Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale growth of few-layer two-dimensional black phosphorus

Abstract

Two-dimensional materials provide opportunities for developing semiconductor applications at atomistic thickness to break the limits of silicon technology. Black phosphorus (BP), as a layered semiconductor with controllable bandgap and high carrier mobility, is one of the most promising candidates for transistor devices at atomistic thickness1,2,3,4. However, the lack of large-scale growth greatly hinders its development in devices. Here, we report the growth of ultrathin BP on the centimetre scale through pulsed laser deposition. The unique plasma-activated region induced by laser ablation provides highly desirable conditions for BP cluster formation and transportation5,6, facilitating growth. Furthermore, we fabricated large-scale field-effect transistor arrays on BP films, yielding appealing hole mobility of up to 213 and 617 cm2 V−1 s−1 at 295 and 250 K, respectively. Our results pave the way for further developing BP-based wafer-scale devices with potential applications in the information industry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of centimetre-scale few-layer BP films.
Fig. 2: Large-area investigations of few-layer BP films.
Fig. 3: Atomistic features of few-layer BP films.
Fig. 4: Electrical performance of centimetre-scale few-layer BP.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  2. Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  3. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  4. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  5. Lowndes, D. H., Geohegan, D. B., Puretzky, A. A., Norton, D. P. & Rouleau, C. M. Synthesis of novel thin-film materials by pulsed laser deposition. Science 273, 898–903 (1996).

    Article  CAS  Google Scholar 

  6. Shriber, P., Samanta, A., Nessim, G. D. & Grinberg, I. First-principles investigation of black phosphorus synthesis. J. Phys. Chem. Lett. 9, 1759–1764 (2018).

    Article  CAS  Google Scholar 

  7. Gaufrès, É. et al. Momentum-resolved dielectric response of free-standing mono-, bi-, and trilayer black phosphorus. Nano Lett. 19, 8303–8310 (2019).

    Article  CAS  Google Scholar 

  8. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  CAS  Google Scholar 

  9. Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

    Article  CAS  Google Scholar 

  10. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  CAS  Google Scholar 

  11. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

    Article  CAS  Google Scholar 

  12. Wu, Z. & Hao, J. Electrical transport properties in group-V elemental ultrathin 2D layers. NPJ 2D Mater. Appl. 4, 1–13 (2020).

    Article  CAS  Google Scholar 

  13. Chen, L. et al. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016).

    Article  CAS  Google Scholar 

  14. Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

    Article  CAS  Google Scholar 

  15. Li, C. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1703748 (2018).

    Article  CAS  Google Scholar 

  16. Smith, J. B., Hagaman, D. & Ji, H. F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016).

    Article  CAS  Google Scholar 

  17. Xu, Y. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 11, 1330 (2020).

    Article  CAS  Google Scholar 

  18. Tian, B. et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl Acad. Sci. USA 115, 4345–4350 (2018).

    Article  CAS  Google Scholar 

  19. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  20. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  Google Scholar 

  21. Xu, X. et al. Atomic‐precision repair of a few‐layer 2H‐MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv. Mater. 32, 2000236 (2020).

    Article  CAS  Google Scholar 

  22. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  23. Guo, Z. et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015).

    Article  CAS  Google Scholar 

  24. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  25. Lei, S., Wang, H., Huang, L., Sun, Y. Y. & Zhang, S. Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus. Nano Lett. 16, 1317–1322 (2016).

    Article  CAS  Google Scholar 

  26. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  27. Lin, S. et al. In situ observation of the thermal stability of black phosphorus. 2D Mater. 4, 025001 (2017).

    Article  CAS  Google Scholar 

  28. Liu, X., Wood, J. D., Chen, K. S., Cho, E. & Hersam, M. C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015).

    Article  CAS  Google Scholar 

  29. Sha, W, Wu, X & Keong, K. G. in Electroless Copper and Nickel-Phosphorus Plating Ch. 6 (Woodhead Publishing, 2011).

  30. Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).

    Article  CAS  Google Scholar 

  31. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  32. von Wenckstern, H. et al. Continuous composition spread using pulsed-laser deposition with a single segmented target. Cryst. Eng. Commun. 15, 10020 (2013).

    Article  CAS  Google Scholar 

  33. Li, Y., Yao, X. & Tanabe, K. Improved surface morphology of NdBa2Cu3O7−δ films grown by pulsed laser deposition using a large single crystal target. Physica C 304, 239–244 (1998).

    Article  CAS  Google Scholar 

  34. Huang, W. et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 27, 1702448 (2017).

    Article  CAS  Google Scholar 

  35. Wen, Y. et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 28, 8051–8057 (2016).

    Article  CAS  Google Scholar 

  36. Zhou, Y. et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 8, 1485–1490 (2014).

    Article  CAS  Google Scholar 

  37. Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999).

    Article  Google Scholar 

  38. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009).

    Article  CAS  Google Scholar 

  39. Jiang, J. W. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26, 315706 (2015).

    Article  CAS  Google Scholar 

  40. Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  Google Scholar 

  41. Kaneta, C., Katayama-Yoshida, H. & Morita, A. Lattice dynamics of black phosphorus. Solid State Commun. 44, 613–617 (1982).

    Article  CAS  Google Scholar 

  42. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  43. Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T. & Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2016).

    Article  CAS  Google Scholar 

  44. Perera, M. M. et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (nos. 51972279 and 11534010) and the Research Grants Council of Hong Kong (GRF nos. PolyU 153025/19P and PolyU 153039/17P) and a PolyU Grant (1-ZVGH).

Author information

Authors and Affiliations

Authors

Contributions

J.H., Z.W. and X.H.C. conceived the original idea and designed the experiments. J.H., S.P.L. and X.H.C. supervised the project. Z.W. and B.Z. developed the synthesis techniques and fabricated the samples. Y.L. performed the MD simulations. Z.W. and Y.Z. conducted the TEM and EDX experiments. Z.W. and R.D. performed other physical characterizations, including the AFM, EBS, XPS, XRD, EBSD, Raman, PL and SEM studies, and analysed the results. Z.W. and Z.Y. fabricated the FET devices and investigated their electrical properties. Z.W., Y.L., X.H.C. and J.H. co-wrote the paper and all the authors commented on it.

Corresponding authors

Correspondence to Xian Hui Chen or Jianhua Hao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Richard Martel, Amin Salehi-Khojin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Table 1, notes for the output analysis of the MD simulations, legends for Videos 1 and 2, and refs. 1–23.

Supplementary Video 1

Evolution processes of phosphorus clusters affected by laser of varying energy.

Supplementary Video 2

Ablation phenomena on the target surface under optimal and excessive laser fluence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Lyu, Y., Zhang, Y. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021). https://doi.org/10.1038/s41563-021-01001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01001-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing