Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of aneuploidy on cell behaviour and function

Abstract

Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A brief history of major advances in the research on aneuploidy.
Fig. 2: Defects in spindle function and regulation that can give rise to aneuploidy.
Fig. 3: Diverse stresses can impair the fidelity of chromosome segregation.
Fig. 4: Karyotype-specific effects on gene expression.
Fig. 5: System-wide and general effects of aneuploidy due to proteome imbalance.
Fig. 6: Potential mechanisms by which aneuploidy drives tumorigenesis.

Similar content being viewed by others

References

  1. Tackholm, G. Zytologische Studien uber die Gattung Rosa. Acta Hort. Bergiani 7, 97–381 (1922).

    Google Scholar 

  2. Edwards, J. H., Harnden, D. G., Cameron, A. H., Crosse, V. M. & Wolff, O. H. A new trisomic syndrome. Lancet 1, 787–790 (1960).

    Article  CAS  PubMed  Google Scholar 

  3. Lejeune, J., Gautier, M. & Turpin, R. Study of somatic chromosomes from 9 mongoloid children. C. R. Hebd. Seances Acad. Sci. 248, 1721–1722 (1959).

    CAS  PubMed  Google Scholar 

  4. Patau, K., Smith, D. W., Therman, E., Inhorn, S. L. & Wagner, H. P. Multiple congenital anomaly caused by an extra autosome. Lancet 1, 790–793 (1960).

    Article  CAS  PubMed  Google Scholar 

  5. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khush, G. Cytogenetics of Aneuploids (Academic, 1973).

  8. Gilchrist, C. & Stelkens, R. Aneuploidy in yeast: segregation error or adaptation mechanism? Yeast 36, 525–539 (2019).

    CAS  Google Scholar 

  9. Duijf, P. H., Schultz, N. & Benezra, R. Cancer cells preferentially lose small chromosomes. Int. J. Cancer 132, 2316–2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

    Article  PubMed  Google Scholar 

  13. Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van den Bos, H. et al. Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol. 17, 116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coorens, T. H. H. et al. Inherent mosaicism and extensive mutation of human placentas. Nature 592, 80–85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCoy, R. C. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 33, 448–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ricke, R. M. & van Deursen, J. M. Aneuploidy in health, disease, and aging. J. Cell Biol. 201, 11–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stirling, P. C. et al. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet. 7, e1002057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Worrall, J. T. et al. Non-random mis-segregation of human chromosomes. Cell Rep. 23, 3366–3380 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dumont, M. et al. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J. 39, e102924 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Gregan, J., Polakova, S., Zhang, L., Tolić-Nørrelykke, I. M. & Cimini, D. Merotelic kinetochore attachment: causes and effects. Trends Cell Biol. 21, 374–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snape, K. et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat. Genet. 43, 527–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vitre, B. D. & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe, K., Takao, D., Ito, K. K., Takahashi, M. & Kitagawa, D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun. 10, 931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chiang, T., Duncan, F. E., Schindler, K., Schultz, R. M. & Lampson, M. A. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20, 1522–1528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lister, L. M. et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Burkhardt, S. et al. Chromosome cohesion established by rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26, 678–685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. García-Muse, T. & Aguilera, A. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17, 553–563 (2016).

    Article  PubMed  Google Scholar 

  37. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 8, 537–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Chan, Y. W., Fugger, K. & West, S. C. Unresolved recombination intermediates lead to ultra-fine anaphase bridges, chromosome breaks and aberrations. Nat. Cell Biol. 20, 92–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Ait Saada, A. et al. Unprotected replication forks are converted into mitotic sister chromatid bridges. Mol. Cell 66, 398–410.e394 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Böhly, N., Kistner, M. & Bastians, H. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle 18, 2770–2783 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilhelm, T. et al. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat. Commun. 10, 3585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pardo, B., Crabbé, L. & Pasero, P. Signaling pathways of replication stress in yeast. FEMS Yeast. Res. 17, fow101 (2017).

    Google Scholar 

  46. Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bakhoum, S. F., Kabeche, L., Murnane, J. P., Zaki, B. I. & Compton, D. A. DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov. 4, 1281–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Perkins, A. T., Das, T. M., Panzera, L. C. & Bickel, S. E. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc. Natl Acad. Sci. USA 113, E6823–E6830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zuelke, K. A., Jones, D. P. & Perreault, S. D. Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol. Reprod. 57, 1413–1419 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Mihalas, B. P., De Iuliis, G. N., Redgrove, K. A., McLaughlin, E. A. & Nixon, B. The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci. Rep. 7, 6247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lim, D. C. et al. Redox priming promotes Aurora A activation during mitosis. Sci. Signal. 13, eabb6707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, G. F. et al. Oxidative stress induces mitotic arrest by inhibiting Aurora A-involved mitotic spindle formation. Free Radic. Biol. Med. 103, 177–187 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Técher, H., Koundrioukoff, S., Nicolas, A. & Debatisse, M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 18, 535–550 (2017).

    Article  PubMed  Google Scholar 

  55. Chen, G., Bradford, W. D., Seidel, C. W. & Li, R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Niikura, Y. et al. 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene 25, 4133–4146 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Tan, Z. et al. Environmental stresses induce karyotypic instability in colorectal cancer cells. Mol. Biol. Cell 30, 42–55 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lancaster, O. M. et al. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell 25, 270–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Knouse, K. A., Lopez, K. E., Bachofner, M. & Amon, A. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 175, 200–211.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hughes, T. R. et al. Widespread aneuploidy revealed by DNA microarray expression profiling. Nat. Genet. 25, 333–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Puddu, F. et al. Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 573, 416–420 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hou, J. et al. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc. Natl Acad. Sci. USA 115, E11321–E11330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rancati, G. et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135, 879–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hwang, S. et al. Consequences of aneuploidy in human fibroblasts with trisomy 21. Proc. Natl Acad. Sci. USA 118, e2014723118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sullivan, K. D. et al. Trisomy 21 consistently activates the interferon response. eLife 5, e16220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ahlfors, H. et al. Gene expression dysregulation domains are not a specific feature of Down syndrome. Nat. Commun. 10, 2489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guo, M. & Birchler, J. A. Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266, 1999–2002 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Mellman, W. J., Oski, F. A., Tedesco, T. A., Maciera-Coelho, A. & Harris, H. Leucocyte enzymes in down’s syndrome. Lancet 2, 674–675 (1964).

    Article  CAS  PubMed  Google Scholar 

  75. Ried, T. et al. The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. Biochim. Biophys. Acta 1819, 784–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samata, M. & Akhtar, A. Dosage compensation of the X chromosome: a complex epigenetic assignment involving chromatin regulators and long noncoding RNAs. Annu. Rev. Biochem. 87, 323–350 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Hose, J. et al. Dosage compensation can buffer copy-number variation in wild yeast. eLife 4, e05462 (2015).

    Article  PubMed Central  Google Scholar 

  78. Zhang, Y. et al. Expression in aneuploid Drosophila S2 cells. PLoS Biol. 8, e1000320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang, A. et al. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant. Physiol. 175, 828–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Makarevitch, I. & Harris, C. Aneuploidy causes tissue-specific qualitative changes in global gene expression patterns in maize. Plant. Physiol. 152, 927–938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aït Yahya-Graison, E. et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am. J. Hum. Genet. 81, 475–491 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Roy, B. et al. Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation. Commun. Biol. 3, 761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kemeny, S. et al. Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells. Chromosoma 127, 247–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Hervé, B. et al. Aneuploidy: the impact of chromosome imbalance on nuclear organization and overall genome expression. Clin. Genet. 90, 35–48 (2016).

    Article  PubMed  Google Scholar 

  85. Braun, R. et al. Single chromosome aneuploidy induces genome-wide perturbation of nuclear organization and gene expression. Neoplasia 21, 401–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brás, A., Rodrigues, A. S., Gomes, B. & Rueff, J. Down syndrome and microRNAs. Biomed. Rep. 8, 11–16 (2018).

    PubMed  Google Scholar 

  87. Yin, Q. et al. MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J. Virol. 82, 5295–5306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dephoure, N. et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3, e03023 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA Abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Gonçalves, E. et al. Widespread post-transcriptional attenuation of genomic copy-number variation in cancer. Cell Syst. 5, 386–398.e4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu, Y. et al. Systematic proteome and proteostasis profiling in human trisomy 21 fibroblast cells. Nat. Commun. 8, 1212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Brennan, C. M. et al. Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev. 33, 1031–1047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Muskens, I. S. et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat. Commun. 12, 821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, J. et al. Global hypermethylation in fetal cortex of Down syndrome due to DNMT3L overexpression. Hum. Mol. Genet. 25, 1714–1727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao, L. et al. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat. N. Phytol. 209, 364–375 (2016).

    Article  CAS  Google Scholar 

  97. Lane, A. A. et al. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mowery, C. T. et al. Trisomy of a down syndrome critical region globally amplifies transcription via HMGN1 overexpression. Cell Rep. 25, 1898–1911.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mulla, W. A. et al. Aneuploidy as a cause of impaired chromatin silencing and mating-type specification in budding yeast. eLife 6, e27991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan, Z. et al. Aneuploidy underlies a multicellular phenotypic switch. Proc. Natl Acad. Sci. USA 110, 12367–12372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Antonarakis, S. E. et al. Down syndrome. Nat. Rev. Dis. Primers 6, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Antonarakis, S. E. Down syndrome and the complexity of genome dosage imbalance. Nat. Rev. Genet. 18, 147–163 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Ahn, K. J. et al. DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol. Dis. 22, 463–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Hibaoui, Y. et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 6, 259–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Nakano-Kobayashi, A. et al. Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc. Natl Acad. Sci. USA 114, 10268–10273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Souchet, B. et al. Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol. Dis. 69, 65–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, G. et al. Targeting the adaptability of heterogeneous aneuploids. Cell 160, 771–784 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kucharavy, A., Rubinstein, B., Zhu, J. & Li, R. Robustness and evolvability of heterogeneous cell populations. Mol. Biol. Cell 29, 1400–1409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kaya, A. et al. Molecular signatures of aneuploidy-driven adaptive evolution. Nat. Commun. 11, 588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheltzer, J. M., Torres, E. M., Dunham, M. J. & Amon, A. Transcriptional consequences of aneuploidy. Proc. Natl Acad. Sci. USA 109, 12644–12649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cromie, G. A., Tan, Z., Hays, M., Jeffery, E. W. & Dudley, A. M. Dissecting gene expression changes accompanying a ploidy-based phenotypic switch. G3 7, 233–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. O’Duibhir, E. et al. Cell cycle population effects in perturbation studies. Mol. Syst. Biol. 10, 732 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brauer, M. J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 19, 352–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Terhorst, A. et al. The environmental stress response causes ribosome loss in aneuploid yeast cells. Proc. Natl Acad. Sci. USA 117, 17031–17040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ho, Y. H., Shishkova, E., Hose, J., Coon, J. J. & Gasch, A. P. Decoupling yeast cell division and stress defense implicates mRNA repression in translational reallocation during stress. Curr. Biol. 28, 2673–2680.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ye, C. J., Regan, S., Liu, G., Alemara, S. & Heng, H. H. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol. Cytogenet. 11, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Papp, I. et al. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant. J. 10, 469–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science 333, 1026–1030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pfister, K. et al. Identification of drivers of aneuploidy in breast tumors. Cell Rep. 23, 2758–2769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G. & Li, R. Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genet. 8, e1002719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ryan, S. D. et al. Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc. Natl Acad. Sci. USA 109, E2205–E2214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barnhart, E. L., Dorer, R. K., Murray, A. W. & Schuyler, S. C. Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Mol. Biol. Cell 22, 2448–2457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ohashi, A. et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat. Commun. 6, 7668 (2015).

    Article  PubMed  Google Scholar 

  129. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Torres, E. M. et al. Identification of aneuploidy-tolerating mutations. Cell 143, 71–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Oromendia, A. B., Dodgson, S. E. & Amon, A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 26, 2696–2708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Beaupere, C. et al. Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proc. Natl Acad. Sci. USA 115, 9586–9591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Larrimore, K. E., Barattin-Voynova, N. S., Reid, D. W. & Ng, D. T. W. Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations, or stress responses. BMC Biol. 18, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Santaguida, S., Vasile, E., White, E. & Amon, A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29, 2010–2021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ariyoshi, K. et al. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells. Mutat. Res. 790, 19–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Singla, S., Iwamoto-Stohl, L. K., Zhu, M. & Zernicka-Goetz, M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun. 11, 2958 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Donnelly, N., Passerini, V., Dürrbaum, M., Stingele, S. & Storchová, Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J. 33, 2374–2387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pogribna, M. et al. Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am. J. Hum. Genet. 69, 88–95 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Caracausi, M. et al. Plasma and urinary metabolomic profiles of Down syndrome correlate with alteration of mitochondrial metabolism. Sci. Rep. 8, 2977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Panagaki, T., Randi, E. B., Augsburger, F. & Szabo, C. Overproduction of H2S, generated by CBS, inhibits mitochondrial complex IV and suppresses oxidative phosphorylation in Down syndrome. Proc. Natl Acad. Sci. USA 116, 18769–18771 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Valenti, D., Manente, G. A., Moro, L., Marra, E. & Vacca, R. A. Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochem. J. 435, 679–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Li, M. et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc. Natl Acad. Sci. USA 107, 14188–14193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Clemente-Ruiz, M. et al. Gene dosage imbalance contributes to chromosomal instability-induced tumorigenesis. Dev. Cell 36, 290–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Hwang, S. et al. Serine-dependent sphingolipid synthesis is a metabolic liability of aneuploid cells. Cell Rep. 21, 3807–3818 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tang, Y. C. et al. Aneuploid cell survival relies upon sphingolipid homeostasis. Cancer Res. 77, 5272–5286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsai, H. J. et al. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature 570, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marx, J. Debate surges over the origins of genomic defects in cancer. Science 297, 544–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Dey, P. Aneuploidy and malignancy: an unsolved equation. J. Clin. Pathol. 57, 1245–1249 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vasudevan, A. et al. Aneuploidy as a promoter and suppressor of malignant growth. Nat. Rev. Cancer 21, 89–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dimaras, H. et al. Retinoblastoma. Nat. Rev. Dis. Primers 1, 15021 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  155. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nichols, C. A. et al. Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nat. Commun. 11, 2517 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hwang, M. S. et al. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc. Natl Acad. Sci. USA 118, e2022410118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Laurent, A. P., Kotecha, R. S. & Malinge, S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 34, 1984–1999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 355, 165–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Hitzler, J. K., Cheung, J., Li, Y., Scherer, S. W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101, 4301–4304 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 101, 4298–4300 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Tunstall-Pedoe, O. et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood 112, 4507–4511 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Roy, A. et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc. Natl Acad. Sci. USA 109, 17579–17584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Banno, K. et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 15, 1228–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, G. et al. Gene essentiality is a quantitative property linked to cellular evolvability. Cell 163, 1388–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. van Leeuwen, J. et al. Systematic analysis of bypass suppression of essential genes. Mol. Syst. Biol. 16, e9828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Haigis, K. M. & Sweet-Cordero, A. New insights into oncogenic stress. Nat. Genet. 43, 177–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Su, X. A. et al. RAD21 is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes Dev. 35, 556–572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Woo, R. A. & Poon, R. Y. Activated oncogenes promote and cooperate with chromosomal instability for neoplastic transformation. Genes Dev. 18, 1317–1330 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Denko, N. C., Giaccia, A. J., Stringer, J. R. & Stambrook, P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc. Natl Acad. Sci. USA 91, 5124–5128 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sotillo, R., Schvartzman, J. M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Salgueiro, L. et al. Acquisition of chromosome instability is a mechanism to evade oncogene addiction. EMBO Mol. Med. 12, e10941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Teixeira, V. H. et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat. Med. 25, 517–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Sikkema, M. et al. Aneuploidy and overexpression of Ki67 and p53 as markers for neoplastic progression in Barrett’s esophagus: a case-control study. Am. J. Gastroenterol. 104, 2673–2680 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Hadjinicolaou, A. V. et al. Aneuploidy in targeted endoscopic biopsies outperforms other tissue biomarkers in the prediction of histologic progression of Barrett’s oesophagus: a multi-centre prospective cohort study. EBioMedicine 56, 102765 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Melsheimer, P., Vinokurova, S., Wentzensen, N., Bastert, G. & von Knebel Doeberitz, M. DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin. Cancer Res. 10, 3059–3063 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Rubin, C. E. et al. DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology 103, 1611–1620 (1992).

    Article  CAS  PubMed  Google Scholar 

  183. Hirano, T., Franzén, B., Kato, H., Ebihara, Y. & Auer, G. Genesis of squamous cell lung carcinoma. Sequential changes of proliferation, DNA ploidy, and p53 expression. Am. J. Pathol. 144, 296–302 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Smith, A. L. et al. Extensive areas of aneuploidy are present in the respiratory epithelium of lung cancer patients. Br. J. Cancer 73, 203–209 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Molina, O., Abad, M. A., Solé, F. & Menéndez, P. Aneuploidy in cancer: lessons from acute lymphoblastic leukemia. Trends Cancer 7, 37–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bredel, M. et al. A network model of a cooperative genetic landscape in brain tumors. JAMA 302, 261–275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Körber, V. et al. Evolutionary trajectories of IDH(WT) glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704.e12 (2019).

    Article  PubMed  Google Scholar 

  190. Sack, L. M. et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173, 499–514.e23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Minussi, D. C. et al. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592, 302–308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Kwong, L. N. et al. Modeling genomic instability and selection pressure in a mouse model of melanoma. Cell Rep. 19, 1304–1312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shoshani, O. et al. Transient genomic instability drives tumorigenesis through accelerated clonal evolution. Genes Dev. 35, 1093–1108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bollen, Y. et al. Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 53, 1187–1195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Wiktor, A. et al. Clinical significance of Y chromosome loss in hematologic disease. Genes. Chromosomes Cancer 27, 11–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. Machiela, M. J. et al. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat. Commun. 7, 11843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Guttenbach, M., Koschorz, B., Bernthaler, U., Grimm, T. & Schmid, M. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei. Am. J. Hum. Genet. 57, 1143–1150 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. Science 287, 2486–2492 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Macedo, J. C. et al. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat. Commun. 9, 2834 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Barroso-Vilares, M. et al. Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence. EMBO Rep. 21, e49248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Barger, C. J., Branick, C., Chee, L. & Karpf, A. R. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers 11, 251 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  214. Hu, Z. et al. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 28, 396–408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Franasiak, J. M. et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 101, 656–663.e651 (2014).

    Article  PubMed  Google Scholar 

  216. Esbensen, A. J. Health conditions associated with aging and end of life of adults with Down syndrome. Int. Rev. Res. Ment. Retard. 39, 107–126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Baker, D. J. et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat. Cell Biol. 15, 96–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Naylor, R. M. & van Deursen, J. M. Aneuploidy in cancer and aging. Annu. Rev. Genet. 50, 45–66 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Andriani, G. A. et al. Whole chromosome instability induces senescence and promotes SASP. Sci. Rep. 6, 35218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. He, Q. et al. Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects. Oncogenesis 7, 62 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Foijer, F. et al. Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, 2928–2933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mirkovic, M., Guilgur, L. G., Tavares, A., Passagem-Santos, D. & Oliveira, R. A. Induced aneuploidy in neural stem cells triggers a delayed stress response and impairs adult life span in flies. PLoS Biol. 17, e3000016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Gogendeau, D. et al. Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat. Commun. 6, 8894 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Mannaert, A., Downing, T., Imamura, H. & Dujardin, J. C. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 28, 370–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Duan, S. F. et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat. Commun. 9, 2690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).

    Article  PubMed  Google Scholar 

  229. Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Soto, M. et al. p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Narkar, A. et al. On the role of p53 in the cellular response to aneuploidy. Cell Rep. 34, 108892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Wang, R. W., Viganò, S., Ben-David, U., Amon, A. & Santaguida, S. Aneuploid senescent cells activate NF-κB to promote their immune clearance by NK cells. EMBO Rep. 22, e52032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ji, Z., Chuen, J., Kiparaki, M. & Baker, N. Cell competition removes segmental aneuploid cells from Drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. eLife 10, e61172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kaya, A. et al. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc. Natl Acad. Sci. USA 112, 10685–10690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ryu, H. Y., Wilson, N. R., Mehta, S., Hwang, S. S. & Hochstrasser, M. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes Dev. 30, 1881–1894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ryu, H. Y. et al. Distinct adaptive mechanisms drive recovery from aneuploidy caused by loss of the Ulp2 SUMO protease. Nat. Commun. 9, 5417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Janbon, G., Sherman, F. & Rustchenko, E. Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl Acad. Sci. USA 95, 5150–5155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kabir, M. A., Ahmad, A., Greenberg, J. R., Wang, Y. K. & Rustchenko, E. Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators. Proc. Natl Acad. Sci. USA 102, 12147–12152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Selmecki, A. M., Dulmage, K., Cowen, L. E., Anderson, J. B. & Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5, e1000705 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Sionov, E., Lee, H., Chang, Y. C. & Kwon-Chung, K. J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6, e1000848 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Stone, N. R. et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J. Clin. Invest. 129, 999–1014 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Prieto Barja, P. et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat. Ecol. Evol. 1, 1961–1969 (2017).

    Article  PubMed  Google Scholar 

  247. Downing, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 21, 2143–2156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bussotti, G. et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 9, e01399-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Liu, X. et al. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. 209, 85–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  250. Ben-David, U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat. Commun. 5, 4825 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Rutledge, S. D. et al. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci. Rep. 6, 22828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hansemann, D. Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Archiv f. pathol. Anat. 119, 299–326 (1890).

    Article  Google Scholar 

  253. Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. translated and annotated by Henry Harris. J. Cell Sci. 121, 1–84 (2008).

    Article  PubMed  Google Scholar 

  254. Bridges, C. B. Non-disjunction as proof of the chromosome theory of heredity. Genetics 1, 1–52 (1916).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Blakeslee, A. F. Variations in Datura due to changes in chromosome number. Am. Nat. 56, 16–31 (1922).

    Article  Google Scholar 

  256. Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas 42, 1–6 (1956).

    Article  Google Scholar 

  257. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  258. White, B. J., Tjio, J. H., Van de Water, L. C. & Crandall, C. Trisomy 19 in the laboratory mouse. I. Frequency in different crosses at specific developmental stages and relationship of trisomy to cleft palate. Cytogenet. Cell Genet. 13, 217–231 (1974).

    Article  CAS  PubMed  Google Scholar 

  259. Mitelman, F. Catalogue of chromosome aberrations in cancer. Cytogenet. Cell Genet. 36, 1–515 (1983).

    Article  CAS  PubMed  Google Scholar 

  260. Cuckle, H. S., Wald, N. J. & Lindenbaum, R. H. Maternal serum alpha-fetoprotein measurement: a screening test for Down syndrome. Lancet 1, 926–929 (1984).

    Article  CAS  PubMed  Google Scholar 

  261. Merkatz, I. R., Nitowsky, H. M., Macri, J. N. & Johnson, W. E. An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am. J. Obstet. Gynecol. 148, 886–894 (1984).

    Article  CAS  PubMed  Google Scholar 

  262. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  263. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    Article  CAS  PubMed  Google Scholar 

  264. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Holland (Johns Hopkins University School of Medicine) and M. Gordon (Johns Hopkins University School of Medicine) for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed significantly to all aspects of the article.

Corresponding authors

Correspondence to Rong Li or Jin Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Marie-Hélène Verlhac, Todd Stukenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Trisomy 21

(T21). The genetic abnormality characterized by an extra copy of chromosome 21 that causes Down syndrome, the most common chromosomal disorder, affecting roughly 1 in 700 human babies born.

Cellular senescence

Irreversible exist from the cell cycle usually in response to diverse stress.

Euploid

The state of having complete sets of chromosomes in eukaryotic cells.

Merotelic attachments

Erroneous kinetochore–microtubule attachments where one kinetochore is attached to microtubules from both spindle poles.

Pericentriolar material

A complex set of proteins surrounding the centrioles that harbour the microtubule-nucleating activity of centrosomes.

Cohesin

A ring-like structure that is loaded onto chromosomes at the time of DNA replication and maintains cohesion between sister chromotids until chromosome segregation occurs.

Mosaic loss

Chromosomal loss events resulting in mosaicism.

Replication forks

Structures organized by helicase and other DNA replication-related proteins that allow replication of each strand.

Ultrafine DNA bridges

(UFBs). Thin DNA structures that link separating sister chromatids in mitosis.

R loops

Nucleic acid structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA that normally form during transcription and DNA replication but that are also present in mitotic cells.

X chromosome inactivation

The phenomenon of random inactivation of one of the two X chromosomes during development in females.

CpG sites

Regions of DNA where a cytosine (C) is followed by a guanine (G) and the cytosine is frequently methylated in mammals.

DNA methyltransferase DNMT3L

A member of the DNA methyltransferase family that lacks a catalytic domain and functions as a stimulating cofactor for DNA methylation.

HMGN1

A nucleosomal DNA-binding protein that modulates open chromatin structure and promotes transcription.

Sir2

The yeast nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase that catalyses the removal of acetyl groups from acetyllysine residues.

Subtelomeric regions

Regions on the chromosome of unique DNA sequence characteristics that are immediately adjacent to the telomeres, specialized structures defining chromosome ends.

Myosin II

A conserved actin-based motor protein that drives cytokinetic ring contraction in diverse eukaryotic cells.

Environmental stress response

A common yeast gene expression programme involving ~900 genes responding to multiple stresses.

Translesion synthesis

A process in which specialized DNA polymerases synthesize a short patch of DNA to bypass blocking DNA lesions.

Chromothripsis

Massive chromosome rearrangements that result in abnormal chromosomes containing multiple segments from different chromosomes.

Aggresome

An intracellular structures made up of aggregated misfolded proteins.

Unfolded protein response

An integrated intracellular signalling pathway responding to the burden of unfolded proteins in the endoplasmic reticulum lumen.

Somatic evolution

Genetic and epigenetic changes in the clonal composition of somatic cells in tissues over time resulting from evolutionary selection.

Acute megakaryoblastic leukaemia

A subtype of acute myeloid leukaemia characterized by abnormal megakaryoblasts.

Clonogenicity

The ability of cells to grow and form colonies.

Oncogene addiction

Dependence of cancers on specific oncogenic mutations to survive and/or proliferate.

Triple-negative breast cancers

Breast cancers that test negative for oestrogen receptors, progesterone receptors and excess HER2 protein.

Adult stem cells

Stem cells in adult tissues that are capable of self-renewal and differentiate into more specialized cell types.

cGAS–STING pathway

A cytosolic DNA sensing mechanism that triggers inflammatory responses.

Innate immune system

Part of the immune system that forms the first line of defence against pathogens (consisting of physical, chemical and cellular mechanisms).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhu, J. Effects of aneuploidy on cell behaviour and function. Nat Rev Mol Cell Biol 23, 250–265 (2022). https://doi.org/10.1038/s41580-021-00436-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00436-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer