Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving view of thermogenic adipocytes — ontogeny, niche and function

Abstract

The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.

Key points

  • Brown adipocytes and white adipocytes in different depots originate from distinct progenitor pools in the embryonic mesoderm.

  • Beige adipocytes are formed in white adipose tissue in response to cold acclimation, exercise training or pharmacological activation of β-adrenergic receptors through reprogramming of white adipocytes or de novo differentiation from adipocyte progenitors.

  • Adipose tissue plasticity enables the rapid adaptation of the organism to fluctuations in nutritional load and metabolic demand and is a hallmark of metabolic health.

  • Adipose-resident cell types establish an extensive network of cellular crosstalk to coordinate depot-specific functions and remodelling.

  • Communication between thermogenic adipose tissue and distant organs enables the regulation of systemic metabolism beyond thermogenesis.

  • Targeting thermogenic adipose tissue offers a potential therapeutic strategy to combat obesity and metabolic disorders, such as type 2 diabetes mellitus and cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular crosstalk between neurons and other adipose-resident cells.
Fig. 2: Cellular crosstalk between vasculature and other adipose-resident cells.
Fig. 3: Cellular crosstalk between immune cells and other adipose-resident cells.
Fig. 4: Autocrine and paracrine factors regulating brown and beige adipocytes.
Fig. 5: Inter-organ communication of thermogenic adipose tissue and other tissues.
Fig. 6: Cell-based, gene-based and pharmacological therapies for activation and conversion of thermogenic adipose tissue.

Similar content being viewed by others

References

  1. Peres Valgas da Silva, C., Hernandez-Saavedra, D., White, J. D. & Stanford, K. I. Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity. Biology 8, 9 (2019).

    Article  PubMed Central  Google Scholar 

  2. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Villarroya, F., Cereijo, R., Villarroya, J. & Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 13, 26–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leitner, B. P. et al. Mapping of human brown adipose tissue in lean and obese young men. Proc. Natl Acad. Sci. USA 114, 8649–8654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  PubMed  Google Scholar 

  9. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poher, A. L., Altirriba, J., Veyrat-Durebex, C. & Rohner-Jeanrenaud, F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front. Physiol. 6, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Peirce, V. & Vidal-Puig, A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 1, 353–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Flemming, W. Ueber Bildung und Rückbildung der Fettzelle im Bindegewebe, und Bemerkungen über die Structur des Letzteren. Arch. Mikrosk. Anat. 7, 32–80 (1871).

    Article  Google Scholar 

  14. Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Sgaier, S. K. et al. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45, 27–40 (2005).

    CAS  PubMed  Google Scholar 

  16. Lang, D. et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lepper, C. & Fan, C. M. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424–436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanchez-Gurmaches, J. et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 16, 348–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebo, Z. L., Jeffery, E., Holtrup, B. & Rodeheffer, M. S. A mesodermal fate map for adipose tissue. Development 145, dev166801 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cameron, I. L. & Smith, R. E. Cytological responses of brown fat tissue in cold-exposed rats. J. Cell Biol. 23, 89–100 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Shamsi, F. et al. Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nat. Metab. 3, 485–495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shao, M. et al. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23, 1167–1184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shao, M. et al. Cellular origins of beige fat cells revisited. Diabetes 68, 1874–1885 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jespersen, N. Z. et al. Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol. Metab. 24, 30–43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Long, J. Z. et al. A smooth muscle-like origin for beige adipocytes. Cell Metab. 19, 810–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, Y., Berry, D. C., Tang, W. & Graff, J. M. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 9, 1007–1022 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berry, D. C., Jiang, Y. & Graff, J. M. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat. Commun. 7, 10184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, W. et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc. Natl Acad. Sci. USA 111, 14466–14471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rajakumari, S. et al. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 17, 562–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burl, R. B. et al. Deconstructing adipogenesis induced by β3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geloen, A., Collet, A. J., Guay, G. & Bukowiecki, L. J. Beta-adrenergic stimulation of brown adipocyte proliferation. Am. J. Physiol. 254, C175–C182 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Bukowiecki, L. J., Geloen, A. & Collet, A. J. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am. J. Physiol. 250, C880–C887 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muzik, O., Mangner, T. J., Leonard, W. R., Kumar, A. & Granneman, J. G. Sympathetic innervation of cold-activated brown and white fat in lean young adults. J. Nucl. Med. 58, 799–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, H., Ding, X., Cao, Y., Wang, H. & Zeng, W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab. 26, 686–692.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Collins, S. β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. 2, 102 (2012).

    Google Scholar 

  53. Zhang, W., Cline, M. A. & Gilbert, E. R. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr. Metab. 11, 27 (2014).

    Article  CAS  Google Scholar 

  54. Bronnikov, G., Houstek, J. & Nedergaard, J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. J. Biol. Chem. 267, 2006–2013 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Quarta, C. et al. CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab. 11, 273–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pellegrinelli, V. et al. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat. Commun. 9, 4974 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nechad, M., Ruka, E. & Thibault, J. Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp. Biochem. Physiol. Comp. Physiol. 107, 381–388 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Nisoli, E., Tonello, C., Benarese, M., Liberini, P. & Carruba, M. O. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 137, 495–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Zeng, X. et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature 569, 229–235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Asano, A., Morimatsu, M., Nikami, H., Yoshida, T. & Saito, M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochem. J. 328, 179–183 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marko, S. B. & Damon, D. H. VEGF promotes vascular sympathetic innervation. Am. J. Physiol. Heart Circ. Physiol. 294, H2646–H2652 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, Y. et al. Transient overexpression of vascular endothelial growth factor A in adipose tissue promotes energy expenditure via activation of the sympathetic nervous system. Mol. Cell Biol. 38, e00242-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pongratz, G. & Straub, R. H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 16, 504 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sung, C. P., Arleth, A. J. & Feuerstein, G. Z. Neuropeptide Y upregulates the adhesiveness of human endothelial cells for leukocytes. Circ. Res. 68, 314–318 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Rached, M. T. et al. Deletion of myeloid IRS2 enhances adipose tissue sympathetic nerve function and limits obesity. Mol. Metab. 20, 38–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Brakenhielm, E. & Cao, Y. Angiogenesis in adipose tissue. Methods Mol. Biol. 456, 65–81 (2008).

    Article  PubMed  Google Scholar 

  69. Sun, K. et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol. Metab. 3, 474–483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Xue, Y. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9, 99–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Bhattacharya, I. & Ullrich, A. Endothelin-1 inhibits adipogenesis: role of phosphorylation of Akt and ERK1/2. FEBS Lett. 580, 5765–5771 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. van Harmelen, V. et al. Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis. Diabetes 57, 378–386 (2008).

    Article  PubMed  Google Scholar 

  77. Rapoport, R. M., Draznin, M. B. & Murad, F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306, 174–176 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Bossy-Wetzel, E. & Lipton, S. A. Nitric oxide signaling regulates mitochondrial number and function. Cell Death Differ. 10, 757–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Murakami, M. & Simons, M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 15, 215–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fredriksson, L., Li, H. & Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor. Rev. 15, 197–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Seki, T. et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat. Commun. 7, 12152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aharonov, O., Maftzir, G. & Benezra, D. The role of cytokines in angiogenesis. Ocul. Immunol. Inflamm. 1, 135–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Brancato, S. K. & Albina, J. E. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am. J. Pathol. 178, 19–25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Newman, A. C. & Hughes, C. C. Macrophages and angiogenesis: a role for Wnt signaling. Vasc. Cell 4, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pang, C. et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am. J. Physiol. Endocrinol. Metab. 295, E313–E322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stefater, J. A. III et al. Macrophage Wnt-calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121, 2574–2578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu, J., Zhao, J., Meng, H. & Zhang, X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front. Immunol. 10, 1173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sakamoto, T. et al. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am. J. Physiol. Endocrinol. Metab. 310, E676–E687 (2016).

    Article  PubMed  Google Scholar 

  90. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Hui, X. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 22, 279–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Huang, Z. et al. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab. 26, 493–508.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, R. & Nikolajczyk, B. S. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front. Immunol. 10, 1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Villarroya, F., Cereijo, R., Gavalda-Navarro, A., Villarroya, J. & Giralt, M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J. Intern. Med. 284, 492–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Lorenzo, M. et al. Insulin resistance induced by tumor necrosis factor-α in myocytes and brown adipocytes. J. Anim. Sci. 86, E94–E104 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Goto, T. et al. Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes. Cytokine 77, 107–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Chung, K. J. et al. A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat. Immunol. 18, 654–664 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Campderros, L. et al. Brown adipocytes secrete GDF15 in response to thermogenic activation. Obesity 27, 1606–1616 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Herbert, D. R., Douglas, B. & Zullo, K. Group 2 innate lymphoid cells (ILC2): type 2 immunity and helminth immunity. Int. J. Mol. Sci. 20, 2276 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  109. Hu, B. et al. ɣδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jun, H. et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat. Med. 24, 814–822 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zamani, N. & Brown, C. W. Emerging roles for the transforming growth factor-β superfamily in regulating adiposity and energy expenditure. Endocr. Rev. 32, 387–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes. Dev. 26, 271–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Keipert, S. et al. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol. Metab. 4, 537–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lebrasseur, N. K. Building muscle, browning fat and preventing obesity by inhibiting myostatin. Diabetologia 55, 13–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Braga, M. et al. Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J. Lipid Res. 55, 375–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Long, J. Z. et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc. Natl Acad. Sci. USA 115, E6937–E6945 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Svensson, K. J. et al. A Secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab. 23, 454–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deshmukh, A. S. et al. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. Cell Metab. 30, 963–975.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Shamsi, F. et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat. Commun. 11, 1421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Peyrou, M. et al. The kallikrein-kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nat. Commun. 11, 2132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Leiria, L. O. et al. 12-Lipoxygenase regulates cold adaptation and glucose metabolism by producing the omega-3 lipid 12-HEPE from brown fat. Cell Metab. 30, 768–783.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. da Silva, J. S. et al. Adenosine A2A receptor agonist prevents cardiac remodeling and dysfunction in spontaneously hypertensive male rats after myocardial infarction. Drug Des. Devel Ther. 11, 553–562 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scheele, C. & Wolfrum, C. Brown adipose crosstalk in tissue plasticity and human metabolism. Endocr. Rev. 41, 53–65 (2020).

    Article  Google Scholar 

  129. Villarroya, J. et al. New insights into the secretory functions of brown adipose tissue. J. Endocrinol. 243, R19–R27 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Schreiber, R. et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab. 26, 753–763.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shin, H. et al. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab. 26, 764–777.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Henningsen, J. B. & Scheele, C. Brown adipose tissue: a metabolic regulator in a hypothalamic cross talk? Annu. Rev. Physiol. 83, 279–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Lopez, M., Alvarez, C. V., Nogueiras, R. & Dieguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER Stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gonzalez-Garcia, I. et al. Estradiol regulates energy balance by ameliorating hypothalamic ceramide-induced ER stress. Cell Rep. 25, 413–423.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160, 88–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ruan, H. B. et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Viengchareun, S., Penfornis, P., Zennaro, M. C. & Lombes, M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am. J. Physiol. Endocrinol. Metab. 280, E640–E649 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Soumano, K. et al. Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol. Cell Endocrinol. 165, 7–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Luijten, I. H. N. et al. Glucocorticoid-induced obesity develops independently of UCP1. Cell Rep. 27, 1686–1698.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Ramage, L. E. et al. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab. 24, 130–141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cittadini, A. et al. Cardiovascular abnormalities in transgenic mice with reduced brown fat: an animal model of human obesity. Circulation 100, 2177–2183 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Thoonen, R. et al. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. J. Mol. Cell Cardiol. 84, 202–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ruan, C. C. et al. A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab. 28, 476–489.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shen, H., Jiang, L., Lin, J. D., Omary, M. B. & Rui, L. Brown fat activation mitigates alcohol-induced liver steatosis and injury in mice. J. Clin. Invest. 129, 2305–2317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hondares, E. et al. Hepatic FGF21 expression is induced at birth via PPARα in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Simcox, J. et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab. 26, 509–522.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Donkers, J. M. et al. NTCP deficiency in mice protects against obesity and hepatosteatosis. JCI Insight 5, e127197 (2019).

    Article  Google Scholar 

  157. Velazquez-Villegas, L. A. et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9, 245 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Lehnig, A. C. et al. Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience 11, 425–439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kong, X. et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 28, 631–643.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stanford, K. I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Knudsen, J. G. et al. Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS ONE 9, e84910 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Qing, H. et al. Origin and function of stress-induced IL-6 in murine models. Cell 182, 372–387.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bostrom, P. et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Li, Y. et al. Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175, 1561–1574.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Laurila, S. et al. Secretin activates brown fat and induces satiation. Nat. Metab. 3, 798–809 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Dabke, K., Hendrick, G. & Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Invest. 129, 4050–4057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mestdagh, R. et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Suarez-Zamorano, N. et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21, 1497–1501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, B. et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 26, 2720–2737.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Zietak, M. et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, G. et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Baskin, A. S. et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 67, 2113–2125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 32, 287–300 e287 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Finlin, B. S. et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Invest. 130, 2319–2331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tremblay, A., Arguin, H. & Panahi, S. Capsaicinoids: a spicy solution to the management of obesity? Int. J. Obes. 40, 1198–1204 (2016).

    Article  CAS  Google Scholar 

  184. Inoue, N., Matsunaga, Y., Satoh, H. & Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem. 71, 380–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Snitker, S. et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am. J. Clin. Nutr. 89, 45–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Yoneshiro, T., Aita, S., Kawai, Y., Iwanaga, T. & Saito, M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am. J. Clin. Nutr. 95, 845–850 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Phan, T. X. et al. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. J. Physiol. 598, 5639–5659 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Baskaran, P., Krishnan, V., Ren, J. & Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol. 173, 2369–2389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ohyama, K. et al. A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes 65, 1410–1423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Broeders, E. P. et al. Thyroid hormone activates brown adipose tissue and increases non-shivering thermogenesis – a cohort study in a group of thyroid carcinoma patients. PLoS ONE 11, e0145049 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kushchayeva, Y. S. et al. Thyroid hormone effects on glucose disposal in patients with insulin receptor mutations. J. Clin. Endocrinol. Metab. 105, e158–e171 (2020).

    Article  Google Scholar 

  192. Dittner, C., Lindsund, E., Cannon, B. & Nedergaard, J. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Mol. Metab. 25, 20–34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Johann, K. et al. Thyroid-hormone-induced browning of white adipose tissue does not contribute to thermogenesis and glucose consumption. Cell Rep. 27, 3385–3400.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Nicolaisen, T. S. et al. Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure. FASEB J. 34, 15480–15491 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Flint, A., Raben, A., Rehfeld, J. F., Holst, J. J. & Astrup, A. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int. J. Obes. Relat. Metab. Disord. 24, 288–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  196. Basolo, A. et al. Exenatide has a pronounced effect on energy intake but not energy expenditure in non-diabetic subjects with obesity: a randomized, double-blind, placebo-controlled trial. Metabolism 85, 116–125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ost, M., Keipert, S. & Klaus, S. Targeted mitochondrial uncoupling beyond UCP1 – The fine line between death and metabolic health. Biochimie 134, 77–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Casteilla, L. et al. Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc. Natl Acad. Sci. USA 87, 5124–5128 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gonzalez-Muniesa, P., Milagro, F. I., Campion, J. & Martinez, J. A. Ectopic UCP1 gene expression in HepG2 cells affects ATP production. J. Physiol. Biochem. 61, 389–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Tiraby, C. et al. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278, 33370–33376 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Kishida, T. et al. Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes. Stem Cell Rep. 5, 569–581 (2015).

    Article  CAS  Google Scholar 

  203. Tran, K. V. et al. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat. Metab. 2, 397–412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zheng, Q. et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc. Natl Acad. Sci. USA 114, E9474–E9482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shen, Y. et al. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. J. Biol. Chem. 293, 17291–17305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nishio, M. et al. Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab. 16, 394–406 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Min, S. Y. et al. Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat. Med. 22, 312–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, C. H. et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci. Transl. Med. 12, eaaz8664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Crunkhorn, S. CRISPR-engineered fat cells prevent obesity. Nat. Rev. Drug Discov. 19, 672 (2020).

    PubMed  Google Scholar 

  211. Riis-Vestergaard, M. J. et al. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. J. Clin. Endocrinol. Metab. 105, e994–e1005 (2020).

    Article  Google Scholar 

  212. de Jong, J. M. A. et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat. Metab. 1, 830–843 (2019).

    Article  PubMed  Google Scholar 

  213. Kajimura, S. & Spiegelman, B. M. Confounding issues in the “humanized” BAT of mice. Nat. Metab. 2, 303–304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. de Jong, J. M. A., Cannon, B., Nedergaard, J., Wolfrum, C. & Petrovic, N. Reply to ‘Confounding issues in the ‘humanized’ brown fat of mice’. Nat. Metab. 2, 305–306 (2020).

    Article  PubMed  Google Scholar 

  215. Zhu, Y. et al. Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals. Cell Metab. 24, 420–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Crewe, C. et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175, 695–708.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Flaherty, S. E. III et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Torralba, D., Baixauli, F. & Sanchez-Madrid, F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4, 107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. De Luca, M. et al. Advances in stem cell research and therapeutic development. Nat. Cell Biol. 21, 801–811 (2019).

    Article  PubMed  Google Scholar 

  221. Yin, H., Xue, W. & Anderson, D. G. CRISPR-Cas: a tool for cancer research and therapeutics. Nat. Rev. Clin. Oncol. 16, 281–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Song, W. et al. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci. Rep. 5, 16884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Xue, Y., Xu, X., Zhang, X. Q., Farokhzad, O. C. & Langer, R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc. Natl Acad. Sci. USA 113, 5552–5557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of NIH grants R01DK077097, R01DK102898 and R01DK122808 (to Y.-H.T.), and P30DK036836 (to Joslin Diabetes Center’s Diabetes Research Center, DRC) from the National Institute of Diabetes and Digestive and Kidney Diseases, and of US Army Medical Research grant W81XWH-17-1-0428 (to Y.-H.T.). F.S. acknowledges the support of an American Diabetes Association Postdoctoral Fellowship #1-18-PDF-169 and NIH K01DK125608. C.-H.W. acknowledges the support of a Postdoctoral Research Abroad Program (106-2917-I-564-069) and a grant (MOST 110-2320-B-039-063-MY3) from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and C.-H.W. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Yu-Hua Tseng.

Ethics declarations

Competing interests

Y.-H.T. is an inventor on US Patent 7,576,052 related to BMP7 and US patent applications related to 12,13-diHOME and FGF6/9. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M. Giralt, M. López, C. Scheele and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Somites

Segmental axial structures located on either side of the neural tube in the developing vertebrate embryo that contain the precursor populations of cells, which give rise to vertebral column, ribs, skeletal and smooth muscles, dermis, tendons, ligaments, cartilage and adipose tissue.

WAT browning

The formation of thermogenic beige adipocytes within the white adipose tissue depots.

M1 macrophages

Macrophages that secrete pro-inflammatory cytokines and chemokines and mediate host defence against pathogens.

Type 2 immune response

An immune response characterized by infiltration of alternatively activated (or M2) macrophages, eosinophils and innate lymphoid type 2 cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsi, F., Wang, CH. & Tseng, YH. The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nat Rev Endocrinol 17, 726–744 (2021). https://doi.org/10.1038/s41574-021-00562-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00562-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing