Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD

Abstract

Hepatic steatosis is a key histological feature of nonalcoholic fatty liver disease (NAFLD). The non-invasive quantification of liver fat is now possible due to advances in imaging modalities. Emerging data suggest that high levels of liver fat and its temporal change, as measured by quantitative non-invasive methods, might be associated with NAFLD progression. Ultrasound-based modalities have moderate diagnostic accuracy for liver fat content and are suitable for screening. However, of the non-invasive imaging modalities, MRI-derived proton density fat fraction (MRI-PDFF) has the highest diagnostic accuracy and is used for trial enrolment and to evaluate therapeutic effects in early-phase clinical trials in nonalcoholic steatohepatitis (NASH). In patients with NAFLD without advanced fibrosis, high levels of liver fat are associated with rapid disease progression. Furthermore, changes on MRI-PDFF (≥30% decline relative to baseline) are associated with NAFLD activity score improvement and fibrosis regression. However, an inverse association exists between liver fat and complications of cirrhosis. Liver fat decreases as liver fibrosis progresses towards cirrhosis, and the clinical importance of quantitative measurements of liver fat differs by NAFLD status. As such, patients with NAFLD should be stratified by fibrosis severity to investigate the utility of quantitative measurements of liver fat for assessing NAFLD progression and prognosis.

Key points

  • Ultrasound-based modalities for the quantification of liver fat content have moderate diagnostic accuracy for the degree of hepatic steatosis and are useful as a pre-screen strategy in clinical trials in nonalcoholic steatohepatitis (NASH).

  • Compared with other imaging modalities, MRI-derived proton density fat fraction (MRI-PDFF) has the highest diagnostic accuracy for quantification of liver fat content and is commonly used in trials in NASH.

  • Increased liver fat content (MRI-PDFF ≥15%) is associated with increased odds of fibrosis progression in patients with NAFLD at an early stage of fibrosis.

  • In patients with NAFLD, change in MRI-PDFF (≥30% decline relative to baseline) is associated with a histological response (NAFLD activity score ≥2 points improvement with no worsening of fibrosis) and fibrosis regression (reduction of one or more stages).

  • Decreased liver fat content is associated with an increased incidence of liver-related events and poor prognosis in patients with NASH with advanced fibrosis.

  • Liver fat content decreases in the setting of cirrhosis; therefore, the clinical importance of quantitative assessment of liver fat content and its change over time differs by NAFLD disease status and fibrosis severity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accumulation of lipids in the liver and disease progression in NAFLD.
Fig. 2: Two-step liver fat content assessment to reduce screen failure rate in trials in NASH.
Fig. 3: Clinical importance of quantitative liver fat content assessment in NAFLD.

Similar content being viewed by others

References

  1. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    PubMed  Google Scholar 

  2. Loomba, R. & Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    CAS  PubMed  Google Scholar 

  3. Li, J. et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 4, 389–398 (2019).

    PubMed  Google Scholar 

  4. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    PubMed  Google Scholar 

  5. El-Serag, H. B., Tran, T. & Everhart, J. E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 126, 460–468 (2004).

    PubMed  Google Scholar 

  6. Adams, L. A. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113–121 (2005).

    PubMed  Google Scholar 

  7. Huang, D. Q., El-Serag, H. B. & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18, 223–238 (2021).

    PubMed  Google Scholar 

  8. Negro, F. Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J. Hepatol. 61, S69–S78 (2014).

    PubMed  Google Scholar 

  9. Suliman, I., Abdelgelil, N., Kassamali, F. & Hassanein, T. I. The effects of hepatic steatosis on the natural history of HBV infection. Clin. Liver Dis. 23, 433–450 (2019).

    PubMed  Google Scholar 

  10. Bravo, A. A., Sheth, S. G. & Chopra, S. Liver biopsy. N. Engl. J. Med. 344, 495–500 (2001).

    CAS  PubMed  Google Scholar 

  11. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Google Scholar 

  12. Davison, B. A. et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J. Hepatol. 73, 1322–1332 (2020).

    CAS  PubMed  Google Scholar 

  13. Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281.e4 (2019). This review article summarizes non-invasive modalities for the assessment of hepatis steatosis and liver fibrosis and their diagnostic accuracy.

    PubMed  Google Scholar 

  14. Loomba, R. & Adams, L. A. Advances in non-invasive assessment of hepatic fibrosis. Gut 69, 1343–1352 (2020).

    CAS  PubMed  Google Scholar 

  15. Ajmera, V. et al. Magnetic resonance imaging proton density fat fraction associates with progression of fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 307–310.e2 (2018). This study demonstrates that increased liver fat content (MRI-PDFF) is associated with increased odds of fibrosis progression in patients with NAFLD at an early stage of fibrosis.

    PubMed  Google Scholar 

  16. Stine, J. G. et al. Change in MRI-PDFF and histologic response in patients with nonalcoholic steatohepatitis: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 19, 2274–2283.e5 (2020). This meta-analysis demonstrates the significant association between MRI-PDFF response (≥30% decline relative to baseline) and histological response (NAS ≥2 points improvement) in adults with NASH.

    PubMed  Google Scholar 

  17. Tamaki, N. et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease. Gut 21, 2021–324264 (2021). This study demonstrates the association between MRI-PDFF response (≥30% decline relative to baseline) and fibrosis regression.

    Google Scholar 

  18. Hernaez, R. et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 54, 1082–1090 (2011).

    PubMed  Google Scholar 

  19. Dasarathy, S. et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J. Hepatol. 51, 1061–1067 (2009).

    PubMed Central  PubMed  Google Scholar 

  20. Bohte, A. E., van Werven, J. R., Bipat, S. & Stoker, J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur. Radiol. 21, 87–97 (2011).

    PubMed  Google Scholar 

  21. de Moura Almeida, A. et al. Fatty liver disease in severe obese patients: diagnostic value of abdominal ultrasound. World J. Gastroenterol. 14, 1415–1418 (2008).

    PubMed Central  PubMed  Google Scholar 

  22. Bril, F. et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 35, 2139–2146 (2015).

    CAS  PubMed  Google Scholar 

  23. Hamaguchi, M. et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am. J. Gastroenterol. 102, 2708–2715 (2007).

    PubMed  Google Scholar 

  24. Ballestri, S. et al. Ultrasonographic Fatty Liver Indicator, a novel score which rules out NASH and is correlated with metabolic parameters in NAFLD. Liver Int. 32, 1242–1252 (2012).

    CAS  PubMed  Google Scholar 

  25. Strauss, S., Gavish, E., Gottlieb, P. & Katsnelson, L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am. J. Roentgenol. 189, W320–W323 (2007).

    Google Scholar 

  26. Ferraioli, G. & Soares Monteiro, L. B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 25, 6053–6062 (2019).

    PubMed Central  PubMed  Google Scholar 

  27. Karlas, T. et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 66, 1022–1030 (2017).

    PubMed  Google Scholar 

  28. Caussy, C. et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 67, 1348–1359 (2018).

    CAS  PubMed  Google Scholar 

  29. Petroff, D. et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis. Lancet Gastroenterol. Hepatol. 6, 185–198 (2021).

    PubMed  Google Scholar 

  30. Ferraioli, G. et al. Interobserver reproducibility of the controlled attenuation parameter (CAP) for quantifying liver steatosis. Hepatol. Int. 8, 576–581 (2014).

    PubMed  Google Scholar 

  31. de Lédinghen, V. et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J. Hepatol. 60, 1026–1031 (2014). This large-scale study demonstrates the measurement failure rate of CAP and its confounders.

    PubMed  Google Scholar 

  32. Sasso, M. et al. Liver steatosis assessed by controlled attenuation parameter (CAP) measured with the XL probe of the FibroScan: a pilot study assessing diagnostic accuracy. Ultrasound Med. Biol. 42, 92–103 (2016).

    PubMed  Google Scholar 

  33. Wong, V. W. et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J. Hepatol. 67, 577–584 (2017).

    PubMed  Google Scholar 

  34. Eddowes, P. J. et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1717–1730 (2019).

    PubMed  Google Scholar 

  35. Oeda, S. et al. Accuracy of liver stiffness measurement and controlled attenuation parameter using FibroScan(®) M/XL probes to diagnose liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease: a multicenter prospective study. J. Gastroenterol. 55, 428–440 (2020).

    CAS  PubMed  Google Scholar 

  36. Caussy, C. et al. Prospective, same-day, direct comparison of controlled attenuation parameter with the M vs the XL Probe in patients with nonalcoholic fatty liver disease, using magnetic resonance imaging-proton density fat fraction as the standard. Clin. Gastroenterol. Hepatol. 18, 1842–1850.e6 (2020).

    CAS  PubMed  Google Scholar 

  37. Fujiwara, Y. et al. The B-mode image-guided ultrasound attenuation parameter accurately detects hepatic steatosis in chronic liver disease. Ultrasound Med. Biol. 44, 2223–2232 (2018).

    PubMed  Google Scholar 

  38. Tada, T. et al. Utility of attenuation coefficient measurement using an ultrasound-guided attenuation parameter for evaluation of hepatic steatosis: comparison with MRI-determined proton density fat fraction. AJR Am. J. Roentgenol. 212, 332–341 (2019).

    PubMed  Google Scholar 

  39. Tamaki, N. et al. Novel quantitative assessment system of liver steatosis using a newly developed attenuation measurement method. Hepatol. Res. 48, 821–828 (2018).

    PubMed  Google Scholar 

  40. Koizumi, Y. et al. New diagnostic technique to evaluate hepatic steatosis using the attenuation coefficient on ultrasound B mode. PLoS ONE 14, e0221548 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cerit, M. et al. Quantification of liver fat content with ultrasonographic attenuation measurement function: correlation with unenhanced multidimensional computerized tomography. Clin. Imaging 65, 85–93 (2020).

    PubMed  Google Scholar 

  42. Tada, T. et al. Usefulness of attenuation imaging with an ultrasound scanner for the evaluation of hepatic steatosis. Ultrasound Med. Biol. 45, 2679–2687 (2019).

    PubMed  Google Scholar 

  43. Bae, J. S. et al. Assessment of hepatic steatosis by using attenuation imaging: a quantitative, easy-to-perform ultrasound technique. Eur. Radiol. 29, 6499–6507 (2019).

    PubMed  Google Scholar 

  44. Ferraioli, G. et al. Detection of liver steatosis with a novel ultrasound-based technique: a pilot study using MRI-derived proton density fat fraction as the gold standard. Clin. Transl. Gastroenterol. 10, e00081 (2019).

    PubMed Central  PubMed  Google Scholar 

  45. Tada, T. et al. Attenuation imaging based on ultrasound technology for assessment of hepatic steatosis: a comparison with magnetic resonance imaging-determined proton density fat fraction. Hepatol. Res. 12, 1319–1327 (2020).

    Google Scholar 

  46. Lin, S. C. et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique. Clin. Gastroenterol. Hepatol. 13, 1337–1345.e6 (2015).

    PubMed  Google Scholar 

  47. Paige, J. S. et al. A pilot comparative study of quantitative ultrasound, conventional ultrasound, and MRI for predicting histology-determined steatosis grade in adult nonalcoholic fatty liver disease. Am. J. Roentgenol. 208, W168–W177 (2017).

    Google Scholar 

  48. Han, A. et al. Inter-sonographer reproducibility of quantitative ultrasound outcomes and shear wave speed measured in the right lobe of the liver in adults with known or suspected non-alcoholic fatty liver disease. Eur. Radiol. 28, 4992–5000 (2018).

    PubMed Central  PubMed  Google Scholar 

  49. Han, A. et al. Inter-platform reproducibility of ultrasonic attenuation and backscatter coefficients in assessing NAFLD. Eur. Radiol. 29, 4699–4708 (2019).

    PubMed Central  PubMed  Google Scholar 

  50. Han, A. et al. Assessment of hepatic steatosis in nonalcoholic fatty liver disease by using quantitative US. Radiology 295, 106–113 (2020).

    PubMed  Google Scholar 

  51. Permutt, Z. et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease – MRI accurately quantifies hepatic steatosis in NAFLD. Aliment. Pharmacol. Ther. 36, 22–29 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Tang, A. et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274, 416–425 (2015).

    PubMed  Google Scholar 

  53. Park, C. C. et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 152, 598–607.e2 (2017).

    PubMed  Google Scholar 

  54. Imajo, K. et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 150, 626–637.e7 (2016). This study demonstrates that MRI-PDFF has the highest diagnostic accuracy for hepatic steatosis compared with other non-invasive modalities.

    PubMed  Google Scholar 

  55. Qu, Y., Li, M., Hamilton, G., Zhang, Y. N. & Song, B. Diagnostic accuracy of hepatic proton density fat fraction measured by magnetic resonance imaging for the evaluation of liver steatosis with histology as reference standard: a meta-analysis. Eur. Radiol. 29, 5180–5189 (2019).

    PubMed  Google Scholar 

  56. Gu, J. et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur. Radiol. 29, 3564–3573 (2019).

    PubMed  Google Scholar 

  57. Machado, M. V. & Diehl, A. M. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150, 1769–1777 (2016).

    CAS  PubMed  Google Scholar 

  58. Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    CAS  PubMed  Google Scholar 

  59. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    CAS  PubMed  Google Scholar 

  60. Begriche, K., Massart, J., Robin, M. A., Bonnet, F. & Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58, 1497–1507 (2013).

    CAS  PubMed  Google Scholar 

  61. Marra, F. & Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 68, 280–295 (2018).

    CAS  PubMed  Google Scholar 

  62. Powell, E. E. et al. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11, 74–80 (1990).

    PubMed  Google Scholar 

  63. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Shabalala, S. C. et al. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed. Pharmacother. 131, 110785 (2020).

    CAS  PubMed  Google Scholar 

  65. van der Poorten, D. et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause? Hepatology 57, 2180–2188 (2013).

    PubMed  Google Scholar 

  66. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pingitore, P. & Romeo, S. The role of PNPLA3 in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 900–906 (2019).

    CAS  PubMed  Google Scholar 

  68. Wang, Y., Kory, N., BasuRay, S., Cohen, J. C. & Hobbs, H. H. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 69, 2427–2441 (2019).

    CAS  PubMed  Google Scholar 

  69. Ajmera, V. et al. The impact of genetic risk on liver fibrosis in non-alcoholic fatty liver disease as assessed by magnetic resonance elastography. Aliment. Pharmacol. Ther. 54, 68–77 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Salameh, H. et al. PNPLA3 as a genetic determinant of risk for and severity of non-alcoholic fatty liver disease spectrum. J. Clin. Transl. Hepatol. 4, 175–191 (2016).

    PubMed Central  PubMed  Google Scholar 

  71. Eslam, M., Valenti, L. & Romeo, S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J. Hepatol. 68, 268–279 (2018).

    CAS  PubMed  Google Scholar 

  72. Trépo, E., Romeo, S., Zucman-Rossi, J. & Nahon, P. PNPLA3 gene in liver diseases. J. Hepatol. 65, 399–412 (2016).

    PubMed  Google Scholar 

  73. Tamaki, N. et al. Genetic polymorphisms of IL28B and PNPLA3 are predictive for HCV related rapid fibrosis progression and identify patients who require urgent antiviral treatment with new regimens. PLoS ONE 10, e0137351 (2015).

    PubMed Central  PubMed  Google Scholar 

  74. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Liu, Y. L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

    CAS  PubMed  Google Scholar 

  76. Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18, 4081–4088 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Tan, H. L. et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J. Gastroenterol. 49, 1056–1064 (2014).

    CAS  PubMed  Google Scholar 

  78. Trépo, E. & Valenti, L. Update on NAFLD genetics: from new variants to the clinic. J. Hepatol. 72, 1196–1209 (2020).

    PubMed  Google Scholar 

  79. Musso, G., Gambino, R., Cassader, M. & Pagano, G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 43, 617–649 (2011).

    PubMed  Google Scholar 

  80. Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).

    PubMed  Google Scholar 

  81. Armstrong, M. J., Adams, L. A., Canbay, A. & Syn, W. K. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology 59, 1174–1197 (2014).

    CAS  PubMed  Google Scholar 

  82. Targher, G., Byrne, C. D., Lonardo, A., Zoppini, G. & Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J. Hepatol. 65, 589–600 (2016).

    PubMed  Google Scholar 

  83. Patel, N. S. et al. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 13, 561–568.e1 (2015).

    PubMed  Google Scholar 

  84. Noureddin, M. et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 58, 1930–1940 (2013).

    CAS  PubMed  Google Scholar 

  85. Le, T. A. et al. Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 56, 922–932 (2012).

    CAS  PubMed  Google Scholar 

  86. Middleton, M. S. et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 153, 753–761 (2017). This study demonstrates a significant association between changes in MRI-PDFF and changes in hepatic steatosis.

    PubMed  Google Scholar 

  87. Middleton, M. S. et al. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease. Hepatology 67, 858–872 (2018).

    CAS  PubMed  Google Scholar 

  88. Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

    CAS  PubMed  Google Scholar 

  89. Patel, J. et al. Association of noninvasive quantitative decline in liver fat content on MRI with histologic response in nonalcoholic steatohepatitis. Ther. Adv. Gastroenterol. 9, 692–701 (2016).

    CAS  Google Scholar 

  90. Jayakumar, S. et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: analysis of data from a phase II trial of selonsertib. J. Hepatol. 70, 133–141 (2019).

    PubMed  Google Scholar 

  91. Loomba, R. et al. Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH. Hepatology 72, 1219–1229 (2020).

    CAS  PubMed  Google Scholar 

  92. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    CAS  PubMed  Google Scholar 

  93. Bril, F., Barb, D., Lomonaco, R., Lai, J. & Cusi, K. Change in hepatic fat content measured by MRI does not predict treatment-induced histological improvement of steatohepatitis. J. Hepatol. 72, 401–410 (2020).

    CAS  PubMed  Google Scholar 

  94. Kleiner, D. E. et al. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw. Open 2, e1912565 (2019).

    PubMed Central  PubMed  Google Scholar 

  95. Tamaki, N. et al. Clinical utility of change in nonalcoholic fatty liver disease activity score and change in fibrosis in NAFLD. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2020.11.005 (2020).

    Article  PubMed  Google Scholar 

  96. Younossi, Z. M. et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53, 1874–1882 (2011).

    PubMed  Google Scholar 

  97. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    PubMed  Google Scholar 

  98. Hagström, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    PubMed  Google Scholar 

  99. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    CAS  PubMed  Google Scholar 

  100. Wildman-Tobriner, B. et al. Association between magnetic resonance imaging-proton density fat fraction and liver histology features in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis. Gastroenterology 155, 1428–1435.e2 (2018).

    PubMed  Google Scholar 

  101. Hashimoto, E. et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J. Gastroenterol. 44 (Suppl. 19), 89–95 (2009).

    PubMed  Google Scholar 

  102. Vilar-Gomez, E. et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 155, 443–457.e17 (2018). This study demonstrates that decreased liver fat content is associated with a poor prognosis in NASH with advanced fibrosis.

    PubMed  Google Scholar 

  103. Abdelaziz, A. O. et al. Evaluation of liver steatosis, measured by controlled attenuation parameter, in patients with hepatitis C-induced advanced liver fibrosis and hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 30, 1384–1388 (2018).

    PubMed  Google Scholar 

  104. Izumi, T. et al. Assessing the risk of hepatocellular carcinoma by combining liver stiffness and the controlled attenuation parameter. Hepatol. Res. 49, 1207–1217 (2019).

    PubMed  Google Scholar 

  105. Semmler, G. et al. The impact of hepatic steatosis on portal hypertension. PLoS ONE 14, e0224506 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Mendoza, Y. et al. Noninvasive markers of portal hypertension detect decompensation in overweight or obese patients with compensated advanced chronic liver disease. Clin. Gastroenterol. Hepatol. 18, 3017–3025 (2020).

    PubMed  Google Scholar 

  107. Scheiner, B. et al. Controlled attenuation parameter does not predict hepatic decompensation in patients with advanced chronic liver disease. Liver Int. 39, 127–135 (2019).

    PubMed  Google Scholar 

  108. Liu, K. et al. Prognostic value of controlled attenuation parameter by transient elastography. Am. J. Gastroenterol. 112, 1812–1823 (2017).

    PubMed  Google Scholar 

  109. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    CAS  PubMed  Google Scholar 

  110. Loomba, R. et al. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 829–838 (2020).

    PubMed  Google Scholar 

  111. Loomba, R. et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 61, 1239–1250 (2015).

    CAS  PubMed  Google Scholar 

  112. Loomba, R. MRI-PDFF treatment response criteria in nonalcoholic steatohepatitis. Hepatology 73, 881–883 (2021).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.L. acknowledges the support of funding from NIEHS (5P42ES010337), NCATS (5UL1TR001442), DOD PRCRP (W81XWH-18-2-0026), NIDDK (U01DK061734, R01DK106419, R01DK121378, R01DK124318, P30DK120515), NHLBI (P01HL147835) and NIAAA (U01AA029019). V.A. acknowledges the support of funding from NIDDK (K23DK119460). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. N.T. acknowledges the support of funding from the Uehara Memorial Foundation (201940021).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rohit Loomba.

Ethics declarations

Competing interests

R.L. serves as a consultant or advisory board member for Anylam/Regeneron, Arrowhead Pharmaceuticals, AstraZeneca, Bird Rock Bio, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Cirius, CohBar, Conatus, Eli Lilly, Galmed, Gemphire, Gilead, Glympse bio, GNI, GRI Bio, Inipharm, Intercept, Ionis, Janssen Inc., Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Novo Nordisk, Pfizer, Prometheus, Promethera, Sanofi, Siemens, and Viking Therapeutics. In addition, his institution has received grant support from Allergan, Boehringer-Ingelheim, Bristol-Myers Squibb, Cirius, Eli Lilly and Company, Galectin Therapeutics, Galmed Pharmaceuticals, GE, Genfit, Gilead, Intercept, Grail, Janssen, Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, NuSirt, Pfizer, pH Pharma, Prometheus, and Siemens. He is also co-founder of Liponexus, Inc. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M. Romero-Gomez who co-reviewed with R. Montero Vallejo, S. Petta, K. Tokushige and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaki, N., Ajmera, V. & Loomba, R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat Rev Endocrinol 18, 55–66 (2022). https://doi.org/10.1038/s41574-021-00584-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00584-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing