Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits

Abstract

While large-scale, genome-wide association studies (GWAS) have identified hundreds of loci associated with brain-related traits, identification of the variants, genes and molecular mechanisms underlying these traits remains challenging. Integration of GWAS with expression quantitative trait loci (eQTLs) and identification of shared genetic architecture have been widely adopted to nominate genes and candidate causal variants. However, this approach is limited by sample size, statistical power and linkage disequilibrium. We developed the multivariate multiple QTL approach and performed a large-scale, multi-ancestry eQTL meta-analysis to increase power and fine-mapping resolution. Analysis of 3,983 RNA-sequenced samples from 2,119 donors, including 474 non-European individuals, yielded an effective sample size of 3,154. Joint statistical fine-mapping of eQTL and GWAS identified 329 variant–trait pairs for 24 brain-related traits driven by 204 unique candidate causal variants for 189 unique genes. This integrative analysis identifies candidate causal variants and elucidates potential regulatory mechanisms for genes underlying schizophrenia, bipolar disorder and Alzheimer’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for multi-ancestry eQTL meta-analysis.
Fig. 2: Biologically motivated simulations demonstrate performance of mmQTL workflow: high-correlation scenario.
Fig. 3: Evaluation of mmQTL workflow on real data.
Fig. 4: Properties of brain eQTL meta-analysis.
Fig. 5: Heritability enrichment of variants in the 95% causal set for 22 complex traits.
Fig. 6: Summary of joint fine-mapping colocalization with brain-related traits.
Fig. 7: GWAS-eQTL colocalization by joint fine-mapping.

Similar content being viewed by others

Data availability

Brain eQTL meta-analysis resource: http://icahn.mssm.edu/brema

Code availability

mmQTL: https://github.com/jxzb1988/mmQTL and Zenodo79 (https://doi.org/10.5281/zenodo.5560014).

References

  1. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  PubMed Central  Google Scholar 

  3. Visscher, P. M. et al. 10 Years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  9. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dobbyn, A. et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. Am. J. Hum. Genet. 102, 1169–1184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hormozdiari, F. et al. Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits. Nat. Genet. 50, 1041–1047 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fairfax, B. P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat. Genet. 53, 861–868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaffe, A. E. et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23, 510–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. de Paiva Lopes, K. et al. Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies. Preprint at https://www.biorxiv.org/content/10.1101/2020.10.27.356113v1?rss=1 (2020).

  29. Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26, 1444–1451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 51, 1475–1485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaitlen, N., Paşaniuc, B., Gur, T., Ziv, E. & Halperin, E. Leveraging genetic variability across populations for the identification of causal variants. Am. J. Hum. Genet. 86, 23–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 1330–1336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Han, B. et al. A general framework for meta-analyzing dependent studies with overlapping subjects in association mapping. Hum. Mol. Genet. 25, 1857–1866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

  45. Wang, J. et al. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Nucleic Acids Res. 48, D807–D816 (2020).

    CAS  PubMed  Google Scholar 

  46. Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data 5, 180185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hauberg, M. E. et al. Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nat. Commun. 11, 5581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715 (2018).

    Article  PubMed Central  Google Scholar 

  55. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    Article  PubMed Central  Google Scholar 

  56. Roussos, P. et al. A role for noncoding variation in schizophrenia. Cell Rep. 9, 1417–1429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Najt, P. et al. Impulsivity and bipolar disorder. Eur. Neuropsychopharmacol. 17, 313–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ouzir, M. Impulsivity in schizophrenia: a comprehensive update. Aggress. Violent Behav. 18, 247–254 (2013).

    Article  Google Scholar 

  59. Cerimele, J. M. & Katon, W. J. Associations between health risk behaviors and symptoms of schizophrenia and bipolar disorder: a systematic review. Gen. Hosp. Psychiatry 35, 16–22 (2013).

    Article  PubMed  Google Scholar 

  60. Zhang, X. et al. Negative evidence for a role of APH1B T27I variant in Alzheimer’s disease. Hum. Mol. Genet. 29, 955–966 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Hwang, J.-Y. & Zukin, R. S. REST, a master transcriptional regulator in neurodegenerative disease. Curr. Opin. Neurobiol. 48, 193–200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet. 51, 675–682 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van der Wijst, M. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mandric, I. et al. Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis. Nat. Commun. 11, 5504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sul, J. H., Han, B., Ye, C., Choi, T. & Eskin, E. Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet. 9, e1003491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  70. Joo, J. W. J., Hormozdiari, F., Han, B. & Eskin, E. Multiple testing correction in linear mixed models. Genome Biol. 17, 62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184, 3006–3021 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Ishigaki, K. et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120–1125 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Mohammadi, P., Castel, S. E., Brown, A. A. & Lappalainen, T. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. Genome Res. 27, 1872–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Su, Z., Marchini, J. & Donnelly, P. HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 27, 2304–2305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meyer, H. V. & Birney, E. PhenotypeSimulator: a comprehensive framework for simulating multi-trait, multi-locus genotype to phenotype relationships. Bioinformatics 34, 2951–2956 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 8, 15452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Glassberg, E. C., Gao, Z., Harpak, A., Lan, X. & Pritchard, J. K. Evidence for weak selective constraint on human gene expression. Genetics 211, 757–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Zeng, B. jxzb1988/MMQTL: mmQTL v1.5.0. https://doi.org/10.5281/zenodo.5771105 (2021).

Download references

Acknowledgements

This project was supported by the National Institute of Mental Health (NIH grants nos. R01-MH109677, U01-MH116442, R01-MH125246 and R01-MH109897), the National Institute on Aging (NIH grants nos. R01-AG050986, R01-AG067025 and R01-AG065582) and the Veterans Affairs Merit (no. BX004189) to P.R. G.E.H. was supported in part by NARSAD Young Investigator Grant no. 26313 from the Brain & Behavior Research Foundation. J.B. was supported in part by NARSAD Young Investigator Grant no. 27209 from the Brain & Behavior Research Foundation. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award nos. S10OD018522 and S10OD026880. The content herein is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., G.E.H. and P.R. conceived and designed the study. B.Z. designed and implemented the statistical method. B.Z. and G.E.H. performed analyses. J.F.F. generated cell-type-specific expression and chromatin accessibility data. J.B. and R.K. preprocessed and analyzed cell-type-specific expression and chromatin accessibility data. J.F.F. and P.R. supervised data generation. G.E.H. and P.R. supervised data analyses. G.E.H., B.Z. and P.R. wrote the manuscript with the help of all authors.

Corresponding authors

Correspondence to Gabriel E. Hoffman or Panos Roussos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Andrew Jaffe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Biologically motivated simulations demonstrate performance of mmQTL workflow: low correlation scenario.

a) QQ plot of results from null simulation shows that the linear mixed model (LMM) with fixed or random effect meta-analysis accurately controls the false positive rate for, while linear regression with 5 genotype principal components did not. The Sidak method was very conservative in both cases. λGC indicates the genomic control inflation factor. Gray band indicates 95% confidence interval under the null. b) Power from LMM followed by 3 types of meta-analysis versus the number of tissues sharing an eQTL. c) Size of the 95% credible sets from fixed- (y-axis) and random- (x-axis) effects meta-analysis from simulations in Fig. 2c.

Extended Data Fig. 2 Lead eQTL SNP sign concordance.

For the lead eQTL SNP of each gene in the meta-analysis, the sign of the mean estimated effect size is compared to the estimated effect sign from neuron and microglia eQTL analyses. The concordance rate increases with the strictness of the p-value cutoff, so a smaller p-value indicates a higher concordance rate. Error bars indicate 95% confidence interval for a binomial proportion. Analysis included 11,709 variants for neuron, and 10,865 variants for microglia.

Extended Data Fig. 3 Impact of effect size heterogeneity.

The test statistic from the random effect meta-analysis used here (Han and Eskin, 2011) is the sum of statistics testing the mean (Smean) and variance (Svariance) of the estimated effect sizes. a) The percent of total signal contributed by the fixed effect (that is Smean / (Smean + Svariance)) is shown for the lead eQTL SNP for multiple orders of conditional analysis. Box plot indicates median, interquartile range (IQR) and 1.5*IQR. b) The relationship between the test statistics is visualized by plotting sqrt Svariance against sqrt Smean from the lead eQTL SNP from the primary eQTL analysis. c) The estimated effect sizes from the lead eQTL SNP for genes with high and low levels of effect size heterogeneity is shown. Box plot indicates median, interquartile range (IQR) and 1.5*IQR.

Extended Data Fig. 4 Properties of conditional eQTLs.

a) The distribution of the distance to the transcription start site is shown for the lead variant for eQTL analysis of increasing degree. P-values indicate significance of one-sided Mann–Whitney U test between adjacent groups. Box plot indicates median, interquartile range (IQR) and 1.5*IQR. b) Cell type specificity metric tau plotted against the number of independent eQTLs discovered for each gene. Gray band indicates 95% confidence interval. c) Bar plot shows that the fraction of genes with high evolutionary constraint (pLI > 0.9) decreases with eQTL degree for the current study, PsychENCODE15, and whole blood78. Error bars indicate standard error based on asymptotic estimate of binomial proportion. Analysis included 10769 genes with eQTLs.

Extended Data Fig. 5 Estimated effect size and minor allele frequencies from conditional eQTL analysis.

The estimated effect size (a) and MAF (b) are shown for the lead eQTL SNP of significant genes for increasing order to conditional eQTL analysis. a) The distribution of estimated effect size is similar for all conditional analyses. b) The MAF shows a marked decrease with increasing order of conditional analysis. Box plot indicates median, interquartile range (IQR) and 1.5*IQR.

Extended Data Fig. 6 Comparison of estimated effect size for bulk and cell-type specific data.

(a-c) Estimated allelic effect size for eQTL lead in (a) neurons (Jaffe, et al. 2020), (b) microglia from Kosoy, et al. (in preparation) and (c) microglia from Young, et al. (2021) compared to effect size estimates from meta-analysis of bulk data from the current study. (d–g) Estimated allelic effect size for eQTL lead SNP in four immune cell types including (d) B cells, (e) CD14, (f) monocytes, (g) NK cells from Ota, et al. (2021) compared to estimates from bulk samples (Ishigaki, et al. 2017).

Extended Data Fig. 7 Number of genes colocalizing for each MeSH category with CLPP > 0.01.

The phenotype with the highest number of colocalized genes for each MeSH category is indicated.

Extended Data Fig. 8 Expression of FURIN and risk for multiple complex traits share rs4702 as a candidate causal variant.

Starting from the top, the plot shows -log10 p-values from eQTL analysis, poster probabilities from statistical fine-mapping of eQTL results, poster probabilities from statistical fine-mapping of GWAS results, and colocalization posterior probabilities (CLPP) for combining eQTL and GWAS fine-mapping. Traits are shown in the box on the right in decreasing order to CLPP value.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, B., Bendl, J., Kosoy, R. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat Genet 54, 161–169 (2022). https://doi.org/10.1038/s41588-021-00987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00987-9

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics