Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TGF-β: the master regulator of fibrosis

Key Points

  • TGF-β acts on multiple cell types to drive fibrosis in progressive kidney disease

  • TGF-β signals through both canonical and non-canonical pathways; TGF-β canonical signalling via Smads has a central role in the development of renal fibrosis

  • The profibrotic actions of TGF-β are positively and negatively regulated by interactions with other signalling pathways and by noncoding RNA and epigenetic mechanisms

  • Direct targeting of TGF-β is unlikely to be therapeutically feasible due to the involvement of TGF-β in other systems, including the immune system

  • Greater understanding of the fibrotic pathways regulated by TGF-β has identified alternative therapeutic targets; re-establishing the balance between profibrotic Smad3 activation and antifibrotic Smad7 action is once such approach

Abstract

Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF-β isoform, TGF-β1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF-β1 induces renal fibrosis. TGF-β1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF-β/Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF-β1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF-β1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF-β1 in other processes, greater understanding of the various pathways by which TGF-β1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of canonical TGF-β/Smad signalling in tissue fibrosis.
Figure 2: Crosstalk between TGF-β/Smad and other pathways in tissue fibrosis.
Figure 3: Regulation of TGF-β1/Smad signalling by microRNAs (miRs) in tissue fibrosis.
Figure 4: Potential therapeutic strategies to inhibit TGF-β1/Smad-induced tissue fibrosis.

Similar content being viewed by others

References

  1. Eddy, A. A. & Neilson, E. G. Chronic kidney disease progression. J. Am. Soc. Nephrol. 17, 2964–2966 (2006).

    PubMed  Google Scholar 

  2. Bottinger, E. P. & Bitzer, M. TGF-β signaling in renal disease. J. Am. Soc. Nephrol. 13, 2600–2610 (2002).

    PubMed  Google Scholar 

  3. Eddy, A. A. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. Suppl. (2011) 4, 2–8 (2014).

    CAS  Google Scholar 

  4. Sharma, K. et al. Increased renal production of transforming growth factor-β1 in patients with type II diabetes. Diabetes 46, 854–859 (1997).

    CAS  PubMed  Google Scholar 

  5. Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E. & Border, W. A. Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA 90, 1814–1818 (1993).

    CAS  PubMed  Google Scholar 

  6. Yoshioka, K. et al. Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab. Invest. 68, 154–163 (1993).

    CAS  PubMed  Google Scholar 

  7. Border, W. A., Okuda, S., Languino, L. R., Sporn, M. B. & Ruoslahti, E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 346, 371–374 (1990).

    CAS  PubMed  Google Scholar 

  8. Isaka, Y. et al. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J. Clin. Invest. 92, 2597–2601 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Moon, J. A., Kim, H. T., Cho, I. S., Sheen, Y. Y. & Kim, D. K. IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 70, 1234–1243 (2006).

    CAS  PubMed  Google Scholar 

  10. Russo, L. M., del Re, E., Brown, D. & Lin, H. Y. Evidence for a role of transforming growth factor (TGF)-β1 in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-β type II receptor. Diabetes 56, 380–388 (2007).

    CAS  PubMed  Google Scholar 

  11. Sato, M., Muragaki, Y., Saika, S., Roberts, A. B. & Ooshima, A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Meng, X. M., Chung, A. C. & Lan, H. Y. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin. Sci. (Lond.) 124, 243–254 (2013).

    CAS  Google Scholar 

  13. Zhang, Y. E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, L., Border, W. A., Huang, Y. & Noble, N. A. TGF-β isoforms in renal fibrogenesis. Kidney Int. 64, 844–856 (2003).

    CAS  PubMed  Google Scholar 

  15. Xu, P., Liu, J. & Derynck, R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett. 586, 1871–1884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanderson, N. et al. Hepatic expression of mature transforming growth factor β 1 in transgenic mice results in multiple tissue lesions. Proc. Natl Acad. Sci. USA 92, 2572–2576 (1995).

    CAS  PubMed  Google Scholar 

  17. Robertson, I. B. et al. Latent TGF-β-binding proteins. Matrix Biol. 47, 44–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    CAS  PubMed  Google Scholar 

  19. Probst-Kepper, M., Balling, R. & Buer, J. FOXP3: required but not sufficient. The role of GARP (LRRC32) as a safeguard of the regulatory phenotype. Curr. Mol. Med. 10, 533–539 (2010).

    CAS  PubMed  Google Scholar 

  20. Huang, X. R., Chung, A. C., Wang, X. J., Lai, K. N. & Lan, H. Y. Mice overexpressing latent TGF-β1 are protected against renal fibrosis in obstructive kidney disease. Am. J. Physiol. Renal Physiol. 295, F118–F127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, X. R., Chung, A. C., Zhou, L., Wang, X. J. & Lan, H. Y. Latent TGF-β1 protects against crescentic glomerulonephritis. J. Am. Soc. Nephrol. 19, 233–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Border, W. A., Okuda, S., Languino, L. R. & Ruoslahti, E. Transforming growth factor-β regulates production of proteoglycans by mesangial cells. Kidney Int. 37, 689–695 (1990).

    CAS  PubMed  Google Scholar 

  23. Haberstroh, U. et al. TGF-β stimulates rat mesangial cell proliferation in culture: role of PDGF beta-receptor expression. Am. J. Physiol. 264, F199–F205 (1993).

    CAS  PubMed  Google Scholar 

  24. Wilson, H. M. et al. Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator inhibitor-1 in renal glomerular cells. Exp. Nephrol. 1, 343–350 (1993).

    CAS  PubMed  Google Scholar 

  25. Lopez-Hernandez, F. J. & Lopez-Novoa, J. M. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res. 347, 141–154 (2012).

    CAS  PubMed  Google Scholar 

  26. Gruden, G., Perin, P. C. & Camussi, G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr. Diabetes Rev. 1, 27–40 (2005).

    CAS  PubMed  Google Scholar 

  27. Neelisetty, S. et al. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells. Kidney Int. 88, 503–514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meng, X. M. et al. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J. Pathol. 227, 175–188 (2012).

    CAS  PubMed  Google Scholar 

  29. Gewin, L. et al. TGF-β receptor deletion in the renal collecting system exacerbates fibrosis. J. Am. Soc. Nephrol. 21, 1334–1343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lebrin, F., Deckers, M., Bertolino, P. & Ten Dijke, P. TGF-β receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2005).

    CAS  PubMed  Google Scholar 

  31. Das, R. et al. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Renal Physiol. 306, F155–F167 (2014).

    CAS  PubMed  Google Scholar 

  32. Mack, M. & Yanagita, M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 87, 297–307 (2015).

    PubMed  Google Scholar 

  33. Chen, S. J. et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J. Invest. Dermatol. 112, 49–57 (1999).

    CAS  PubMed  Google Scholar 

  34. Yuan, W. & Varga, J. Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J. Biol. Chem. 276, 38502–38510 (2001).

    CAS  PubMed  Google Scholar 

  35. Dennler, S. et al. Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Piek, E. et al. Functional characterization of transforming growth factor β signaling in Smad2- and Smad3-deficient fibroblasts. J. Biol. Chem. 276, 19945–19953 (2001).

    CAS  PubMed  Google Scholar 

  37. Goumans, M. J. & Mummery, C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265 (2000).

    CAS  PubMed  Google Scholar 

  38. Inazaki, K. et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 66, 597–604 (2004).

    CAS  PubMed  Google Scholar 

  39. Kim, J. H., Kim, B. K., Moon, K. C., Hong, H. K. & Lee, H. S. Activation of the TGF-β/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int. 64, 1715–1721 (2003).

    CAS  PubMed  Google Scholar 

  40. Fujimoto, M. et al. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem. Biophys. Res. Commun. 305, 1002–1007 (2003).

    CAS  PubMed  Google Scholar 

  41. Zhou, L. et al. Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am. J. Physiol. Renal Physiol. 298, F1006–F1017 (2010).

    CAS  PubMed  Google Scholar 

  42. Meng, X. M. et al. Smad2 protects against TGF-β/Smad3-mediated renal fibrosis. J. Am. Soc. Nephrol. 21, 1477–1487 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsuchida, K., Zhu, Y., Siva, S., Dunn, S. R. & Sharma, K. Role of Smad4 on TGF-β-induced extracellular matrix stimulation in mesangial cells. Kidney Int. 63, 2000–2009 (2003).

    CAS  PubMed  Google Scholar 

  44. Meng, X. M. et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int. 81, 266–279 (2012).

    CAS  PubMed  Google Scholar 

  45. Yan, X. & Chen, Y. G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem. J. 434, 1–10 (2011).

    CAS  PubMed  Google Scholar 

  46. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS  PubMed  Google Scholar 

  47. Fukasawa, H. et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc. Natl Acad. Sci. USA 101, 8687–8692 (2004).

    CAS  PubMed  Google Scholar 

  48. Chung, A. C. et al. Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol. Dial. Transplant. 24, 1443–1454 (2009).

    CAS  PubMed  Google Scholar 

  49. Chen, H. Y. et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60, 590–601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, G. X. et al. Disruption of Smad7 promotes ANG II-mediated renal inflammation and fibrosis via Sp1-TGF-β/Smad3-NF.κB-dependent mechanisms in mice. PLoS ONE 8, e53573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hou, C. C. et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-β signaling and fibrosis in rat remnant kidney. Am. J. Pathol. 166, 761–771 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ka, S. M. et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J. Am. Soc. Nephrol. 18, 1777–1788 (2007).

    CAS  PubMed  Google Scholar 

  53. Ka, S. M. et al. Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55, 509–519 (2012).

    CAS  PubMed  Google Scholar 

  54. Liu, G. X. et al. Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin. Sci. (Lond.) 127, 195–208 (2014).

    CAS  Google Scholar 

  55. Meng, X. M. et al. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6, 36984–36997 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Ma, F. Y., Sachchithananthan, M., Flanc, R. S. & Nikolic-Paterson, D. J. Mitogen activated protein kinases in renal fibrosis. Front. Biosci. (Schol. Ed.) 1, 171–187 (2009).

    Google Scholar 

  57. Adhikary, L. et al. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 47, 1210–1222 (2004).

    CAS  PubMed  Google Scholar 

  58. De Borst, M. H. et al. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J. Pathol. 213, 219–228 (2007).

    CAS  PubMed  Google Scholar 

  59. Stambe, C., Nikolic-Paterson, D. J., Hill, P. A., Dowling, J. & Atkins, R. C. p38 mitogen-activated protein kinase activation and cell localization in human glomerulonephritis: correlation with renal injury. J. Am. Soc. Nephrol. 15, 326–336 (2004).

    CAS  PubMed  Google Scholar 

  60. Ma, F. Y. et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol. 18, 472–484 (2007).

    CAS  PubMed  Google Scholar 

  61. Stambe, C. et al. The role of p38α mitogen-activated protein kinase activation in renal fibrosis. J. Am. Soc. Nephrol. 15, 370–379 (2004).

    CAS  PubMed  Google Scholar 

  62. Ma, F. Y. et al. Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab. Invest. 89, 470–484 (2009).

    CAS  PubMed  Google Scholar 

  63. Muller, R. et al. The mitogen-activated protein kinase p38α regulates tubular damage in murine anti-glomerular basement membrane nephritis. PLoS ONE 8, e56316 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Weigert, C., Brodbeck, K., Klopfer, K., Haring, H. U. & Schleicher, E. D. Angiotensin II induces human TGF-β1 promoter activation: similarity to hyperglycaemia. Diabetologia 45, 890–898 (2002).

    CAS  PubMed  Google Scholar 

  65. Gruden, G. et al. Mechanical stretch-induced fibronectin and transforming growth factor-β1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes 49, 655–661 (2000).

    CAS  PubMed  Google Scholar 

  66. Ma, F. Y., Tesch, G. H. & Nikolic-Paterson, D. J. ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am. J. Physiol. Renal Physiol. 307, F1263–F1273 (2014).

    CAS  PubMed  Google Scholar 

  67. Chuang, C. T., Guh, J. Y., Lu, C. Y., Chen, H. C. & Chuang, L. Y. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int. J. Mol. Med. 35, 546–552 (2015).

    CAS  PubMed  Google Scholar 

  68. Naito, T. et al. Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-β1 . Am. J. Physiol. Renal Physiol. 286, F278–F287 (2004).

    CAS  PubMed  Google Scholar 

  69. Kamato, D. et al. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell. Signal. 25, 2017–2024 (2013).

    CAS  PubMed  Google Scholar 

  70. Lee, M. K. et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sorrentino, A. et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10, 1199–1207 (2008).

    CAS  PubMed  Google Scholar 

  72. Chin, B. Y., Mohsenin, A., Li, S. X., Choi, A. M. & Choi, M. E. Stimulation of pro-α1(I) collagen by TGF-β1 in mesangial cells: role of the p38 MAPK pathway. Am. J. Physiol. Renal Physiol. 280, F495–F504 (2001).

    CAS  PubMed  Google Scholar 

  73. Mariasegaram, M. et al. Lefty antagonises TGF-β1 induced epithelial–mesenchymal transition in tubular epithelial cells. Biochem. Biophys. Res. Commun. 393, 855–859 (2010).

    CAS  PubMed  Google Scholar 

  74. Bakin, A. V., Rinehart, C., Tomlinson, A. K. & Arteaga, C. L. p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J. Cell Sci. 115, 3193–3206 (2002).

    CAS  PubMed  Google Scholar 

  75. Wei, J. et al. AEG-1 participates in TGF-β1-induced EMT through p38 MAPK activation. Cell Biol. Int. 37, 1016–1021 (2013).

    CAS  PubMed  Google Scholar 

  76. Hayashida, T., Decaestecker, M. & Schnaper, H. W. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J. 17, 1576–1578 (2003).

    CAS  PubMed  Google Scholar 

  77. Tan, R. J., Zhou, D., Zhou, L. & Liu, Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int. Suppl. (2011) 4, 84–90 (2014).

    CAS  Google Scholar 

  78. Hao, S. et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Poon, R., Nik, S. A., Ahn, J., Slade, L. & Alman, B. A. β-catenin and transforming growth factor β have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction. BMC Cell Biol. 10, 38 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Amini Nik, S., Ebrahim, R. P., Van Dam, K., Cassiman, J. J. & Tejpar, S. TGF-β modulates β-Catenin stability and signaling in mesenchymal proliferations. Exp. Cell Res. 313, 2887–2895 (2007).

    CAS  PubMed  Google Scholar 

  82. Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 3, 735 (2012).

    PubMed  PubMed Central  Google Scholar 

  83. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou, B. et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial–mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J. Biol. Chem. 287, 7026–7038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Eger, A. et al. β-catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23, 2672–2680 (2004).

    CAS  PubMed  Google Scholar 

  86. Kim, K. K. et al. Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J. Clin. Invest. 119, 213–224 (2009).

    CAS  PubMed  Google Scholar 

  87. Lam, A. P. & Gottardi, C. J. β-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr. Opin. Rheumatol. 23, 562–567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng, F., Singh, A. B. & Harris, R. C. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp. Cell Res. 315, 602–610 (2009).

    CAS  PubMed  Google Scholar 

  89. Liu, N. et al. Genetic or pharmacologic blockade of EGFR inhibits renal fibrosis. J. Am. Soc. Nephrol. 23, 854–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543, 1p following 143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, J. et al. EGFR signaling promotes TGFβ-dependent renal fibrosis. J. Am. Soc. Nephrol. 23, 215–224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, N. et al. EGF receptor inhibition alleviates hyperuricemic nephropathy. J. Am. Soc. Nephrol. 26, 2716–2729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Qian, Y. et al. Novel epidermal growth factor receptor inhibitor attenuates angiotensin II-induced kidney fibrosis. J. Pharmacol. Exp. Ther. 356, 32–42 (2016).

    CAS  PubMed  Google Scholar 

  94. Zhuang, S. & Liu, N. EGFR signaling in renal fibrosis. Kidney Int. Suppl. (2011) 4, 70–74 (2014).

    CAS  Google Scholar 

  95. Samarakoon, R. et al. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, 53 and reactive oxygen species. Cell. Signal. 25, 2198–2209 (2013).

    CAS  PubMed  Google Scholar 

  96. Yan, Y. et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 89, 68–81 (2015).

    Google Scholar 

  97. Lieberthal, W. & Levine, J. S. Mammalian target of rapamycin and the kidney. I. The signaling pathway. Am. J. Physiol. Renal Physiol. 303, F1–F10 (2012).

    CAS  PubMed  Google Scholar 

  98. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lieberthal, W. & Levine, J. S. Mammalian target of rapamycin and the kidney. II. Pathophysiology and therapeutic implications. Am. J. Physiol. Renal Physiol. 303, F180–F191 (2012).

    CAS  PubMed  Google Scholar 

  100. Lieberthal, W. & Levine, J. S. The role of the mammalian target of rapamycin (mTOR) in renal disease. J. Am. Soc. Nephrol. 20, 2493–2502 (2009).

    CAS  PubMed  Google Scholar 

  101. Das, F. et al. Transforming growth factor β integrates Smad 3 to mechanistic target of rapamycin complexes to arrest deptor abundance for glomerular mesangial cell hypertrophy. J. Biol. Chem. 288, 7756–7768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, J. et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 88, 515–527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cordenonsi, M. et al. Links between tumor suppressors: 53 is required for TGF-β gene responses by cooperating with Smads. Cell 113, 301–314 (2003).

    CAS  PubMed  Google Scholar 

  104. Overstreet, J. M., Samarakoon, R., Meldrum, K. K. & Higgins, P. J. Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity. Cell. Signal. 26, 1427–1436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Overstreet, J. M., Samarakoon, R., Cardona-Grau, D., Goldschmeding, R. & Higgins, P. J. Tumor suppressor ataxia telangiectasia mutated functions downstream of TGF-β1 in orchestrating profibrotic responses. FASEB J. 29, 1258–1268 (2015).

    CAS  PubMed  Google Scholar 

  106. Deshpande, S. D. et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62, 3151–3162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghosh, A. K., Bhattacharyya, S. & Varga, J. The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells. J. Biol. Chem. 279, 47455–47463 (2004).

    CAS  PubMed  Google Scholar 

  108. Ghosh, A. K., Nagpal, V., Covington, J. W., Michaels, M. A. & Vaughan, D. E. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell. Signal. 24, 1031–1036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, R. X., Yiu, W. H. & Tang, S. C. Role of bone morphogenetic protein-7 in renal fibrosis. Front. Physiol. 6, 114 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    CAS  PubMed  Google Scholar 

  111. Wang, S. N., Lapage, J. & Hirschberg, R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J. Am. Soc. Nephrol. 12, 2392–2399 (2001).

    CAS  PubMed  Google Scholar 

  112. Simon, M. et al. Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am. J. Physiol. 276, F382–F389 (1999).

    CAS  PubMed  Google Scholar 

  113. Hruska, K. A. et al. Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am. J. Physiol. Renal Physiol. 279, F130–F143 (2000).

    CAS  PubMed  Google Scholar 

  114. Wang, S. et al. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J. Am. Soc. Nephrol. 17, 2504–2512 (2006).

    CAS  PubMed  Google Scholar 

  115. Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, F1060–F1067 (2003).

    CAS  PubMed  Google Scholar 

  116. Motazed, R., Colville-Nash, P., Kwan, J. T. & Dockrell, M. E. BMP-7 and proximal tubule epithelial cells: activation of multiple signaling pathways reveals a novel anti-fibrotic mechanism. Pharm. Res. 25, 2440–2446 (2008).

    CAS  PubMed  Google Scholar 

  117. Wang, S. & Hirschberg, R. Bone morphogenetic protein-7 signals opposing transforming growth factor β in mesangial cells. J. Biol. Chem. 279, 23200–23206 (2004).

    CAS  PubMed  Google Scholar 

  118. Veerasamy, M. et al. Differential regulation of E-cadherin and α-smooth muscle actin by BMP 7 in human renal proximal tubule epithelial cells and its implication in renal fibrosis. Am. J. Physiol. Renal Physiol. 297, F1238–F1248 (2009).

    CAS  PubMed  Google Scholar 

  119. Munoz-Felix, J. M., Gonzalez-Nunez, M. & Lopez-Novoa, J. M. ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev. 24, 523–537 (2013).

    CAS  PubMed  Google Scholar 

  120. Scharpfenecker, M., Floot, B., Russell, N. S., Ten Dijke, P. & Stewart, F. A. Endoglin haploinsufficiency reduces radiation-induced fibrosis and telangiectasia formation in mouse kidneys. Radiother. Oncol. 92, 484–491 (2009).

    CAS  PubMed  Google Scholar 

  121. Munoz-Felix, J. M., Oujo, B. & Lopez-Novoa, J. M. The role of endoglin in kidney fibrosis. Expert Rev. Mol. Med. 16, e18 (2014).

    PubMed  Google Scholar 

  122. Goligorsky, M. S. Pathogenesis of endothelial cell dysfunction in chronic kidney disease: a retrospective and what the future may hold. Kidney Res. Clin. Pract. 34, 76–82 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Rodriguez-Pena, A. et al. Endoglin upregulation during experimental renal interstitial fibrosis in mice. Hypertension 40, 713–720 (2002).

    CAS  PubMed  Google Scholar 

  124. Roy-Chaudhury, P., Simpson, J. G. & Power, D. A. Endoglin, a transforming growth factor-beta-binding protein, is upregulated in chronic progressive renal disease. Exp. Nephrol. 5, 55–60 (1997).

    CAS  PubMed  Google Scholar 

  125. Rodriguez-Barbero, A. et al. Endoglin expression in human and rat mesangial cells and its upregulation by TGF-β1. Biochem. Biophys. Res. Commun. 282, 142–147 (2001).

    CAS  PubMed  Google Scholar 

  126. Diez-Marques, L. et al. Expression of endoglin in human mesangial cells: modulation of extracellular matrix synthesis. Biochim. Biophys. Acta 1587, 36–44 (2002).

    CAS  PubMed  Google Scholar 

  127. Iekushi, K. et al. Hepatocyte growth factor attenuates renal fibrosis through TGF-β1 suppression by apoptosis of myofibroblasts. J. Hypertens. 28, 2454–2461 (2010).

    CAS  PubMed  Google Scholar 

  128. Yang, J., Dai, C. & Liu, Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am. J. Pathol. 163, 621–632 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mishra, R. et al. AMP-activated protein kinase inhibits transforming growth factor-β-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J. Biol. Chem. 283, 10461–10469 (2008).

    CAS  PubMed  Google Scholar 

  130. Lim, J. Y., Oh, M. A., Kim, W. H., Sohn, H. Y. & Park, S. I. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J. Cell. Physiol. 227, 1081–1089 (2012).

    CAS  PubMed  Google Scholar 

  131. Sirin, Y. & Susztak, K. Notch in the kidney: development and disease. J. Pathol. 226, 394–403 (2012).

    CAS  PubMed  Google Scholar 

  132. Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155–1165 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ueno, T. et al. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int. 83, 1065–1075 (2013).

    CAS  PubMed  Google Scholar 

  134. Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C. H. & Moustakas, A. Notch signaling is necessary for epithelial growth arrest by TGF-β. J. Cell Biol. 176, 695–707 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    CAS  PubMed  Google Scholar 

  136. Leung, A. K. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 25, 601–610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zarjou, A., Yang, S., Abraham, E., Agarwal, A. & Liu, G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am. J. Physiol. Renal Physiol. 301, F793–F801 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rudnicki, M., Beckers, A., Neuwirt, H. & Vandesompele, J. RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Nephrol. Dial. Transplant. 30 (Suppl. 4), iv35–iv42 (2015).

    CAS  PubMed  Google Scholar 

  139. McClelland, A. D. et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin. Sci. (Lond.) 129, 1237–1249 (2015).

    CAS  Google Scholar 

  140. Zhong, X., Chung, A. C., Chen, H. Y., Meng, X. M. & Lan, H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668–1681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663–674 (2013).

    CAS  PubMed  Google Scholar 

  142. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).

    PubMed  PubMed Central  Google Scholar 

  143. Chung, A. C. & Lan, H. Y. MicroRNAs in renal fibrosis. Front. Physiol. 6, 50 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Yu, F., Guo, Y., Chen, B., Dong, P. & Zheng, J. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab. Invest. 95, 781–789 (2015).

    CAS  PubMed  Google Scholar 

  145. Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kriegel, A. J. et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor β1: a novel role of miR-382. Nucleic Acids Res. 38, 8338–8347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, R. et al. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84, 1129–1144 (2013).

    CAS  PubMed  Google Scholar 

  148. Park, J. T. et al. Repression of let-7 by transforming growth factor-β1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am. J. Physiol. Renal Physiol. 307, F1390–F1403 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, B. et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85, 352–361 (2014).

    CAS  PubMed  Google Scholar 

  150. Tijsen, A. J. et al. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc. Res. 104, 61–71 (2014).

    CAS  PubMed  Google Scholar 

  151. Lakner, A. M. et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 56, 300–310 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Liang, H. et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol. Ther. 22, 1122–1133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tu, X. et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. J. Pathol. 234, 46–59 (2014).

    CAS  PubMed  Google Scholar 

  154. Pan, Z. et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation 126, 840–850 (2012).

    CAS  PubMed  Google Scholar 

  155. Wang, B. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Bowen, T., Jenkins, R. H. & Fraser, D. J. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J. Pathol. 229, 274–285 (2013).

    CAS  PubMed  Google Scholar 

  157. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462–1474 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yu, J. W. et al. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. Lab. Invest. 94, 978–990 (2014).

    CAS  PubMed  Google Scholar 

  159. Lv, L. L. et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Renal Physiol. 305, F1220–F1227 (2013).

    CAS  PubMed  Google Scholar 

  160. Rubattu, S. et al. Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int. J. Mol. Sci. 16, 823–839 (2015).

    CAS  Google Scholar 

  161. Jiang, L. et al. A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int. 84, 285–296 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu, J. et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 25, 92–104 (2014).

    CAS  PubMed  Google Scholar 

  163. Zhao, N. et al. MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells. Circ. Res. 116, 23–34 (2015).

    CAS  PubMed  Google Scholar 

  164. Yang, S. et al. miR-145 regulates myofibroblast differentiation and lung fibrosis. FASEB J. 27, 2382–2391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Putta, S. et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432–3437 (2007).

    CAS  PubMed  Google Scholar 

  168. Krupa, A. et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438–447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, B. et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 59, 1794–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Oba, S. et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE 5, e13614 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. Xiong, M. et al. The miR-200 family regulates TGF-β-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am. J. Physiol. Renal Physiol. 302, F369–F379 (2012).

    CAS  PubMed  Google Scholar 

  172. Kato, M. et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358–368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/results/NCT02136862 (2016).

  174. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT02603224 (2016).

  175. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307 (2013).

    CAS  PubMed  Google Scholar 

  176. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    CAS  PubMed  Google Scholar 

  177. He, Y. et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim. Biophys. Acta 1842, 2204–2215 (2014).

    CAS  PubMed  Google Scholar 

  178. Tampe, B. & Zeisberg, M. Evidence for the involvement of epigenetics in the progression of renal fibrogenesis. Nephrol. Dial. Transplant. 29 (Suppl. 1), i1–i8 (2014).

    PubMed  Google Scholar 

  179. Bomsztyk, K. & Denisenko, O. Epigenetic alterations in acute kidney injury. Semin. Nephrol. 33, 327–340 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Zeisberg, E. M. & Zeisberg, M. The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J. Pathol. 229, 264–273 (2013).

    CAS  PubMed  Google Scholar 

  181. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Tampe, B. et al. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol. 25, 905–912 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Xiao, X., Tang, W., Yuan, Q., Peng, L. & Yu, P. Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int. J. Mol. Med. 35, 1596–1602 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bian, E. B. et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol. Lett. 224, 175–185 (2014).

    CAS  PubMed  Google Scholar 

  185. Pan, X., Chen, Z., Huang, R., Yao, Y. & Ma, G. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE 8, e60335 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    PubMed  Google Scholar 

  187. Kato, M. & Natarajan, R. Diabetic nephropathy — emerging epigenetic mechanisms. Nat. Rev. Nephrol. 10, 517–530 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Sun, G. et al. Epigenetic histone methylation modulates fibrotic gene expression. J. Am. Soc. Nephrol. 21, 2069–2080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Berger, S. L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).

    CAS  PubMed  Google Scholar 

  190. Yuan, H. et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am. J. Physiol. Renal Physiol. 304, F601–F613 (2013).

    CAS  PubMed  Google Scholar 

  191. Inoue, Y. et al. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26, 500–508 (2007).

    CAS  PubMed  Google Scholar 

  192. Li, J., Qu, X., Ricardo, S. D., Bertram, J. F. & Nikolic-Paterson, D. J. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am. J. Pathol. 177, 1065–1071 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Noh, H. et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury. Am. J. Physiol. Renal Physiol. 297, F729–F739 (2009).

    CAS  PubMed  Google Scholar 

  194. Liu, N. et al. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-β and EGFR signaling. PLoS ONE 8, e54001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Choi, S. Y. et al. Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul. Pharmacol. 72, 130–140 (2015).

    CAS  PubMed  Google Scholar 

  196. Yoshikawa, M., Hishikawa, K., Marumo, T. & Fujita, T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18, 58–65 (2007).

    CAS  PubMed  Google Scholar 

  197. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat. Med. 21, 150–158 (2015).

    CAS  PubMed  Google Scholar 

  198. Rius, M. & Lyko, F. Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31, 4257–4265 (2012).

    CAS  PubMed  Google Scholar 

  199. Huang, X. Z. et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J. Cell. Biochem. 115, 996–1005 (2014).

    CAS  PubMed  Google Scholar 

  200. Ponnusamy, M. et al. Activation of Sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis. J. Pharmacol. Exp. Ther. 354, 142–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Zerr, P. et al. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 75, 226–233 (2014).

    PubMed  Google Scholar 

  202. Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

    CAS  PubMed  Google Scholar 

  203. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    CAS  PubMed  Google Scholar 

  204. Strutz, F. et al. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 130, 393–405 (1995).

    CAS  PubMed  Google Scholar 

  205. Jinde, K. et al. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am. J. Kidney Dis. 38, 761–769 (2001).

    CAS  PubMed  Google Scholar 

  206. Oldfield, M. D. et al. Advanced glycation end products cause epithelial–myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J. Clin. Invest. 108, 1853–1863 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Ng, Y. Y. et al. Glomerular epithelial–myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol. Dial. Transplant. 14, 2860–2872 (1999).

    CAS  PubMed  Google Scholar 

  208. Ng, Y. Y. et al. Tubular epithelial–myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int. 54, 864–876 (1998).

    CAS  PubMed  Google Scholar 

  209. Yamaguchi, Y. et al. Epithelial–mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am. J. Kidney Dis. 54, 653–664 (2009).

    CAS  PubMed  Google Scholar 

  210. Fan, J. M. et al. Transforming growth factor-β regulates tubular epithelial–myofibroblast transdifferentiation in vitro. Kidney Int. 56, 1455–1467 (1999).

    CAS  PubMed  Google Scholar 

  211. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12, 27–36 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Li, J. H. et al. Advanced glycation end products induce tubular epithelial–myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am. J. Pathol. 164, 1389–1397 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Grgic, I., Duffield, J. S. & Humphreys, B. D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol. 27, 183–193 (2012).

    PubMed  Google Scholar 

  215. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    CAS  PubMed  Google Scholar 

  217. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Piera-Velazquez, S., Li, Z. & Jimenez, S. A. Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am. J. Pathol. 179, 1074–1080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. van Meeteren, L. A. & ten Dijke, P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res. 347, 177–186 (2012).

    CAS  PubMed  Google Scholar 

  220. Xavier, S. et al. Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial–mesenchymal transition and fibrosis in CKD. J. Am. Soc. Nephrol. 26, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  221. Li, J. et al. Blockade of endothelial–mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Shi, S. et al. Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition. Kidney Int. 88, 479–489 (2015).

    CAS  PubMed  Google Scholar 

  223. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Reich, B. et al. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int. 84, 78–89 (2013).

    CAS  PubMed  Google Scholar 

  225. Strieter, R. M., Keeley, E. C., Hughes, M. A., Burdick, M. D. & Mehrad, B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J. Leukoc. Biol. 86, 1111–1118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Wada, T., Sakai, N., Matsushima, K. & Kaneko, S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 72, 269–273 (2007).

    CAS  PubMed  Google Scholar 

  227. Chen, G. et al. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J. Am. Soc. Nephrol. 22, 1876–1886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Xia, Y., Yan, J., Jin, X., Entman, M. L. & Wang, Y. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis. Kidney Int. 86, 327–337 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Hong, K. M., Belperio, J. A., Keane, M. P., Burdick, M. D. & Strieter, R. M. Differentiation of human circulating fibrocytes as mediated by transforming growth factor-β and peroxisome proliferator-activated receptor γ. J. Biol. Chem. 282, 22910–22920 (2007).

    CAS  PubMed  Google Scholar 

  230. Nikolic-Paterson, D. J., Wang, S. & Lan, H. Y. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int. Suppl. (2011) 4, 34–38 (2014).

    CAS  Google Scholar 

  231. Huen, S. C., Moeckel, G. W. & Cantley, L. G. Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am. J. Physiol. Renal Physiol. 305, F477–F484 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Bertrand, S., Godoy, M., Semal, P. & Van Gansen, P. Transdifferentiation of macrophages into fibroblasts as a result of Schistosoma mansoni infection. Int. J. Dev. Biol. 36, 179–184 (1992).

    CAS  PubMed  Google Scholar 

  233. Pilling, D. & Gomer, R. H. Differentiation of circulating monocytes into fibroblast-like cells. Methods Mol. Biol. 904, 191–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wang, S. et al. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget http://dx.doi.org/10.18632/oncotarget.6604 (2015).

  235. Schnaper, H. W., Hayashida, T., Hubchak, S. C. & Poncelet, A. C. TGF-β signal transduction and mesangial cell fibrogenesis. Am. J. Physiol. Renal Physiol. 284, F243–F252 (2003).

    CAS  PubMed  Google Scholar 

  236. Barnes, J. L. & Gorin, Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 79, 944–956 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Manickam, N., Patel, M., Griendling, K. K., Gorin, Y. & Barnes, J. L. RhoA/Rho kinase mediates TGF-β1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am. J. Physiol. Renal Physiol. 307, F159–F171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Grande, M. T. & Lopez-Novoa, J. M. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat. Rev. Nephrol. 5, 319–328 (2009).

    CAS  PubMed  Google Scholar 

  239. Wu, C. F. et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte–myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol. 182, 118–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Trachtman, H. et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 79, 1236–1243 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. US National Library of Science. ClinicalTrials.gov [online], https://clinicaltrials.gov/ct2/show/NCT01113801 (2015).

  242. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    PubMed  PubMed Central  Google Scholar 

  243. Meng, X. M., Tang, P. M., Li, J. & Lan, H. Y. TGF-β/Smad signaling in renal fibrosis. Front. Physiol. 6, 82 (2015).

    PubMed  PubMed Central  Google Scholar 

  244. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    CAS  PubMed  Google Scholar 

  245. Liu, Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am. J. Physiol. Renal Physiol. 287, F7–F16 (2004).

    CAS  PubMed  Google Scholar 

  246. Doi, S. et al. Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 286, 8655–8665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    CAS  PubMed  Google Scholar 

  249. Shihab, F. S., Bennett, W. M., Yi, H. & Andoh, T. F. Pirfenidone treatment decreases transforming growth factor-β1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am. J. Transplant. 2, 111–119 (2002).

    CAS  PubMed  Google Scholar 

  250. Ai, J. et al. GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-β-induced Smad3 phosphorylation. J. Am. Soc. Nephrol. 26, 1827–1838 (2015).

    CAS  PubMed  Google Scholar 

  251. Schiffer, M. et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest. 108, 807–816 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose important findings could not be cited owing to space limitations. The authors' work described in this Review was supported by a Major State Basic Research Development Program of China (973 program, No. 2012CB517705), the Research Grants Council of Hong Kong (GRF 468711, CUHK3/CRF/12R), the Focused Investment Scheme A from Chinese University of Hong Kong, and the National Natural Science Foundation of China (No. 81300580, No. 81570623). D.J.N.-P. is supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the article's content. X.-M.M. wrote the manuscript, and D.J.N.-P. and H.Y.L. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hui Yao Lan.

Ethics declarations

Competing interests

D.J.N.-P. has worked as a consultant and received research funding from Celgene and Gilead Sciences, and is a co-inventor on a patent for a Smad3 inhibitor (Australian Application number 2015900903). X.-M.M. and H.Y.L. declare no competing interests.

PowerPoint slides

Glossary

CpG islands

Short DNA sequences that contain an atypically high frequency of cytosine–phosphate–guanine (CpG) sites; such sites generally lack DNA (cysteine) methylation and associate with the majority of annotated gene promoters.

CpG shores

Regions of comparatively low CpG density that flank traditional CpG islands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Xm., Nikolic-Paterson, D. & Lan, H. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12, 325–338 (2016). https://doi.org/10.1038/nrneph.2016.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing