Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis

Abstract

Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep–wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.

Key points

  • Melanin-concentrating hormone (MCH) is a highly conserved, 19 amino acid peptide, and MCH-immunoreactive neuronal cell bodies exist in a wide range of species (fish, reptiles, birds and mammals).

  • MCH is found mainly in the lateral hypothalamic area and zona incerta, and it exerts its effects through MCH receptor 1 (MCHR1) and MCHR2 in mammals (except rodents and lagomorphs).

  • In addition to stimulating food intake via homeostatic and hedonic pathways, MCH reduces energy expenditure and locomotor activity, and induces adiposity, weight gain, glucose intolerance and peripheral lipid storage.

  • MCH is not a meal-initiation hormone; instead, MCH signalling amplifies food intake after feeding initiation, thereby increasing sucrose and glucose intake.

  • MCH neurons are active during sleep and mostly silent during wakefulness; however, MCH neurons can also be active during wakefulness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic actions elicited by MCH.
Fig. 2: The role of MCH in homeostatic control of feeding.
Fig. 3: The role of MCH in intracerebroventricular volume transmission.
Fig. 4: The role of MCH in hedonic control of feeding.
Fig. 5: Mechanisms and pathways that mediate the peripheral actions of MCH.

Similar content being viewed by others

References

  1. Nahon, J. L., Presse, F., Bittencourt, J. C., Sawchenko, P. E. & Vale, W. The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125, 2056–2065 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Vaughan, J. M., Fischer, W. H., Hoeger, C., Rivier, J. & Vale, W. Characterization of melanin-concentrating hormone from rat hypothalamus. Endocrinology 125, 1660–1665 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Matsunaga, T. O., Hruby, V. J., Lebl, M., Castrucci, A. M. & Hadley, M. E. Synthesis and bioactivity studies of two isosteric acyclic analogues of melanin concentrating hormone. Life Sci. 51, 679–685 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Presse, F., Nahon, J. L., Fischer, W. H. & Vale, W. Structure of the human melanin concentrating hormone mRNA. Mol. Endocrinol. 4, 632–637 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Parkes, D. & Vale, W. Secretion of melanin-concentrating hormone and neuropeptide-EI from cultured rat hypothalamic cells. Endocrinology 131, 1826–1831 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Bittencourt, J. C. et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319, 218–245 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Bittencourt, J. C. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen. Comp. Endocrinol. 172, 185–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Izawa, S. et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 365, 1308–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borowsky, B. et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat. Med. 8, 825–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Santollo, J. & Eckel, L. A. The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle. Physiol. Behav. 93, 842–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Qu, D. et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Saito, Y. et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400, 265–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Chambers, J. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400, 261–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Lembo, P. M. et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat. Cell Biol. 1, 267–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bachner, D., Kreienkamp, H., Weise, C., Buck, F. & Richter, D. Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett. 457, 522–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Shimomura, Y. et al. Isolation and identification of melanin-concentrating hormone as the endogenous ligand of the SLC-1 receptor. Biochem. Biophys. Res. Commun. 261, 622–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Presse, F., Conductier, G., Rovere, C. & Nahon, J. L. The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. Int. J. Obes. Suppl. 4 (Suppl. 1), S31–S36 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hervieu G. et al. in Peptide Receptors, Part II (eds Quirion, R. et al.) 31–101 (Elsevier, 2003).

  19. Pissios, P., Bradley, R. L. & Maratos-Flier, E. Expanding the scales: the multiple roles of MCH in regulating energy balance and other biological functions. Endocr. Rev. 27, 606–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Hawes, B. E. et al. The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology 141, 4524–4532 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hill, J. et al. Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J. Biol. Chem. 276, 20125–20129 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Sailer, A. W. et al. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc. Natl Acad. Sci. USA 98, 7564–7569 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, S. et al. Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, MCH-R2. J. Biol. Chem. 276, 34664–34670 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Fried, S., O’Neill, K. & Hawes, B. E. Cloning and characterization of rhesus monkey MCH-R1 and MCH-R2. Peptides 23, 1401–1408 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. An, S. et al. Identification and characterization of a melanin-concentrating hormone receptor. Proc. Natl Acad. Sci. USA 98, 7576–7581 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez, M. et al. Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2. Mol. Pharmacol. 60, 632–639 (2001).

    CAS  PubMed  Google Scholar 

  27. Tan, C. P. et al. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics 79, 785–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Schlumberger, S. E., Talke-Messerer, C., Zumsteg, U. & Eberle, A. N. Expression of receptors for melanin-concentrating hormone (MCH) in different tissues and cell lines. J. Recept. Signal. Transduct. Res. 22, 509–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Meyre, D. et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31–q23.2. Diabetes 53, 803–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Delacretaz, A. et al. Influence of MCHR2 and MCHR2-AS1 genetic polymorphisms on body mass index in psychiatric patients and in population-based subjects with present or past atypical depression. PLoS ONE 10, e0139155 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chee, M. J., Pissios, P., Prasad, D. & Maratos-Flier, E. Expression of melanin-concentrating hormone receptor 2 protects against diet-induced obesity in male mice. Endocrinology 155, 81–88 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Al Massadi, O., Nogueiras, R., Dieguez, C. & Girault, J. A. Ghrelin and food reward. Neuropharmacology 148, 131–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Gomori, A. et al. Chronic intracerebroventricular infusion of MCH causes obesity in mice. Melanin-concentrating hormone. Am. J. Physiol. Endocrinol. Metab. 284, E583–E588 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Imbernon, M. et al. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Al-Massadi, O. et al. MCH regulates SIRT1/FoxO1 and reduces POMC neuronal activity to induce hyperphagia, adiposity and glucose intolerance. Diabetes 68, 2210–2222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Al-Massadi, O., Muller, T., Tschop, M., Dieguez, C. & Nogueiras, R. Ghrelin and LEAP-2: rivals in energy metabolism. Trends Pharmacol. Sci. 39, 685–694 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Quinones, M. et al. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Mol. Metab. 4, 961–970 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui, H., Lopez, M. & Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 13, 338–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ludwig, D. S. et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 107, 379–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ito, M. et al. Melanin-concentrating hormone 1-receptor antagonist suppresses body weight gain correlated with high receptor occupancy levels in diet-induced obesity mice. Eur. J. Pharmacol. 624, 77–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Mashiko, S. et al. Antiobesity effect of a melanin-concentrating hormone 1 receptor antagonist in diet-induced obese mice. Endocrinology 146, 3080–3086 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Shearman, L. P. et al. Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur. J. Pharmacol. 475, 37–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Ploj, K. et al. Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br. J. Pharmacol. 173, 2739–2751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Alon, T. & Friedman, J. M. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J. Neurosci. 26, 389–397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeon, J. Y. et al. MCH–/– mice are resistant to aging-associated increases in body weight and insulin resistance. Diabetes 55, 428–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y., Ziogas, D. C., Biddinger, S. & Kokkotou, E. You deserve what you eat: lessons learned from the study of the melanin-concentrating hormone (MCH)-deficient mice. Gut 59, 1625–1634 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Whiddon, B. B. & Palmiter, R. D. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling. J. Neurosci. 33, 2009–2016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marsh, D. J. et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc. Natl Acad. Sci. USA 99, 3240–3245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Quinones, M., Ferno, J., Dieguez, C., Nogueiras, R. & Al-Massadi, O. Exciting advances in GPCR-based drugs discovery for treating metabolic disease and future perspectives. Expert Opin. Drug Discov. 14, 421–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Al Massadi, O., Lopez, M., Tschop, M., Dieguez, C. & Nogueiras, R. Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends Neurosci. 40, 167–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Belgardt, B. F. & Bruning, J. C. CNS leptin and insulin action in the control of energy homeostasis. Ann. NY Acad. Sci. 1212, 97–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Cansell, C., Denis, R. G., Joly-Amado, A., Castel, J. & Luquet, S. Arcuate AgRP neurons and the regulation of energy balance. Front. Endocrinol. 3, 169 (2012).

    Article  CAS  Google Scholar 

  55. Myers, M. G. Jr & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Chee, M. J., Pissios, P. & Maratos-Flier, E. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J. Comp. Neurol. 521, 2208–2234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Massadi, O. et al. MCH regulates SIRT1/FoxO1 and reduces POMC neuronal activity to induce hyperphagia, adiposity, and glucose intolerance. Diabetes 68, 2210–2222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Messina, M. M., Boersma, G., Overton, J. M. & Eckel, L. A. Estradiol decreases the orexigenic effect of melanin-concentrating hormone in ovariectomized rats. Physiol. Behav. 88, 523–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y. et al. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 143, 2469–2477 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Huang, Q., Viale, A., Picard, F., Nahon, J. & Richard, D. Effects of leptin on melanin-concentrating hormone expression in the brain of lean and obese Lep(ob)/Lep(ob) mice. Neuroendocrinology 69, 145–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Stricker-Krongrad, A., Dimitrov, T. & Beck, B. Central and peripheral dysregulation of melanin-concentrating hormone in obese Zucker rats. Brain Res. Mol. Brain Res. 92, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Segal-Lieberman, G. et al. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc. Natl Acad. Sci. USA 100, 10085–10090 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, Q., Whiddon, B. B. & Palmiter, R. D. Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility. Proc. Natl Acad. Sci. USA 109, 3155–3160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gavrila, A. et al. Circulating melanin-concentrating hormone, agouti-related protein, and alpha-melanocyte-stimulating hormone levels in relation to body composition: alterations in response to food deprivation and recombinant human leptin administration. J. Clin. Endocrinol. Metab. 90, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hakansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C. & Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laque, A. et al. Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am. J. Physiol. Endocrinol. Metab. 304, E999–E1011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goforth, P. B., Leinninger, G. M., Patterson, C. M., Satin, L. S. & Myers, M. G. Jr Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J. Neurosci. 34, 11405–11415 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Noble, E. E. et al. Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metab. 28, 55–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    Article  PubMed  Google Scholar 

  70. Conductier, G. et al. Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nat. Neurosci. 16, 845–847 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Conductier, G. et al. Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front. Endocrinol. 4, 182 (2013).

    Article  Google Scholar 

  72. Faubel, R., Westendorf, C., Bodenschatz, E. & Eichele, G. Cilia-based flow network in the brain ventricles. Science 353, 176–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Agnati, L. F. et al. A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol. Scand. 128, 201–207 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Jiang, H. et al. MCH neurons regulate permeability of the median eminence barrier. Neuron 107, 306–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mickelsen, L. E. et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro 4, ENEURO.0013-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Burdakov, D., Gerasimenko, O. & Verkhratsky, A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J. Neurosci. 25, 2429–2433 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blanco-Centurion, C. et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J. Neurosci. 39, 4986–4998 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guan, J. L. et al. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int. J. Obes. Relat. Metab. Disord. 26, 1523–1532 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Apergis-Schoute, J. et al. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J. Neurosci. 35, 5435–5441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gonzalez, J. A., Iordanidou, P., Strom, M., Adamantidis, A. & Burdakov, D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat. Commun. 7, 11395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez, C. A. et al. Involvement of the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1105–R1111 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Romero-Pico, A. et al. Melanin-concentrating hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake. Neuropharmacology 130, 62–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diniz, G. B. & Bittencourt, J. C. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front. Syst. Neurosci. 11, 32 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Li, Y. & van den Pol, A. N. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA. J. Neurosci. 29, 15195–15204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ligresti, A., De Petrocellis, L. & Di Marzo, V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev. 96, 1593–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Verty, A. N., Boon, W. M., Mallet, P. E., McGregor, I. S. & Oldfield, B. J. Involvement of hypothalamic peptides in the anorectic action of the CB receptor antagonist rimonabant (SR 141716). Eur. J. Neurosci. 29, 2207–2216 (2009).

    Article  PubMed  Google Scholar 

  88. Huang, H. et al. Cannabinoids excite hypothalamic melanin-concentrating hormone but inhibit hypocretin/orexin neurons: implications for cannabinoid actions on food intake and cognitive arousal. J. Neurosci. 27, 4870–4881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Verty, A. N., Lockie, S. H., Stefanidis, A. & Oldfield, B. J. Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice. Int. J. Obes. 37, 279–287 (2013).

    Article  CAS  Google Scholar 

  90. Zhang, X. & van den Pol, A. N. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J. Neurosci. 32, 3032–3043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yao, Y., Fu, L. Y., Zhang, X. & van den Pol, A. N. Vasopressin and oxytocin excite MCH neurons, but not other lateral hypothalamic GABA neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R815–R824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, J. J., Bello, N. T. & Pang, Z. P. Presynaptic regulation of leptin in a defined lateral hypothalamus-ventral tegmental area neurocircuitry depends on energy state. J. Neurosci. 37, 11854–11866 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hervieu, G. J. et al. The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur. J. Neurosci. 12, 1194–1216 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Saito, Y., Cheng, M., Leslie, F. M. & Civelli, O. Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J. Comp. Neurol. 435, 26–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Georgescu, D. et al. The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J. Neurosci. 25, 2933–2940 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mul, J. D. et al. Chronic loss of melanin-concentrating hormone affects motivational aspects of feeding in the rat. PLoS ONE 6, e19600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morganstern, I., Chang, G. Q., Karatayev, O. & Leibowitz, S. F. Increased orexin and melanin-concentrating hormone expression in the perifornical lateral hypothalamus of rats prone to overconsuming a fat-rich diet. Pharmacol. Biochem. Behav. 96, 413–422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Domingos, A. I. et al. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. eLife 2, e01462 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nair, S. G., Adams-Deutsch, T., Pickens, C. L., Smith, D. G. & Shaham, Y. Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology 205, 129–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sherwood, A., Holland, P. C., Adamantidis, A. & Johnson, A. W. Deletion of melanin concentrating hormone receptor-1 disrupts overeating in the presence of food cues. Physiol. Behav. 152, 402–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Benoit, S. C., Clegg, D. J., Woods, S. C. & Seeley, R. J. The role of previous exposure in the appetitive and consummatory effects of orexigenic neuropeptides. Peptides 26, 751–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Duncan, E. A., Proulx, K. & Woods, S. C. Central administration of melanin-concentrating hormone increases alcohol and sucrose/quinine intake in rats. Alcohol. Clin. Exp. Res. 29, 958–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Sakamaki, R. et al. Melanin-concentrating hormone enhances sucrose intake. Int. J. Mol. Med. 15, 1033–1039 (2005).

    CAS  PubMed  Google Scholar 

  104. Dilsiz, P. et al. MCH neuron dependent reward and feeding. Neuroendocrinology 110, 258–270 (2019).

    Article  PubMed  CAS  Google Scholar 

  105. Schneeberger, M. et al. Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol. Metab. 13, 83–89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chee, M. J., Arrigoni, E. & Maratos-Flier, E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J. Neurosci. 35, 3644–3651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dilsiz, P. et al. MCH neuron activity is sufficient for reward and reinforces feeding. Neuroendocrinology 110, 258–270 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Kong, D. et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 12, 545–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Karlsson, C. et al. Melanin-concentrating hormone receptor 1 (MCH1-R) antagonism: reduced appetite for calories and suppression of addictive-like behaviors. Pharmacol. Biochem. Behav. 102, 400–406 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Mansour, A. et al. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J. Comp. Neurol. 350, 412–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Pissios, P. et al. Dysregulation of the mesolimbic dopamine system and reward in MCH–/– mice. Biol. Psychiatry 64, 184–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Chee, M. J. et al. Conditional deletion of melanin-concentrating hormone receptor 1 from GABAergic neurons increases locomotor activity. Mol. Metab. 29, 114–123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vegiopoulos, A. & Herzig, S. Glucocorticoids, metabolism and metabolic diseases. Mol. Cell Endocrinol. 275, 43–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Presse, F. et al. Rat melanin-concentrating hormone messenger ribonucleic acid expression: marked changes during development and after stress and glucocorticoid stimuli. Endocrinology 131, 1241–1250 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Roy, M., David, N., Cueva, M. & Giorgetti, M. A study of the involvement of melanin-concentrating hormone receptor 1 (MCHR1) in murine models of depression. Biol. Psychiatry 61, 174–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, T. K. & Han, P. L. Physical exercise counteracts stress-induced upregulation of melanin-concentrating hormone in the brain and stress-induced persisting anxiety-like behaviors. Exp. Neurobiol. 25, 163–173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garcia-Fuster, M. J. et al. The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur. Neuropsychopharmacol. 22, 607–613 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Smith, D. G. et al. Melanin-concentrating hormone-1 receptor modulates neuroendocrine, behavioral, and corticolimbic neurochemical stress responses in mice. Neuropsychopharmacology 31, 1135–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Shimazaki, T., Yoshimizu, T. & Chaki, S. Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs 20, 801–811 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, T. K. et al. Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala. Neurobiol. Dis. 79, 59–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Morens, C., Norregaard, P., Receveur, J. M., van Dijk, G. & Scheurink, A. J. Effects of MCH and a MCH1-receptor antagonist on (palatable) food and water intake. Brain Res. 1062, 32–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Pankevich, D. E., Teegarden, S. L., Hedin, A. D., Jensen, C. L. & Bale, T. L. Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J. Neurosci. 30, 16399–16407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Le Thuc, O. et al. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep. 17, 1738–1752 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bottcher, M. et al. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol. Metab. 39, 101022 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kokkotou, E. et al. Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R117–R124 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Guesdon, B., Paradis, E., Samson, P. & Richard, D. Effects of intracerebroventricular and intra-accumbens melanin-concentrating hormone agonism on food intake and energy expenditure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R469–R475 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Hausen, A. C. et al. Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity. Cell Rep. 17, 2512–2521 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Pelluru, D., Konadhode, R. & Shiromani, P. J. MCH neurons are the primary sleep-promoting group. Sleep 36, 1779–1781 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Abrahamson, E. E., Leak, R. K. & Moore, R. Y. The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Jego, S. et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 1637–1643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Konadhode, R. R., Pelluru, D. & Shiromani, P. J. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front. Syst. Neurosci. 8, 244 (2014).

    PubMed  Google Scholar 

  132. Hassani, O. K., Lee, M. G. & Jones, B. E. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc. Natl Acad. Sci. USA 106, 2418–2422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou, D., Shen, Z., Strack, A. M., Marsh, D. J. & Shearman, L. P. Enhanced running wheel activity of both Mch1r- and Pmch-deficient mice. Regul. Pept. 124, 53–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Willie, J. T., Sinton, C. M., Maratos-Flier, E. & Yanagisawa, M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156, 819–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Astrand, A. et al. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R749–R758 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Smith, D. G. et al. Mesolimbic dopamine super-sensitivity in melanin-concentrating hormone-1 receptor-deficient mice. J. Neurosci. 25, 914–922 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Smith, D. G. et al. Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice. Synapse 62, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Chee, M. J. et al. Melanin-concentrating hormone is necessary for olanzapine-inhibited locomotor activity in male mice. Eur. Neuropsychopharmacol. 25, 1808–1816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ito, M. et al. Characterization of MCH-mediated obesity in mice. Am. J. Physiol. Endocrinol. Metab. 284, E940–E945 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Oldfield, B. J. et al. The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110, 515–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Oldfield, B. J., Allen, A. M., Davern, P., Giles, M. E. & Owens, N. C. Lateral hypothalamic ‘command neurons’ with axonal projections to regions involved in both feeding and thermogenesis. Eur. J. Neurosci. 25, 2404–2412 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Pereira-da-Silva, M. et al. Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology 144, 4831–4840 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Verty, A. N., Allen, A. M. & Oldfield, B. J. The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 151, 4236–4246 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Lopez, M., Alvarez, C. V., Nogueiras, R. & Dieguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Roa, J. & Tena-Sempere, M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol. Cell Endocrinol. 397, 4–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Wade, G. N. & Jones, J. E. Neuroendocrinology of nutritional infertility. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1277–R1296 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Gomori, A. et al. Blockade of MCH1 receptor signalling ameliorates obesity and related hepatic steatosis in ovariectomized mice. Br. J. Pharmacol. 151, 900–908 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Imbernon, M. et al. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress. Hepatology 64, 1086–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Pereira-da-Silva, M., De Souza, C. T., Gasparetti, A. L., Saad, M. J. & Velloso, L. A. Melanin-concentrating hormone induces insulin resistance through a mechanism independent of body weight gain. J. Endocrinol. 186, 193–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Hanada, R. et al. Differential regulation of melanin-concentrating hormone and orexin genes in the agouti-related protein/melanocortin-4 receptor system. Biochem. Biophys. Res. Commun. 268, 88–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Mizuno, T. M. et al. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47, 294–297 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Goldstein, C. et al. Two naturally occurring mutations in the type 1 melanin-concentrating hormone receptor abolish agonist-induced signaling. J. Pharmacol. Exp. Ther. 335, 799–806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Szalai, K. K. et al. Recent patents on novel MCH1 receptor antagonists as potential anti-obesity drugs. Recent. Pat. CNS Drug Discov. 9, 122–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Macneil, D. J. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front. Endocrinol. 4, 49 (2013).

    Article  CAS  Google Scholar 

  155. Johansson, A. Evolution of physicochemical properties of melanin concentrating hormone receptor 1 (MCHr1) antagonists. Bioorg. Med. Chem. Lett. 26, 4559–4564 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Tschop, M. H. et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 24, 51–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  157. Kawata, Y. et al. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. Eur. J. Pharmacol. 796, 45–53 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research work is supported by grants from Fondos Europeos de Desarrollo Regional (FEDER) and Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación (to C.D., BFU2017-87721; R.N., RTI2018-099413-B-I00; M.L., RTI2018-101840-B-I00); Xunta de Galicia (to R.N., 2016-PG057 and ED431C 2020/12) and grants ED431G 2019/02, Fundación BBVA to R.N., Fundación Atresmedia (to R.N.), European Foundation for the Study of Diabetes (to R.N.) and Fundación la Caixa (to R.N., HR18-00100 and M.L., LCF/PR/HR19/52160022). The research leading to these results has also received funding from the European Community’s H2020 Framework Programme under ERC Synergy Grant-2019-WATCH-810331 to M. Schwaninger, V.P. and R.N. CIBERobn and CIBERehd are initiatives of the Instituto de Salud Carlos III (ISCIII) of Spain, which is supported by FEDER funds. M. Schneeberger also acknowledges support from the National Institute of Diabetes and Digestive Kidney Diseases (NIDDK) grant K99 DK120869. O.A.-M. is funded by research contract ‘Miguel Servet’ (CP20/00146) from ISCIII, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Contributions

O.A.-M. and R.N. wrote the manuscript. All authors reviewed and/or edited the manuscript before submission. Additionally, C.D., M. Schneeberger., M.L. and M. Schwaninger made substantial contributions to discussions of the article content.

Corresponding authors

Correspondence to Omar Al-Massadi or Ruben Nogueiras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks C. Cavadas, who co-reviewed with S. Carmo-Silva; J.-L. Nahon; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Reverse pharmacology

Also known as target-based drug discovery, this technique involves screening libraries of small molecules to identify compounds that bind with high affinity to the target molecule, which can then be investigated for therapeutic efficacy.

In silico data mining

Interrogation of large-scale genomic and proteomic data sets using known gene or amino acid sequences to identify novel related genes and proteins having at least partial homology or identity with the sequence of interest.

Unimolecular polypharmacy

Macromolecular agents developed to act on multiple targets; examples include peptides engineered to have dual receptor–agonist behaviour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Massadi, O., Dieguez, C., Schneeberger, M. et al. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 17, 745–755 (2021). https://doi.org/10.1038/s41574-021-00559-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00559-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing