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A data‑driven approach to violin 
making
Sebastian Gonzalez1*, Davide Salvi1, Daniel Baeza2, Fabio Antonacci1 & Augusto Sarti1

Of all the characteristics of a violin, those that concern its shape are probably the most important 
ones, as the violin maker has complete control over them. Contemporary violin making, however, 
is still based more on tradition than understanding, and a definitive scientific study of the specific 
relations that exist between shape and vibrational properties is yet to come and sorely missed. In this 
article, using standard statistical learning tools, we show that the modal frequencies of violin tops can, 
in fact, be predicted from geometric parameters, and that artificial intelligence can be successfully 
applied to traditional violin making. We also study how modal frequencies vary with the thicknesses of 
the plate (a process often referred to as plate tuning) and discuss the complexity of this dependency. 
Finally, we propose a predictive tool for plate tuning, which takes into account material and geometric 
parameters.

The violin made its first appearance in northern Italy in the early sixteenth century, and for nearly two centuries 
its shape kept gradually evolving until it reached a point of relative stability during the so-called “Cremonese 
period”. The city of Cremona, in fact, was already teaming with numerous luthiers, and the experimentation on 
string instruments was constantly in full throttle. At the beginning of the 18th century, Cremona was home to the 
most celebrated luthiers of all times, such as Antonio Stradivari and Giuseppe Guarneri “del Gesù”, and through 
them this tradition of experimentation gave birth to some of the finest instruments ever made1,2. Nowadays, violin 
makers tend to follow a “differential” approach, and apply idiosyncratic variations to violin models of celebrated 
luthiers of that period. To the best of our knowledge, there is no clear explanation as to which violin shape should 
be preferred to which, only anecdotal evidence of some shapes sounding ‘better’ than others. In this article we try 
to shed light on this problem through a rather unconventional approach. Inspired by the evolution of the violin’s 
shape along centuries, we set out to simulate thousands of violin tops and apply methods of machine intelligence 
to discover and understand the relations between shape and vibration. We show that a simple Neural Network 
(NN) can learn a great deal on how a certain geometry ‘sounds’, i.e. what their eigenfrequencies are; and can be 
used for predicting results that otherwise would only be offered by Finite Element Method (FEM) simulations, 
the de-facto standard of simulation in violin research for the past four decades3–9.

Machine intelligence has been successfully applied to physical systems of all sorts10, including spin phase 
transitions11–13; quantum topological transitions14; and even physical problems as simple as the pendulum15. 
In computational acoustics, NN’s have been employed in a wide range of tasks16, including the localisation of 
acoustic sources17; nearfield holography18; and acoustic scene classification19. To the best of our knowledge, 
however, AI has not yet been applied to the problem of eigenfrequencies of plates, let alone the prediction of the 
acoustic behaviour of violin tops.

It is worth noticing that the eigenfrequencies (also referred to as modal frequencies) of the free plate are not 
immediately related to the acoustic properties of the complete instrument. They are, however, considered by 
violin makers as the parameters that drive the choices during the construction of the instrument. We proceed 
by first defining a parametric procedure to construct in silico the outline of the violin based on the drawings of 
Antonio Stradivari. This parametrisation allows us to create an arbitrary large dataset of violin shapes, which 
can then be used for answering the question as to whether AI can be used for predicting the eigenfrequencies. 
The answer, as we will see, is affirmative and we proceed to explain the way in which the prediction is done and 
study the correlation between eigenfrequencies and geometry of the violin. Finally, we use Principal Component 
Analysis (PCA) to show that the prediction is independent of the adopted parametrisation. Although there is 
still a great deal of work to do to predict the violin’s timbral features its eigenfrequencies, we consider this an 
important first step in that direction.
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Results
Outline generation.  Our parametric construction of the outline of a violin top plate starts from a specific 
drawing of Antonius Stradivarius (Fig. 1a), whose original is preserved in the Violin Museum of Cremona, Italy, 
where our laboratory is located. This drawing, in fact, suggests a parametric representation of the shape of the 
top plate. In our interpretation, a total of 9 arcs of circumference is combined together to form the different 
portions of the outline, as shown in Fig. 1b. Each one of these arcs is defined by the position of its centre, its 
radius and the two “aperture” angles; and their connection must obey continuity constraints (each arc section 
begins where another one ends). This procedure ends up requiring 20 free parameters, which are described in 
the Section Supplementary Material. Through these parameters we control the outline of the violin, while the 
appropriate arching and thickness grading of the top plate can be independently controlled. For details on the 
data set creation, see “Methods”.

In order to confirm that the generated violin models are “reasonable”, we asked a number of Cremonese 
luthiers to inspect the data set and judge if the resulting violin shapes are within the limits of what would be 
considered as “canonical”. Interestingly enough, not only did they validate the dataset, but they also recognised 
the style of specific violin makers while browsing through the generated shapes: from more delicate Amati-like 
shapes to others that were more reminiscent of very specific ones such as the Stradivarius “Hellier”, see Sup-
plementary Material for examples.

Neural network prediction.  In order to test the capability of a Neural Network to predict the eigenfre-
quencies of a plate for different outlines, we set up a simple architecture based on a hidden dense layer of N neu-
rons with sigmoid activation function, connected to a linear output layer, as shown in Fig. 2a. The inputs were 
the 20 parameters that define the outline; while the outputs were the first ten eigenfrequencies of the resulting 
top plate. We ran a total of 1750 simulations, 1500 of which we used for the training, and the remaining 250 we 
used for testing purposes.

Figure 2b shows a comparison between the eigenfrequencies f1,...,5 that are obtained through simulations 
and those predicted with the network with N = 7 . Of course, the evaluation is performed on a test set made of 
violin tops that were not used in the training phase. The results are, all in all, remarkably accurate, though f5 
appears to produce a larger number of outliers. We also studied the accuracy of the network for a varying num-
ber of neurons in the hidden layer. Figure 3a shows the R2 of the simulated-vs-predicted values in the test set 
for all the frequencies, as a function of the number of hidden layers N. We immediately notice that the network 
offers good predictions of the eigenfrequencies and plateaus starting from N = 7 . From about N = 19 on, the 
network begins overfitting the training set, and the error in the test set starts increasing. Interestingly enough, f5 
is consistently the hardest eigenfrequency to predict. If we compute the error for N = 50 and N = 100 , the fit is 

Figure 1.   (a) A drawing from the workshop of Enrico Ceruti showing the outline as a series of connected arcs 
of circles, image courtesy of the Violin Museum of Cremona, Italy20. (b) The 9 circles used for generating our 
violin outlines. (c) Fitting of a 6th order polynomial (black solid line) to the longitudinal arching (red points) of 
the celebrated “Messiah” violin, made by Antonius Stradivarius in 1716 (part of the fingerboard is visible in the 
upper right corner). (d) Transversal arching profile measured at the centre (in red), obtained from the 3D scan 
of the “Messiah”; arching of the 4th-order polynomial used (in black), see main text.
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indeed slightly worse than that of the other eigenfrequencies. Figure 3b shows the distribution of the differences 
between prediction and simulation for a network with N = 7 , where the outliers in the prediction of f5 are visible.

From black‑box to white‑box.  In order to assess how well the neural network was performing in its pre-
diction task, we used “feature importance analysis”, which is well-established in the context of machine learning. 
We computed, in fact, the permutation feature importance for the 20 geometrical parameters of the outline. We 
then studied how to use Principal Component Analysis (PCA) representations of the outline, in order to predict 
the eigenfrequencies. Finally, we studied the impact of the thickness profile and the material parameters on the 
frequencies and the outline.

Permutation Feature Importance.  The permutation feature importance is defined as the reduction in the predic-
tion accuracy that occurs when randomly shuffling a single feature value21. We used the model that was trained 
as described in the previous Section and we observed how the model score changes while permuting the input 
parameter i at random for n = 10 realisations. The metric that we use for assessing the accuracy is si,n = R2 , the 
coefficient of determination of actual vs predicted values for the eigenfrequencies, averaged over the n realisa-
tions and for the first 5 eigenfrequencies of the top plate. The importance is defined and computed as

where s = 0.965 is the value of R2 of the test set with no permutations.

(1)Ii = s −
1

n

∑

n

si,n ,

Figure 2.   (a) Architecture used for prediction. (b) Predicted versus actual values for the first five 
eigenfrequencies in the test set for a network with N = 7 . The frequencies are scaled by the average actual values 
for each mode in order to be able to compare different frequency values in the same plot. The prediction turns 
out to produce R2

= 0.977.

Figure 3.   (a) Individual values of the R2 (predicted vs. actual) of the first five eigenfrequencies f1,...,5 of the 
violin top plates. As we can see, from N = 15 the network begins overfitting f5 in the training set, as the error 
in the test set start growing. Notice that, with fewer than 7 neurons, the network is unable to offer a correct 
prediction. (b) Histograms of the difference between the eigenfrequency predicted by the neural network with 
N = 7; and the FEM result for the first five eigenfrequencies.
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Figure 4a shows the results of the permutation feature importance for the outline prediction, in decreasing 
order. The effect of each parameter in the outline can be seen in Fig. 5. Here a 5% variation is applied to selected 
parameters and the corresponding effect on the outline is shown. Notice that parameters 1 and 2 control the width 
of the violin, whereas parameters 14 and 16 control the lower bout size. Parameter 20, instead, controls the size of 
the upper bout. As previously mentioned, only the first 7 parameters carry a relevant amount of information of 
the frequencies. This suggests us that the neural network selects these parameters from the input and combines 
them in the hidden and output layers to obtain the eigenfrequency.

PCA prediction.  In order to study the relation between the outline and the eigenfrequencies, we first compute 
the PCA of the points of the outline. This is done by discretising the outline in 720 equispaced points. We con-
catenate the points of the outline and rearrange into a single vector x1, y1, . . . , xn, yn of length 1440. We compute 
the PCA over the entire set of 1750 violin top plates in the dataset. Already the first 10 PCA vectors are able to 
account for 98.8% of the variance of the set.

Figure 4b shows R2 as a function of the number of PCA components of the outline used. This is akin to a coor-
dinate transformation between two ‘coordinate systems’. It does not really matter to describe a violin in terms of 
circles or the outline, in the same way there is no difference writing equations in polar or Cartesian coordinates. 
Instead of predicting with the whole 20 parameters, we use the first 10 PCA components of the outline. This time 
we use a simple linear regression instead of a neural network. Through linear regression the prediction of the first 
5 eigenfrequencies turns out to be very accurate, and the accuracy grows as more PCA components are added. 
The accuracy, however, is not uniform throughout the frequencies. For example, f2 is extremely well predicted 
just with the first PCA component and, from the third PCA component on, not much additional information 
is gathered on that mode. Conversely, the first two PCA components do not contribute much to the prediction 
of f5 , and we need to go beyond such components to gain some knowledge on it. It is worth underlining that 
the accuracy achieved with the PCA of the outline is as good as the best prediction done with the full set of 
parameters despite using only half the degrees of freedom. This suggests that the predictive power of the violin’s 
vibrational response rests with the geometry of the violin, rather than our particular parametrisation of choice.

Figure 4.   (a) Feature importance measured trough Ii . The geometric parameters are here sorted in decreasing 
order of importance. As we can see, only few parameters carry a significant amount of information about the 
eigenfrequencies. Interestingly, the parameters that correlate with frequency 5 are not the same that correlate 
the remaining frequencies. (b) Accuracy of the prediction model based on the PCA components of the outline 
instead of the geometric parameters, each line corresponds to a different mode frequency.

Figure 5.   Outline change for a 5% variation of the for the first 5 parameters of the model, ordered by relevance 
from Fig. 4. The colour code represents the displacement of each point of the outline, normalised by the 
maximum displacement, from the average violin.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9455  | https://doi.org/10.1038/s41598-021-88931-z

www.nature.com/scientificreports/

Thickness profile.  Let us now focus on how the thickness profile influences the eigenfrequencies. The thickness 
profile is simply defined by 9 parameters, describing the thickness of the plate in 9 regions, as defined in22. The 
analysis is conducted on 1000 top plates, generated by varying the thickness in each one of the nine regions 
according to a Gaussian distribution with a 10% spread. The correlation matrix between the first five eigenfre-
quencies and the thickness regions is shown in Fig. 6. We immediately notice that there seems to be no single 
region in charge of one particular mode: any profile changes seem to simultaneously affect multiple frequencies, 
which debunks the widespread belief that certain modes can be controlled by removing material in certain areas 
(in particular the nodal lines) of the top plate. Furthermore, f5 appears to depend again on the lower bout, in this 
case its thickness. This is consistent with the fact that f5 is most sensitive to changes in the parameters 14 and 16 
of the outline, which are exactly those that control the width of the lower bout.

Full parameter variation.  Let us finally consider the impact on the frequency response of varying the three 
different sets of parameter individually and simultaneously. We first created a data set where only the parameters 
of the material (density, stiffness, Young and shear moduli) changed according to a Gaussian distribution (for 
the actual formulas, see Table 1 in “Methods”). To create the data set where all parameters vary simultaneously, 
for the outline we used a capped Gaussian distribution of variations with a 5% spread; for the thickness and the 
parameters of the material we used a non-capped Gaussian variation with 10% spread. We adopted different 
distributions because the outline tends to be a great deal more sensitive to variations of the 20 geometric shape 
parameters whereas sensitivity towards parameters describing material and thickness is much more limited.

Figure 7a shows the smoothed histogram of the average of the modal frequencies ( f1,...,5 ) for data sets in 
which each set of parameters vary independently. As we can see, the outline and the parameters of the material 
exhibit the same spread of mean frequency, and similar results are obtained for individual frequencies. Notice 
also that the distribution of the geometric shape parameters has a spread that is half of that of the parameters of 
the material, yet the frequency spread is the same. The histogram relative to thickness variations, on the other 
hand, turns out to be more peaky, which suggests that the impact of plate tuning is not as relevant as that of 
changing the outline and/or the properties of the material.

Finally, we wanted to understand whether plates that exhibit matching vibrational behaviour are, in fact, also 
similar in geometry and thickness. We picked the two violin top plates whose eigenfrequencies are the closest 
ones in the dataset, as shown in Fig. 7b; and plotted their outline and thickness profile, as shown in Fig. 7c. We 
immediately notice how different the stiffness and the density of the material are (though longitudinal sound 
speeds are comparable v1 = 5534[m/s] and v2 = 5075[m/s]), and how such differences appear to be compensated 
by a balanced mix of outline and thickness variations. The top plate on the left-hand side of Fig. 7c (red outline) 
has a denser material, and its outline is thinner and narrower. The one on the right-hand side (black outline) 
has a much less dense material, but and has a thicker waist. Interestingly enough, the thickness profile turns out 
to be asymmetrical in both cases. In principle, this study suggests that it is possible to create an acoustic copy 
of a historical instrument (same vibrational response) using material that has extremely different properties, 
through a careful selection of outline and thickness profiles, and it also tells us how to achieve this purpose in 
practice. We believe this could have significant implications on the practice of violin making, which for the past 
two centuries has primarily relied on matching the shape of historical instruments. Instead, we just saw how 
intimately related shape and material are and, most of all, we saw how artificial intelligence can be put to work, 
and used to design the outline and the thickness profile in such a way to compensate for variations in material, 
or explore material with different properties.

Discussion
What we presented above is a parametric representation of the outline and of the arching of violin top plates, 
which allowed us to synthetically generate a rich database of geometries. We derived through simulation the 
eigenfrequencies of such top plates, and trained neural networks in order to be able to speed up the prediction 

Figure 6.   Correlation between thickness and eigenfrequencies for modes one to five. Data set created varying 
only the thickness profile and keeping outline and material parameters constant. For the case of varying all 
the parameters at the same time the correlation values go down to a max of 0.5 but the spatial structure is 
conserved.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9455  | https://doi.org/10.1038/s41598-021-88931-z

www.nature.com/scientificreports/

of eigenfrequencies of nearly three orders of magnitude (600 times faster) with respect to FEM simulation, using 
a simple interpreted coding language such as Matlab.

This is, to the best of our knowledge, the first time a method is proposed for computing the geometry that can 
deliver the desired vibrational response in violin top plates, given the properties of the material. We showed, in 
fact, that neural networks can accurately predict the frequency distribution from a limited set of values. There is 
a clear correlation between the geometry and the eigenfrequencies, which the network can easily infer. The NN 
approach that we used proved to work with the thickness profile of the plate and the parameters of its material, 
and there is nothing to suggest that it could not be used to learn the influence of the arching profile as well, which 
is one important variable of the violin design that was not contemplated in this study. We are certain that this 
method can be easily applied to other domains of FEM simulation and maybe used to speed up the computation 
with simple geometries in current FEM solvers. Furthermore, recent experiments in learning the modal response 
of plates seem to indicate that this approach could also be used to predict the acoustic directional response of 
the modes as well as their frequency18.

A number of luthier-specific conclusions can be drawn from study. The first one is that there is no way to 
independently control eigenfrequencies using either the shape of the outline or the thickness profile, as the related 
parameters are all intimately intertwined. Perhaps the only exception is the mode frequency f5 , which seems to 
be mostly affected by specific parameters of the outline. The second conclusion is that f5 is mostly dependent on 
the ‘shape’ of the lower bout (on the thickness of the sides or, in the case of constant thickness, on the width). The 
third conclusion we want to draw is that the nine regions that can be seen in historical examples of the thickness 
profile are quite reasonable: the correlation between the modal frequencies is symmetric and depends either on 
the sides or on the central region for upper bout, waist or lower bout. A fourth conclusion is that, assigning a NN 

Figure 7.   (a) Histogram of mean frequencies for datasets varying shape, thickness profile and material 
parameters. (b) First 20 eigenfrequencies for the two most different violin top plates (in their parameters) that 
are in the top 0.1% of most similar frequency response in the data set (the complete data set is plotted on the 
background for comparison). (c) Outline and thickness profile of the same two violin tops. and their most 
important material parameters. The black outline is slightly wider than the red one and the lower corners point 
more upwards; the most relevant difference is in the thickness profile though.

Table 1.   Values of the orthotropic properties of the simulated material, density ρ = 450 kg/m3.

Young’s modulus Rigidity modulus Poisson’s ratio

Ey = 10.8 [GPa] Gyx/Ey = 0.061 µyx = 0.467

Ex/Ey = 0.043 Gxz/Ey = 0.064 µxz = 0.372

Ez/Ey = 0.078 Gyz/Ey = 0.003 µyz = 0.435
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the task of optimizing the violin design is easier, faster and less expensive: using a NN only requires the input of 
the parameters to be used. The final, and probably the most important conclusion of this study, is the fact that 
variations in the material parameters23 can only be compensated by changes in the outline of the violin, which 
raises doubts on how sound the contemporary practice of making copies of historical violin is, when based solely 
on geometry. If the material parameters are not the same, there is no hope that the instrument will vibrate (and 
sound) the same as the historical instrument whose geometry it matches. Further studies of the influence of the 
arching and the dependency of the acoustic response on parameter variation are needed to understand how to 
properly reproduce or, even better, how to improve on the sound of the “old masters”.

In this article we focused on the prediction of the eigenfrequencies of a free-plate from geometry and mate-
rial. We believe, however, that it will be possible to generalise and apply the same methodology to the model of 
a complete violin, with a focus on both its vibrational and acoustic response, which will allow us to effectively 
predict how a certain violin shape will ‘sound’ given the properties of its material. In that case we will be able also 
to consider the effect of the strings and the bridge on the sound, something that has been currently disregarded 
for the sake of simplicity. The ability to predict how a violin design sounds, can truly be a game changer for 
violin makers, as not only will it help them do better than the “grand masters”, but it will also help them explore 
the potential of new designs and materials. This research allowed us to take the first steps on this path, showing 
how artificial intelligence, physical simulation and craftsmanship can all come together to shed light on the art 
of violin making.

Methods
FEM simulations.  The material used for the simulations is Sitka Spruce, not a common material in Euro-
pean violin making tradition, but with mechanical properties similar known and similar to tonewood24. The 
same wood is used also for the bass bar but, since is it not aligned to the plate, we have to pay attention to its grain 
orientation rotating it to the same angle of rotation of the bar.

Since the wood is an orthotropic material, we have to define different properties for the different direc-
tions. The considered values are taken according to24 and can be seen in Table 1, while the density is equal to 
ρ = 450kg/m3.

For the varying material parameters simulations we vary:

where Ei is the Young modulus along each dimension. The shear moduli are dependent on those: for Sitka spruce

The same holds for the Poisson’s ratios:

Each of the δ is independently drawn from a Gaussian distribution of zero mean and variance of 10%, so den-
sity, stiffness and poison ratio vary independently whereas the shear moduli varies only due to the variation in Ey.

The mechanical behaviour is studied through a FEM simulation performed with COMSOL Multiphysics 
software, performing an eigenfrequency study in solid mechanics physics. Each generated mesh is imported 
and analysed in free boundary conditions with a tetrahedron mesh automatically generated by the software.

Architecture and training the neural network.  We used a feed-forward neural network, with a single 
hidden layer and a sigmoid activation function connected to a linear output layer. The complete structure can be 
seen in Fig. 2. The fully connected structure is fed with the 20 parameters that determine the shape of the outline 
and returns as output the eigenfrequency values of the first 10 vibrational modes of the plate. The training was 
done on different parts of the dataset and the evaluation of the quality in the test set, which was not seen during 
training.

Arching and thickness.  The arching of a violin (the curvature of the top plate) is not independent of the 
outline. Violin makers talk about ‘Stradivarius’ or ‘Guarneri’ models to refer to both the outline and the curva-
ture of the plate (the former being generally with a larger outline and higher and rather flat arching, while the 
latter being typically smaller and with a lower arching, albeit rounder). In this study, we intentionally chose to 
disregard this particular dependency. We used, in fact, one parametric shape for the arching, approximating an 
actual historical violin, and explored the corresponding parametric “shape space” of outlines.

In our case, the longitudinal arching (running from neck to tailpiece of the violin) is fitted in a similar 
way as in22, taking the Stradivarius ‘Messiah’ as reference for our analysis. The Messiah was on loan in 2017 at 
the Cremona Violin Museum for a few months, where we had access to it for analysis. Starting from that, we 
approximated its longitudinal arching (y direction) using a polynomial of order 6, which is the lowest order that 
allows us to obtain reliable results (Fig. 1c). The transversal arching (perpendicular to the longitudinal direction 
at the coordinate y), is approximated by a 4th-order even polynomial whose value and derivatives are zero at 
the edges, i.e.

where a(y) is the elevation of the plate at the center of the plate, origin of the reference frame (see Fig. 1d), and 
the values of the coefficients b and c are derived for each value of y and a(y) from the constraints in (5). We 

(2)ρ = ρ0(1+ δρ) Ey = E0y (1+ δEy ) Ex = E0x(1+ δEx ) Ez = E0z (1+ δEz ),

(3)Gyx = 0.061Ey Gxz = 0.064Ey Gyz = 0.003Ey ,

(4)µyx = 0.467(1+ δµyx ) µxz = 0.372(1+ δµxx ) µyz = 0.435(1+ δµyz ),

(5)a(y)+ bx2 + cx4 = 0 and 2bx + 4cx3 = 0,
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assumed left-right symmetry for this model, though this assumption could be easily removed by adding odd 
terms in the equation.

Finally, all the violin tops are built so that they have either the same constant thickness of 2.7 mm in the 
arched region (when we vary only the outline) or varying thickness in 9 different regions as in Fig. 6. The actual 
procedure for the creation of the top meshes can be found in22, but a schematic of how the thickness is computed 
is presented in the Supplementary Material. We have chosen the 2.7 mm thickness as representative of violins 
based on the historical results found in25.

Dataset creation.  The dataset is created starting from the outline that best fits the Messiah (area difference 
< 1% ). We found the parameters using an iterative numerical optimization method. As the area difference 
between two violin outlines is an extremely nonlinear function of the shape parameters, simple minimization 
procedures are not readily applicable. From that outline we randomly modify each of its parameters pi using a 
Gaussian distribution ( P(x) = 1

σ
√
2π

e−
1
2 (

x
σ )

2

 ) of zero mean and a standard deviation of 5% as follows

where each δi is independently and normally distributed but capped at 0.1, so the maximum variation in each 
parameter is a 10%. This cap is necessary to prevent top plates that come from the Gaussian distribution of the 
parameters from drifting too far apart from “standard” shapes. In fact, even a 15% cap would easily originate 
strange shapes.

The values that we chose generated a rather diversified variety of violin shapes, most of which are similar to 
historical examples, though some of them would resemble a Viola da Gamba or a very skinny fiddle. The resulting 
dataset consists of 1750 top plates of varying outline, 1000 top plates of fixed outline and varying thickness, 1000 
top plates of varying material parameters and 1500 of varying thickness, outline and material parameters. All 
the violin tops in the data set exhibit the same longitudinal arching but the transverse ones are different, though 
each one of them functionally equivalent and obeying the same boundary conditions (5) on its own outline.
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