mixed-effects regressions 
(using Matlab 2019b’s fitlme function) to estimate the fixed effects of cue, 
deprivation session, and the critical interaction of cue and deprivation session,  
on response magnitude in the ROIs, controlling for each session’s average 
framewise displacement (that is, head motion), with the subject included as a 
random effect. Following the recommendation of Barr et al.87, we used maximal 
models, including participants as a random effect with both random intercepts 
and random slopes. Data distribution was assumed to be normal but this was not 
formally tested. We modeled these effects in the anatomically defined SN/VTA 
(preregistered analysis) and in the functionally defined ROI of voxels maximally 
sensitive to reward and novelty (exploratory analysis). Thus, for each ROI,  
we tested two mixed-effects models:

Target comparison: fasting versus isolation. First, we tested our key hypothesis that 
responses to food cues (relative to flowers (control)) would be higher after fasting, 
and responses to social cues (relative to control) would be higher after isolation. In 
this model, the fixed effects were: session (fasting versus isolation; contrast coded), 
cue (control, +food, +social; indicator coded), the interactions of cue and session, 
and mean framewise displacement in that session; we also included random 
intercepts and random slopes for each participant.

Exploratory analyses: baseline session. To test whether responses were different on 
the deprivation days, compared with the baseline day, we modeled responses on all 
three sessions by including fixed effects of session (baseline, +fasting, +isolation; 
indicator coded), cue (control, +food, +social; indicator coded), the interactions 
of cue and session, and mean framewise displacement in that session; we also 
included random intercepts and random slopes for each participant.

The command for both models was: 
fitlme(Data,‘Response~(session*cue)+(MeanFD)+(session*cue|subjectID)’).

To test whether these responses were correlated with individual differences 
in self-reported craving, we calculated the average contrast value (food > flowers 
and social > flowers) in the anatomically defined SN/VTA for each participant. 
We used two different approaches to measure participants’ self-reported craving. 
First, we calculated the mean craving rating participants reported on each trial 
during the CIC task in the scanner (Craving_CIC). This measure was exactly 
comparable across sessions and simultaneous with the fMRI data acquisition. As 
the data for food craving were truncated at the upper limit of 10 (Fig. 3c), we also 
calculated a truncated regression model (using the truncreg package in R) using 
the truncated variable as the explanatory variable in the regression model88,89 in 
addition to the standard correlation. Second, we took the craving reported by 
participants on the final online questionnaire, completed after 10 h of fasting or 
isolation (Craving_Q). On this measure, participants reported craving only for 
the deprived need (food when fasting, social contact when isolated), but this 
measure provides the most direct measure of the effect of deprivation because it 
can be compared with the self-report at the start of each session. In addition, the 
Craving_Q ratings were completed on a finer scale (0–100 rather than 0–10) and 
participants had no time restriction when filling out the questionnaires (although, 
during the task, participants had 5 s to complete the scales). For these reasons, we 
included both types of craving ratings and report results as significant at α < 0.025. 
We measured correlations between self-reported craving and neural responses 
for each deprivation session. As we specifically predicted a positive correlation 
between craving for the deprived target and response magnitude in the SN/VTA, 
these correlations were tested one tailed. Data for the analyses were extracted using 
FSL’s ‘fslmeants’ utility and subsequent univariate and correlation analyses were 
conducted in Matlab 2019b, RStudio (1.1.423) and SPSS 26.

Multivariate analyses. We next used multivoxel pattern analysis to determine 
whether the multivariate spatial pattern of activity in SN/VTA is shared for food 
and social craving. From the generalized linear model, we extracted the β values 
(that is, amplitude of the fit HRF) of the response to each condition (food cues, 
social cues, flower cues) for each block in each run (3 blocks per condition per 
run × 6 runs) in each session (baseline, fasting, isolation) resulting in 162 β  
values for each voxel. Responses were extracted from all voxels in the anatomically 
identified SN/VTA in each participant (that is, no additional feature selection  
was applied). All multivariate analyses were conducted with the PyMVPA90  
toolbox in Python (http://www.pymvpa.org) and Matlab 2019b. Although 
smoothing has been shown not to substantially affect information in multivariate 
data91–93, because of the small size of the SN/VTA, we also ran the classification 
analyses on unsmoothed data and found that we were not able to decode  
stimulus or motivational state across sessions in the unsmoothed data  
(see “Additional analyses”).

First, as a proof of concept, we tested whether we could classify food cues from 
control cues from the SN/VTA within the food-fasting session (see “Additional 
analyses”). Then, we trained a linear support vector machine classifier, training 
using all 36 β values (2 cues × 3 blocks × 6 runs) of the food-fasting session to 
discriminate patterns of responses to food versus flower cues. We tested the 
generalization of the classifier to responses to social versus flower cues in the 
isolation session (that is, different category of cue but similar motivational state), 
producing an accuracy score (correct classification for 36 β values). If social 
craving and food craving share a neural basis, we predicted that a classifier trained 
on food_craved versus control cues would successfully (above chance) classify 
social_craved versus control cues. We also tested the generalization of this classifier 
to food versus flower cues, in the isolation and baseline sessions (that is, the same 
categories of cues as the training, but different motivational state), and to social 
versus flower cues at baseline (that is, different category and different motivational 
state, as a control analysis). To obtain confidence intervals of the mean in the 
data samples, we used bootstrapping. We generated 1,000 datasets randomly by 
sampling with replacement from the classification accuracies across participants 
using Matlab’s bootci function.

For hypothesis testing on the group level, we used a permutation analysis 
following the methods in Stelzer et al.94. This nonparametric approach does not 
depend on assumptions about the distribution of classification accuracies94,95. 
To generate a null distribution from the data, we followed the steps described in 
Stelzer et al., which we summarize below and visualize in Fig. 4. We shuffled the 
condition labels randomly during training within each run, and then tested the 
prediction accuracies for each cross-classification on the test data. We performed 
this permutation analysis 100 times per participant (thus creating 100 random 
permutations), resulting in 100 accuracy values per participant, for each testing 
dataset. To create a null distribution on the group level, we then randomly drew 
one of the 100 accuracy values for each participant, and calculated a mean across 
participants. This procedure was repeated 105 times for each testing dataset, 
creating the null distributions for each dataset (see Fig. 4 for the histograms 
showing the null distributions). We calculated the probability P of obtaining 
a mean accuracy value in the null distributions that is equal to or higher than 
the true mean from the analyses. Following Stelzer et al., we rejected the null 
hypothesis of no group-level decoding if P < 0.001, which corresponds to a low 
probability if it were retrieved by chance.

Finally, we used representational similarity analysis to test which pattern  
of activity is more similar to ‘food_craved’: social_craved or food_noncraved.  
We predicted that the presence of a craved object should be more important for 
SN/VTA activity than the cue category, so we predicted that the pattern of food_
craved responses will be more similar to the pattern of response to social_craved 
cues, compared with when these cues are presented in different motivational states 
(social_craved × food_noncraved) or even the same cue in different motivational 
states (food_craved × food_noncraved). We averaged responses to each cue  
across all six runs per session to obtain one mean β value for each voxel. Then  
we calculated the dissimilarity (1 – Pearson’s correlation, Fisher transformed) 
between each average response pattern. Then we compared the dissimilarity 
between food_craved × social_craved (that is, food fasted and social isolated; 
different stimuli but similar motivational state) to the dissimilarity between  
food_noncraved × social_craved (that is, food baseline and social isolate; 
maximally distant (different stimuli, different motivational state and different  
session—the noise ceiling)) and to the dissimilarity between food_noncraved ×  
food_craved (that is, food isolation and food fasted; same stimuli but different 
motivational state; we used isolation instead of baseline as it represents the satiated 
control condition to fasting); both comparisons used pair-wise Student’s t-tests. 
Data distribution was assumed to be normal but this was not formally tested.

Correlations univariate fMRI measures and behavioral data. In follow-up  
analyses, we tested whether individual differences in social network size  
predict the magnitude of self-reported and neural measures of social craving. 
We used the UCLA loneliness score obtained from each participant as an 
indicator of their chronic loneliness. We correlated these two measures with 
mean values extracted from the midbrain and striatum ROIs from the contrast 
social_craved>control.
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Additional analyses. SN/VTA: multivariate decoding of food cues. As a proof of 
concept, we tested whether we could discriminate fMRI patterns between food 
and control cues in the fasting session in the SN/VTA. For each participant, we 
partitioned the data into six independent folds (six runs), and iteratively trained 
a linear support vector machine classifier on five runs (that is, fifteen β estimates 
per condition) and tested on the left-out run (three β estimates per condition). 
We then averaged the classification accuracy across runs to yield a single estimate 
for each participant. This within-session classification tested whether we would 
be able to decode the cue type (food versus control) from multivariate patterns 
within the SN/VTA. We tested whether the accuracy was significantly above 
chance using bootstrapping. We first generated a null distribution of the data by 
shifting the mean to be 0.5 (by calculating dataset − mean(dataset) + 0.5), and 
then generated 1,000 datasets randomly by sampling with replacement from the 
classification accuracies across subjects using Matlab’s bootstrap function. We 
then calculated a mean for each of the 1,000 simulated datasets from the null 
distribution and compared it with our observed data average. We calculated the 
probability P of obtaining a mean value across the 1,000 datasets that is equal 
or higher than the actual mean from the original dataset, and rejected the null 
hypothesis of no group-level decoding if P < 0.05. For obtaining confidence 
intervals of the mean in the data samples, we generated 1,000 datasets randomly 
by sampling with replacement from the classification accuracies across subjects 
using Matlab’s bootci function. We found above-chance (50%) decoding of  
food cues from flower images after fasting (mean accuracy = 0.5556; P < 0.001, 
95% CI = 0.527–0.585).

SN/VTA: cross-classification of food and social cues—unsmoothed data. We ran 
the same analysis as reported in the section “Multivoxel pattern analysis” on 
data for which we did not perform any smoothing during preprocessing to test 
whether smoothing has substantial effects on our results. First, we tested how 
smoothing affected the accuracy to discriminate fMRI patterns between food 
and control cues in the fasting session in the SN/VTA, using the same method 
as described in SN/VTA: multivariate decoding of food cues on the unsmoothed 
data. In the present study, we found that omission of smoothing showed slightly 
lower mean accuracy across subjects (mean accuracy = 0.542), but still resulted 
in successful above chance (50%) decoding of food cues from flower images after 
fasting (P = 0.002, 95% CI = 0.513–0.570). Then, as in the original analysis, we 
trained a classifier on the pattern of activity in the SN/VTA after fasting to food 
cues and flower images, and tested whether it would successfully decode food and 
social cues from control cues in the other two sessions (baseline and isolation). 
Again, we generated null distributions using the permutation analysis described 
in the main text (following Stelzer et al.94). In the unsmoothed data, we found 
no above-chance decoding (α = 0.001) of social cues from flowers after isolation 
(mean accuracy = 0.521, bootstrapped CI = (0.503,0.542), P = 0.041) or after 
baseline (mean accuracy = 0.526, bootstrapped CI = (0.501,0.546), P = 0.021). 
In addition, in unsmoothed data, the classifier was also unable to decode food 
cues from flowers after isolation and baseline (isolation: mean accuracy = 0.522, 
bootstrapped CI = (0.500,0.544), P = 0.021; baseline: mean accuracy = 0.525, 
bootstrapped CI = (0.501,0.557), P = 0.022).

Exploratory whole-brain group analyses. As a complementary analysis, we assessed 
the main effects and interactions of cue and session on whole-brain activity. We 
set up a flexible factorial model with the factors subject, session (baseline, fasting, 
isolation) and cue (food, social). We entered the first-level contrasts food > control 
and social > control for each session into the group-level analysis. Analyses were 
implemented in SPM12b.

Main effects: cue. We first assessed whole mean brain activity for the contrasts 
food > control and social > control across all experimental sessions (baseline, 
fasting, isolation) as a manipulation check to assess which regions were activated 
in response to food (versus control) and social (versus control) cues. We corrected 
for multiple comparisons using whole-brain family-wise error correction. 
Supplementary Table 21 and Supplementary Fig. 7 show the results from  
this analysis.

Interaction effects: cue × deprivation. We then the assessed the effects of isolation 
on brain activity in response to social cues and the effects of fasting on brain 
activity in response to food cues in the whole brain. To do this, we calculated two 
contrasts: (1) food: fasting > isolation and (2) social: isolation > fasting. These 
analyses were exploratory and statistical inference was performed using a threshold 
of P < 0.05 corrected for multiple comparisons over the whole brain, using the 
Gaussian random fields approach at cluster level with a voxel-level intensity 
threshold of P < 0.001 (ref. 96). We note that this method of correction for multiple 
comparisons is probably biased toward false positives97,98. We decided to share 
these lenient analyses (Supplementary Tables 22 and 23 and Supplementary Fig. 8) 
to be more complete and for potential future meta-analyses.

Midbrain localizer: group analysis. As described in the section “Functional ROI 
definition” above, we used a functional localizer to select the most active voxels for 
reward anticipation and novelty within the midbrain to functionally localize the 

SN/VTA in each participant individually. To explore the localization of midbrain 
responses to the localizer task in more detail, we implemented a group random 
effects analysis, entering the first-level contrast reward > nonreward from each 
participant (Supplementary Fig. 9)

Data analysis was not performed blind to the experimental conditions.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All de-identified neuroimaging data are publicly available on OpenNeuro.org 
at https://doi.org/10.18112/openneuro.ds003242.v1.0.0. Summary fMRI and 
behavioral data are publicly available on the OSF at https://doi.org/10.17605/OSF.
IO/F9CRU. Stimuli for the tasks were taken from the open image-sharing website 
https://www.pexels.com.

code availability
Analysis code, code to generate the figures, is publicly available on the OSF at 
https://doi.org/10.17605/OSF.IO/F9CRU. Code to run the tasks with example 
stimuli is also publicly available on the OSF at https://doi.org/10.17605/ 
OSF.IO/CF2RT.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size An a priori power analysis in G*Power 3.0 targeted on the detection of medium effects (d=0.5, α=0.05 and 1-β=0.80) suggested a sample size 

of n=34. The targeted effect size was chosen based on findings from studies employing cue-induced craving paradigms for drug craving, food 

cravings and internet gaming craving which report medium to large effect sizes in cue reactivity (References listed in Methods section of 

manuscript). We performed power calculations for medium effects because social craving might be less intense or more variable than cue 

reactivity in drug craving and food craving. We therefore recruited 42 participants to account for potential attrition or exclusion for MRI data 

quality; two participants were unable to complete all experimental sessions and so were dropped from analysis, leaving 40 complete datasets. 

Data exclusions Exclusion criteria were pre-established in our pre-registration (https://osf.io/cwg9e/). We excluded 3 runs of fMRI data from the overall 

sample (from 2 participants from the Cue Induced Craving task) based on the following criterion: Any run containing a framewise 

displacement greater than 0.4 mm on more than 25% of the total frames will be excluded from additional analyses.

Replication We replicated previous results of food fasting studies showing increased activation in midbrain and striatum in response to food cues 

following fasting compared to isolation.  We used an open source pipeline (fMRIprep) and share our code for collecting and analyzing the data 

on OSF to allow replication of our methods and analyses (https://osf.io/cwg9e/).

Randomization All participants underwent all the three experimental conditions (baseline, food fasting and social isolation). Between participants, the order 

of sessions was counterbalanced; each participant was pseudo-randomly assigned to one of the possible orders of the three different sessions 

with the restriction that all 6 possible sequences were approximately equally likely in the full sample.

Blinding Data collection was not performed blind to the conditions of the experiments. Data analysis was not performed blind to the experimental 

conditions.  

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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MRI-based neuroimaging
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Population characteristics Participants (n =40) were healthy right-handed adults, ranging in age from 18-40 years (mean age 26 years; N=27 female). 

Recruitment Participants were recruited via e-mail lists and through online advertisements and flyers. Interested individuals filled out a 

screening questionnaire to assess eligibility for the study. People were eligible if they reported a healthy Body Mass Index 

(BMI: 16-30), no current calorie restricting diet, no permanently implanted metal in their body, no history of brain damage, 

and no currently diagnosed mental health disorder or substance abuse. Because we aimed to study social motivation in a 

sample of adults who have frequent and regular social interactions, we also excluded people who i) lived alone, ii) reported 

current feelings of loneliness on the UCLA Loneliness Scale (i.e., we excluded people with scores above 50, which is one 

standard deviation above the mean for a student sample); or iii) reported smaller social network sizes than typically expected 

of adults according to a social network size measure and the Social Support Questionnaire (i.e., we excluded people with 

social networks 2 or more SD below mean, based on prior measured distributions from Von der Heide et al. 2014 (see 

methods section in the manuscript for references)).  
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Most of our participants were undergraduate students at MIT, although we tried to diversify the sample by targeted 

recruitment of older, non-student participants. We managed to recruit 10 non-student, older participants. 

 

We recruited participants for a study on motivation. Due to self-selection, there may be a number of differences between the 

people who chose to participate in this study and those who choose not to,such as motivation and interest in the topic , 

socioeconomic status (as the study required a relatively high time commitment), or prior experience in participating in MRI 

experiments (as people who have never participated in an MRI study might have been more hesitant to sign up for this 

study). Thus, it might be that the results are representative for a specific part of the population only. Future studies with 

more diverse samples need to test whether the results replicate in different samples.

Ethics oversight All experimental procedures were approved by MIT’s institutional review board, COUHES (couhes.mit.edu). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Block design

Design specifications Cue Induced Craving Task: On each trial, participants saw a single photograph and 3-5 word verbal description, for 5 sec. 

The combination of visual and verbal cues was intended to maximize deep semantic processing of the relevant 

attributes. Each trial was followed by a 1s rest period (during which a fixation cross was displayed). Three consecutive 

trials were presented in a block of the same condition (food, social, control). Each block was followed by a jittered 2-6 

second rest period. Subsequently, participants self-reported how much they were currently craving food (on food 

blocks) or social interaction (on social blocks).  After control blocks, participants rated how much they liked the flower 

image, in order to match the demand for response preparation. A second jittered 2-6 rest period preceded the onset of 

the next block. In total, participants saw 18 blocks (54 trials) per condition, per scan session. The trials on each day were 

unique, so in total participants saw 36 blocks (108 unique images with descriptions) per condition. The duration of the 

task was approximately 30 minutes – divided into 6 runs, each run had a duration of approximately 5 minutes. 

 

Functional localizer: Participants first saw a cue, which was an abstract art image indicating whether the trial was 

rewarded or non-rewarded. After the cue, participants saw a number between 1-9 (excluding 5) for 100ms on the 

screen. Their task was to press an assigned button indicating whether the number is below or above 5 as fast as 

possible. Initially, correct responses were required in less than 500ms; after 10 consecutive correct answers, this 

window was reduced to 400ms. After they pressed the button, participants saw the outcome indicating whether they 

won $1 (reward trial, correct response, fast enough), lost $0.20 (reward trial, wrong response or too slow), or received 

$0 (non-reward trial). In total, participants played 80 trials (40 trials per condition) and the duration of the task was 

approx. 10 minutes.

Behavioral performance measures During the Cue Induced Craving task, participants provided a rating following each image block. We monitored 

participants throughout the scan. In case participants skipped two consecutive ratings, the scan was stopped and 

participants were reminded to provide ratings (we did this on one occasion).  

For the midbrain localizer, we analyzed mean correct response trials. Participants responded correctly and within the 

time limit on 87% of reward trials and 69% of non-reward trials. 

Acquisition

Imaging type(s) functional

Field strength 3 Tesla

Sequence & imaging parameters We started with anatomical scanning. For each participant, structural whole-head T2*-weighted structural images were 

collected in 176 interleaved sagittal slices with 1 mm isotropic voxels (FOV: 256 mm). In addition, whole-head T1-

weighted structural images in 176 interleaved sagittal slices with 1 mm isotropic voxels (FOV: 256 mm) were collected. 

The T2* weighted anatomical scan was collected for anatomical identification of midbrain nuclei (i.e., the high content 

of iron in SN/VTA and red nucleus makes the T2* shorter and darker in these areas. We confirmed the identification of 

mid-brain structures by registering to the newly available atlas of subcortical nuclei from Pauli et al. and defined 

separate regions of interest in the dorsal and ventral striatum. We also collected a field map (phase-difference B0 

estimation; TE1=3.47ms, TE2=5.93ms) to control for spatial distortions, which are particularly problematic in midbrain 

fMRI. During acquisition of the anatomical images and the field map (~15min in total) participants lay quietly in the dark.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We used open source preprocessing pipelines for fMRI data, developed through the nipy and nipype initiatives. We used the 

heudiconv python application which uses dcm2niix to convert raw scanner data into the NIFTI image file format, then 

organizes that data into a BIDS-formatted directory structure. The FMRIPrep application was used to minimally preprocess 

the anatomical and functional data (using default settings but including susceptibility distortion correction using fieldmaps 

(see below)). Using FMRIPrep, we skull-stripped anatomical images first roughly using the atlas-based ANTS program, and 
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then refined it using information from Freesurfer surfaces after reconstruction was completed. Brain tissue segmentation 

was performed with the FMRIB Software Library (FSL) FAST program.  We visually inspected brain masks, tissue segmentation 

and freesurfer surfaces. Susceptibility distortion correction was performed using phase-difference B0 estimation. 

 

A reference image for each run was generated from the input BOLD timeseries. A functional brain mask was created using a 

combination of FSL, ANTS, AFNI and nilearn tools.  The reference image of each run was aligned with the anatomical image 

using FreeSurfer’s program “bbregister”. The timepoint-to-functional reference transformation, the functional reference to 

anatomical transformation, and the anatomical-to-MNI transformation was concatenated into a single transformation and 

used to transform each functional timeseries into MNI template space. Spatial smoothing was performed on the FMRIPrep 

outputs with a 6mm smoothing kernel using FSL’s SUSAN tool, which uses segmentation boundaries to avoid smoothing 

across tissue types. MRIQC, an opensource quality assurance software tool, was used to generate additional reports which 

display Image Quality Metrics (IQMs). 

All references are provided in the methods section of the manuscript.

Normalization Images were spatially normalized to 2mm isotropic MNI-space using the multiscale, mutual-information based, nonlinear 

registration scheme implemented in ANTS.

Normalization template MNI152

Noise and artifact removal Using FSL’s MCFLIRT program, we estimated and corrected for head motion, resulting in a coregistered BOLD series as well as 

motion-based confound regressors. Any run containing a framewise displacement greater than 0.4 mm on more than 25% of 

the total frames was excluded from additional analyses. Additional confound regressors were generated, including other 

measures of motion (framewise displacement and DVARS and anatomical CompCor timeseries derived from CSF and white 

matter tissue segments).

Volume censoring For run-level analyses, the preprocessed timeseries was assessed with algorithms from the Artifact Removal Toolbox (ART) to 

identify frames within the run that have an abnormal amount of motion (0.4 mm of  total displacement, or an intensity spike 

greater than 3 standard deviations from mean). The design matrix included boxcars for the experimental conditions 

convolved with a double-gamma hemodynamic response function (HRF), and nuisance regressors representing frame-wise 

motion, the anatomical CompCor regressors derived from white matter and CSF, as well as impulse regressors for volumes 

identified by ART. 

Statistical modeling & inference

Model type and settings First level Analyses. Analyses were conducted using the nipype framework. The design matrix included boxcars for the 

experimental conditions convolved with a double-gamma hemodynamic response function (HRF), and nuisance regressors 

representing frame-wise motion, the anatomical CompCor regressors derived from white matter and CSF, as well as impulse 

regressors for volumes identified by ART. A high-pass filter (120 Hz) was applied to the design matrix and the smoothed data. 

The model was evaluated using FSL’s FILM program. Subject-level contrast maps were generated using FSL’s FLAME in mixed-

effects mode. 

 

Group level Univariate Analyses. For our planned analyses, we used mixed effects regressions (using Matlab 2019b’s fitlme 

function) to estimate the fixed effects of cue, deprivation session, and the critical interaction of cue and deprivation session, 

on response magnitude in the ROIs, controlling for each session’s average framewise displacement (i.e. head motion), with 

subject included as a random effect (for further details of the models, see Methods section). We modeled these effects in the 

anatomically defined SN/VTA (pre-registered analysis) and in the functionally defined ROI of voxels maximally sensitive to 

reward and novelty (exploratory analysis).  

 

 

Effect(s) tested In our main univariate analysis, we tested the effects of cue (social, food, control), and deprivation session (fasting, isolation) 

and the interaction between cue and session. To test whether these responses were correlated with individual differences in 

self-reported craving, we calculated the average contrast value (food>flowers and social>flowers) in the anatomically defined 

SN/VTA for each participant.  

We also tested univariate effects in data controlled for baseline activity. 

We next used multivoxel pattern analysis (MVPA) to determine whether the multivariate spatial pattern of activity in SN/VTA 

is shared for food and social craving. 

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

ROI definition. We included functional voxels which overlapped at least 75% with the substantia nigra 

pars compacta (SN) and the ventral tegmental area (VTA) region from the probabilistic atlas of human 

subcortical nuclei (Pauli et al. 2018). Because the striatum is a major target of projections from midbrain 

neurons and their firing results in increased DA transmission in the striatum, we expected to see the 

same pattern of results in the striatum, i.e.: increased activation to food cues after food deprivation and 

to social cues after social isolation and a positive correlation between activity in striatum and self-

reported craving (for both, food and social craving). Thus, we also included 3 additional ROIs in our 

analysis: putamen (Pu), Caudate Nucleus (Ca) and Nucleus Accumbens (NAcc) also using the probabilistic 

subcortical atlas. 

As exploratory analyses, we also assessed effects in four exploratory ROIs: Amygdala, Insula, orbitofrontal 

cortex (OFC) and anterior cingulate cortex (ACC). We selected these brain regions based on the  Harvard-

Oxford cortical and subcortical probabilistic atlas included  in FSL. 

 

Functional ROI definition. To define subject-specific ROIs, we used individual activations of 

each participant in the localizer task. The fMRI time series were analyzed using an event-related design 

approach implemented in the context of the GLM. The model contained two regressors separately 

modeling the presentation of novel/reward cues, and familiar/non-reward cues (i.e., when the abstract 

art images were presented, 2s). We also included one regressor for the time period of button press and 

outcome (1.1s). Because we did not add any jitter between button press and presentation of outcome (as 

this was not the contrast of interest), we modeled the whole segment as one block.  For each participant, 

we calculated the target contrast novel reward>familiar non-reward. We then used a mask encompassing 

the whole midbrain as the search space for the selection of individual voxels. In each participant we 

selected the top 100 active voxels within the search space in response to the target contrast. As an 

exploratory analysis (reported in the supplementary materials), we performed the same steps for 

selecting the top 100 active voxels using the NAcc anatomical ROI (see above for details) as the search 

space (the code for functional ROI extraction is provided on https://osf.io/cwg9e/). 

Statistic type for inference
(See Eklund et al. 2016)

We used a region of interest approach and analyzed mean activity across our ROIs of interest using mixed effects models.

Correction For our main tests, no correction was necessary as we used a ROI based approach. Our exploratory whole brain analyses 

employed cluster level correction. We decided to share these lenient results to be more complete and for potential future 

meta-analyses.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis We used multivoxel pattern analysis (MVPA) to determine whether the multivariate spatial pattern of activity 

in SN/VTA is shared for food and social craving. First, we assessed whether we were able to discriminate 

fMRI patterns between food and control cues in the fasting session in the SN/VTA. For each participant, we 

partitioned the data into six independent folds (6 runs), and iteratively trained a linear support vector 

machine (SVM) classifier on 5 runs (i.e. 15 beta estimates per condition) and tested on the left-out run (3 

beta estimates per condition). We then averaged the classification accuracy across runs to yield a single 

estimate for each participant. This within-session classification tested whether we would be able to decode 

stimulus from multivariate patterns within the SN/VTA.  

 

As a next step, we trained a linear SVM classifier using all 6 runs of the food fasting session on patterns of 

response to food and flower cues and tested the generalization of the classifier to neural activity measured 

in response to social and flower cues in the isolation session. We also tested the generalization of this 

classifier to neural patterns in response to food cues and control cues in the isolation session to test the 

generalization of responses to the same stimuli across sessions.  In order to be able to compare results 

between generalizations to the isolation session and the baseline session, we tested the same classifier on 

social vs control cues and food vs control cues in the baseline session. Thus, we calculated four statistical 

tests whether the classifier showed above chance decoding (using permuation and bootstrapping methods 

following Stelzer et al. 2013, alpha=(0.001): for(i) isolation session: social cues>control  and food 

cues>control and for(ii) baseline session: social cues>control  and food cues>control. If social craving and 

food craving share a neural basis, we predicted that a classifier trained on food_craved cues will successfully 

(above chance) classify social_craved cues but will not be able to classify social_noncraved cues. Finally, we 

used representational similarity analysis to test which pattern of activity is more similar to 'food_craved': 

social_craved or food_noncraved. We predicted that the presence of a craved object should be more 

important for SN/VTA activity than the specific object, so we predicted that the pattern of food_craved 

responses will be more similar to the pattern of activity for social_craved than for food_noncraved. All 

multivariate analyses were conducted with the PyMVPA toolbox in Python (http://www.pymvpa.org) and 

Matlab2019b. Code for all analyses available on https://osf.io/cwg9e/. 
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