Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut feelings: mechanosensing in the gastrointestinal tract

Abstract

The primary function of the gut is to procure nutrients. Synchronized mechanical activities underlie nearly all its endeavours. Coordination of mechanical activities depends on sensing of the mechanical forces, in a process called mechanosensation. The gut has a range of mechanosensory cells. They function either as specialized mechanoreceptors, which convert mechanical stimuli into coordinated physiological responses at the organ level, or as non-specialized mechanosensory cells that adjust their function based on the mechanical state of their environment. All major cell types in the gastrointestinal tract contain subpopulations that act as specialized mechanoreceptors: epithelia, smooth muscle, neurons, immune cells, and others. These cells are tuned to the physical properties of the surrounding tissue, so they can discriminate mechanical stimuli from the baseline mechanical state. The importance of gastrointestinal mechanosensation has long been recognized, but the latest discoveries of molecular identities of mechanosensors and technical advances that resolve the relevant circuitry have poised the field to make important intellectual leaps. This Review describes the mechanical factors relevant for normal function, as well as the molecules, cells and circuits involved in gastrointestinal mechanosensing. It concludes by outlining important unanswered questions in gastrointestinal mechanosensing.

Key points

  • Mechanosensation is the ability to sense mechanical forces and transduce them into physiological responses.

  • The gut is a mechanically active organ in which all cells must sense the forces emanating from the digestion of intraluminal contents and organ activity, such as motility.

  • All cells reside in tissue at a baseline mechanical state; the gastrointestinal tract is a layered (composite) organ in which the baseline mechanical state varies by spatial localization.

  • Non-specialized mechanosensory cells sense force to adjust their function; specialized mechanoreceptors are mechanosensory cells that guide physiological organ responses to mechanical stimuli.

  • Gastrointestinal mechanoreceptors share similarities with mechanoreceptors in other sensory and non-sensory organs; leveraging these similarities helps in understanding the purpose and function of mechanoreceptors in the gastrointestinal tract.

  • Mechanosensory circuits built into the gastrointestinal wall allow for spatial and temporal integration of mechanical stimuli into a coordinated physiological response (for example, peristaltic reflex), and connections to the extrinsic mechanosensory circuits are crucial for brain–gut communication (for example, sense of fullness).

  • Areas with research potential include the discovery of unknown mechanosensors, quantification of the baseline mechanical state of the gastrointestinal wall, and the development of novel tests for gut-specific mechanosensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Static mechanical properties of the gut wall.
Fig. 2: Dynamic activities of the gut wall.
Fig. 3: Circuits, cells and molecules involved in gut mechanosensation.

Similar content being viewed by others

References

  1. Cannon, W. B. The Mechanical Factors of Digestion (Longmans, Green & Co., 1911).

  2. Alvarez, W. C. The Mechanics of the Digestive Tract: An Introduction to Gastroenterology. 2nd edn (Hoeber, 1928).

  3. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Gregersen, H. Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics (Springer, 2003).

  6. Stevens, C. E. & Hume, I. D. Comparative Physiology of the Vertebrate Digestive System. 2nd edn (Cambridge Univ. Press, 2004).

  7. Liao, D., Zhao, J. & Gregersen, H. Three-dimensional geometry analysis of the stomach in type II diabetic GK rats. Diabetes Res. Clin. Pract. 71, 1–13 (2006).

    Article  PubMed  Google Scholar 

  8. Chen, X., Zhao, J. & Gregersen, H. The villi contribute to the mechanics in the guinea pig small intestine. J. Biomech. 41, 806–812 (2008).

    Article  PubMed  Google Scholar 

  9. Zhao, J., Nakaguchi, T. & Gregersen, H. Biomechanical and histomorphometric colon remodelling in STZ-induced diabetic rats. Dig. Dis. Sci. 54, 1636–1642 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Dinning, P. G., Arkwright, J. W., Gregersen, H., O’Grady, G. & Scott, S. M. Technical advances in monitoring human motility patterns. Neurogastroenterol. Motil. 22, 366–380 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, C. & Gregersen, H. Biomechanical and morphological properties in rat large intestine. J. Biomech. 33, 1089–1097 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Gao, C., Zhao, J. & Gregersen, H. Histomorphometry and strain distribution in pig duodenum with reference to zero-stress state. Dig. Dis. Sci. 45, 1500–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J., Zhao, J., Liao, D. & Gregersen, H. Effect of smooth muscle tone on morphometry and residual strain in rat duodenum, jejunum and ileum. J. Biomech. 41, 2667–2672 (2008).

    Article  PubMed  Google Scholar 

  14. Zhao, J., Liao, D., Chen, P., Kunwald, P. & Gregersen, H. Stomach stress and strain depend on location, direction and the layered structure. J. Biomech. 41, 3441–3447 (2008).

    Article  PubMed  Google Scholar 

  15. Benias, P. C. et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 8, 4947 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Filzmayer, A. K. et al. Compression and stretch sensitive submucosal neurons of the porcine and human colon. Sci. Rep. 10, 13791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frieling, T., Wood, J. D. & Cooke, H. J. Submucosal reflexes: distension-evoked ion transport in the guinea pig distal colon. Am. J. Physiol. 263, G91–G96 (1992).

    CAS  PubMed  Google Scholar 

  18. Brierley, S. M., Jones, R. C. 3rd, Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004).

    Article  PubMed  Google Scholar 

  19. Corsetti, M., Gevers, A. M., Caenepeel, P. & Tack, J. The role of tension receptors in colonic mechanosensitivity in humans. Gut 53, 1787–1793 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliver, K. M. et al. Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat. Commun. 12, 1451 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iggo, A. Gastro-intestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42, 130–143 (1957).

    CAS  PubMed  Google Scholar 

  22. Cannon, W. B. Peristalsis, segmentation, and the myenteric reflex. Am. J. Physiol. 30, 114–128 (1912).

    Article  Google Scholar 

  23. Beyder, A. In pursuit of the epithelial mechanosensitivity mechanisms. Front. Endocrinol. 9, 804 (2018).

    Article  Google Scholar 

  24. de Lorijn, F. et al. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut 54, 1107–1113 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Synnerstad, I., Ekblad, E., Sundler, F. & Holm, L. Gastric mucosal smooth muscles may explain oscillations in glandular pressure: role of vasoactive intestinal peptide. Gastroenterology 114, 284–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Choe, K. et al. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin. Invest. 125, 4042–4052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alvarez, W. C. The myogenic nature of the rhythmic contractions of the intestine. Am. J. Physiol. Leg. Content 59, 421–430 (1922).

    Article  Google Scholar 

  28. Dinning, P. G., Costa, M., Brookes, S. J. & Spencer, N. J. Neurogenic and myogenic motor patterns of rabbit proximal, mid, and distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G83–G92 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Dinning, P. G. et al. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front. Neurosci. 8, 75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huizinga, J. D. et al. The origin of segmentation motor activity in the intestine. Nat. Commun. 5, 3326 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Cannon, W. B. The relation of tonus to antiperistalsis in the colon. Am. J. Physiol. Leg. Cont. 29, 238–249 (1911).

    Article  Google Scholar 

  32. McIntyre, A., Vincent, R. M., Perkins, A. C. & Spiller, R. C. Effect of bran, ispaghula, and inert plastic particles on gastric emptying and small bowel transit in humans: the role of physical factors. Gut 40, 223–227 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    CAS  PubMed  Google Scholar 

  34. Dobnikar, L. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat. Commun. 9, 4567 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Farrugia, G. et al. A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterology 117, 900–905 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Beyder, A. et al. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588, 4969–4985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Won, K. J., Sanders, K. M. & Ward, S. M. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc. Natl Acad. Sci. USA 102, 14913–14918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strege, P. R. et al. Sodium current in human intestinal interstitial cells of Cajal. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1111–G1121 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Komuro, T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J. Physiol. 576, 653–658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Powley, T. L. et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol. Motil. 20, 69–79 (2008).

    CAS  PubMed  Google Scholar 

  41. Sanders, K. M., Koh, S. D., Ro, S. & Ward, S. M. Regulation of gastrointestinal motility — insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9, 633–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurahashi, M. et al. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J. Physiol. 589, 697–710 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Seguella, L. & Gulbransen, B. D. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat. Rev. Gastroenterol. Hepatol. 18, 571–587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liñán-Rico, A. et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype. Inflamm. Bowel Dis. 22, 1812–1834 (2016).

    Article  PubMed  Google Scholar 

  45. Grubisic, V. et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 32, 108100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kraichely, R. E., Strege, P. R., Sarr, M. G., Kendrick, M. L. & Farrugia, G. Lysophosphatidyl choline modulates mechanosensitive L-type Ca2+ current in circular smooth muscle cells from human jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G833–G839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo, J. et al. TRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells. Immunity 49, 107–119.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng, Y. et al. Mechanosensing drives acuity of alphabeta T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. et al. Unraveling the mechanobiology of immune cells. Curr. Opin. Biotechnol. 66, 236–245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Upadhyaya, A. Mechanosensing in the immune response. Semin. Cell Dev. Biol. 71, 137–145 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Michalick, L. & Kuebler, W. M. TRPV4-A missing link between mechanosensation and immunity. Front. Immunol. 11, 413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, P. et al. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73, 1015–1027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mazzuoli, G. & Schemann, M. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS ONE 7, e39887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mayer, C. J. & Wood, J. D. Properties of mechanosensitive neurons within Auerbach’s plexus of the small intestine of the cat. Pflug. Arch. 357, 35–49 (1975).

    Article  CAS  Google Scholar 

  58. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front. Cell. Neurosci. 9, 430 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mazzuoli, G. & Schemann, M. Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J. Physiol. 587, 4681–4694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kugler, E. M. et al. Mechanical stress activates neurites and somata of myenteric neurons. Front. Cell Neurosci. 9, 342 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mazzuoli-Weber, G. et al. Piezo proteins: incidence and abundance in the enteric nervous system. Is there a link with mechanosensitivity? Cell Tissue Res. 375, 605–618 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Mihara, H., Suzuki, N., Yamawaki, H., Tominaga, M. & Sugiyama, T. TRPV2 ion channels expressed in inhibitory motor neurons of gastric myenteric plexus contribute to gastric adaptive relaxation and gastric emptying in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G235–G240 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Dong, H., Tang, B., Jiang, Y. & Mittal, R. K. Na+/Ca2+ exchanger 1 is a key mechanosensitive molecule of the esophageal myenteric neurons. Acta Physiol. 225, e13223 (2019).

    Article  CAS  Google Scholar 

  64. Bulbring, E. & Crema, A. The release of 5-hydroxytryptamine in relation to pressure exerted on the intestinal mucosa. J. Physiol. 146, 18–28 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Treichel, A. J., Farrugia, G. & Beyder, A. The touchy business of gastrointestinal (GI) mechanosensitivity. Brain Res. 1693, 197–200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl Acad. Sci. USA 115, E7632–E7641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Billing, L. J. et al. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice — identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol. Metab. 29, 158–169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Linan-Rico, A. et al. Mechanosensory signaling in enterochromaffin cells and 5-HT release: potential implications for gut inflammation. Front. Neurosci. 10, 564 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bertrand, P. P. Real-time measurement of serotonin release and motility in guinea pig ileum. J. Physiol. 577, 689–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chin, A. et al. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G397–G405 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Treichel, A. J. et al. Specialized mechanosensory epithelial cells in mouse gut intrinsic tactile sensitivity. Gastroenterology https://doi.org/10.1053/j.gastro.2021.10.026 (2021).

    Article  PubMed  Google Scholar 

  73. Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Furness, J. B. & Stebbing, M. J. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13234 (2018).

    Article  PubMed  Google Scholar 

  76. Furness, J. B., Jones, C., Nurgali, K. & Clerc, N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog. Neurobiol. 72, 143–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Melo, C. G. S. et al. Identification of intrinsic primary afferent neurons in mouse jejunum. Neurogastroenterol. Motil. 32, e13989 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Kunze, W. A., Clerc, N., Bertrand, P. P. & Furness, J. B. Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. J. Physiol. 517, 547–561 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kunze, W. A., Clerc, N., Furness, J. B. & Gola, M. The soma and neurites of primary afferent neurons in the guinea-pig intestine respond differentially to deformation. J. Physiol. 526, 375–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mazzuoli-Weber, G. & Schemann, M. Mechanosensitivity in the enteric nervous system. Front. Cell. Neurosci. 9, 408 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mao, Y., Wang, B. & Kunze, W. Characterization of myenteric sensory neurons in the mouse small intestine. J. Neurophysiol. 96, 998–1010 (2006).

    Article  PubMed  Google Scholar 

  82. Morarach, K. et al. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 24, 34–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Qi, Y. et al. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 6, 8512 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Brookes, S. J., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Smith-Edwards, K. M. et al. Extrinsic primary afferent neurons link visceral pain to colon motility through a spinal reflex in mice. Gastroenterology 157, 522–536 e522 (2019).

    Article  PubMed  Google Scholar 

  87. Spencer, N. J., Kyloh, M. A., Travis, L. & Dodds, K. N. Sensory nerve endings arising from single spinal afferent neurons that innervate both circular muscle and myenteric ganglia in mouse colon: colon–brain axis. Cell Tissue Res. 381, 25–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Spencer, N. J., Melinda A., Kyloh, M. A., Travis, L. & Dodds, K. N. Identification of spinal afferent nerve endings in the colonic mucosa and submucosa that communicate directly with the spinal cord: the gut–brain axis. J. Comp. Neurol. 528, 1742–1753 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Hughes, P. A., Brierley, S. M., Young, R. L. & Blackshaw, L. A. Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J. Comp. Neurol. 500, 863–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Holzer, P. Acid-sensing ion channels in gastrointestinal function. Neuropharmacology 94, 72–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Page, A. J. et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54, 1408–1415 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharif-Naeini, R. Role of mechanosensitive ion channels in the sensation of pain. J. Neural Transm. 127, 407–414 (2020).

    Article  PubMed  Google Scholar 

  93. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143 e1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zimmerman, C. A. et al. A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 568, 98–102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paintal, A. S. A study of gastric stretch receptors; their role in the peripheral mechanism of satiation of hunger and thirst. J. Physiol. 126, 255–270 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zagorodnyuk, V. P., Chen, B. N. & Brookes, S. J. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J. Physiol. 534, 255–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, D. Y. et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Berthoud, H. R., Patterson, L. M., Neumann, F. & Neuhuber, W. L. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat. Embryol. 195, 183–191 (1997).

    Article  CAS  Google Scholar 

  100. Phillips, R. J. & Powley, T. L. Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 34, 1–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Berthoud, H. R. & Powley, T. L. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J. Comp. Neurol. 319, 261–276 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Grundy, D., Blackshaw, L. A. & Hillsley, K. Role of 5-hydroxytryptamine in gastrointestinal chemosensitivity. Dig. Dis. Sci. 39, 44S–47S (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Kirchgessner, A. L., Tamir, H. & Gershon, M. D. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J. Neurosci. 12, 235–248 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maksimovic, S. et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509, 617–621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang, W. et al. Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals. Proc. Natl Acad. Sci. USA 113, E5491–E5500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Woo, S. H., Lumpkin, E. A. & Patapoutian, A. Merkel cells and neurons keep in touch. Trends Cell Biol. 25, 74–81 (2015).

    Article  PubMed  Google Scholar 

  108. Huber, A. R., Agostini-Vulaj, D., Drage, M. G. & Lemmon, J. W. Tactile corpuscle-like bodies (Wagner–Meissner corpuscles) of the colorectum: a series of 5 cases. Int. J. Surg. Pathol. 25, 684–687 (2017).

    Article  PubMed  Google Scholar 

  109. Page, A. J. & Blackshaw, L. A. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J. Physiol. 512, 907–916 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bessou, P. & Perl, E. R. A movement receptor of the small intestine. J. Physiol. 182, 404–426 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song, X. et al. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 137, 274–284, e271 (2009).

    Article  PubMed  Google Scholar 

  112. Leek, B. F. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33, 163–168 (1977).

    Article  CAS  PubMed  Google Scholar 

  113. Brunsden, A. M., Brookes, S. J., Bardhan, K. D. & Grundy, D. Mechanisms underlying mechanosensitivity of mesenteric afferent fibers to vascular flow. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G422–G428 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Malin, S. A., Christianson, J. A., Bielefeldt, K. & Davis, B. M. TPRV1 expression defines functionally distinct pelvic colon afferents. J. Neurosci. 29, 743–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Meehan, A. G. & Kreulen, D. L. A capsaicin-sensitive inhibitory reflex from the colon to mesenteric arteries in the guinea-pig. J. Physiol. 448, 153–159 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sheehan, D. The afferent nerve supply of the mesentery and its significance in the causation of abdominal pain. J. Anat. 67, 233–249 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Szurszewski, J. H., Ermilov, L. G. & Miller, S. M. Prevertebral ganglia and intestinofugal afferent neurones. Gut 51 (Suppl. 1), i6–i10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Weems, W. A. & Szurszewski, J. H. An intracellular analysis of some intrinsic factors controlling neural output from inferior mesenteric ganglion of guinea pigs. J. Neurophysiol. 41, 305–321 (1978).

    Article  CAS  PubMed  Google Scholar 

  119. Hibberd, T. J., Zagorodnyuk, V. P., Spencer, N. J. & Brookes, S. J. Identification and mechanosensitivity of viscerofugal neurons. Neuroscience 225, 118–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Gold, M. S. & Gebhart, G. F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hebden, J. M., Blackshaw, P. E., Perkins, A. C., D’Amato, M. & Spiller, R. C. Small bowel transit of a bran meal residue in humans: sieving of solids from liquids and response to feeding. Gut 42, 685–689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hoffman, B. U. et al. Merkel cells activate sensory neural pathways through adrenergic synapses. Neuron 100, 1401–1413 e1406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pan, H. & Gershon, M. D. Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine. J. Neurosci. 20, 3295–3309 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cooke, H. J., Sidhu, M. & Wang, Y. Z. 5-HT activates neural reflexes regulating secretion in the guinea-pig colon. Neurogastroenterol. Motil. 9, 181–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kaelberer, M. M., Rupprecht, L. E., Liu, W. W., Weng, P. & Bohorquez, D. V. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu. Rev. Neurosci. 43, 337–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raiford, T. & Mulinos, M. G. The myenteric reflex as exhibited by the exteriorized colon of the dog. Am. J. Physiol. Leg. Content 110, 129–136 (1934).

    Article  Google Scholar 

  128. Smith, T. K. & Furness, J. B. Reflex changes in circular muscle activity elicited by stroking the mucosa: an electrophysiological analysis in the isolated guinea-pig ileum. J. Autonomic Nerv. Syst. 25, 205–218 (1988).

    Article  CAS  Google Scholar 

  129. Spencer, N. J. et al. By what mechanism does ondansetron inhibit colonic migrating motor complexes: does it require endogenous serotonin in the gut wall? Neurogastroenterol. Motil. 25, 677–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Delvalle, N. M. et al. Communication between enteric neurons, glia, and nociceptors underlies the effects of tachykinins on neuroinflammation. Cell Mol. Gastroenterol. Hepatol. 6, 321–344 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cipriani, G. et al. Change in populations of macrophages promotes development of delayed gastric emptying in mice. Gastroenterology 154, 2122–2136 e2112 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

    Article  PubMed  Google Scholar 

  133. Lynn, P., Zagorodnyuk, V., Hennig, G., Costa, M. & Brookes, S. Mechanical activation of rectal intraganglionic laminar endings in the guinea pig distal gut. J. Physiol. 564, 589–601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Romero, S., Le Clainche, C. & Gautreau, A. M. Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem. J. 477, 1–21 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Zimmermann, D. & Kovar, D. R. Feeling the force: formin’s role in mechanotransduction. Curr. Opin. Cell Biol. 56, 130–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Fujiwara, S., Matsui, T. S., Ohashi, K., Mizuno, K. & Deguchi, S. Keratin-binding ability of the N-terminal Solo domain of Solo is critical for its function in cellular mechanotransduction. Genes. Cell 24, 390–402 (2019).

    Article  CAS  Google Scholar 

  137. Schwayer, C. et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 179, 937–952 e918 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Potla, R. et al. Molecular mapping of transmembrane mechanotransduction through the β1 integrin–CD98hc–TRPV4 axis. J. Cell Sci. 133, jcs248823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bachmann, M., Kukkurainen, S., Hytonen, V. P. & Wehrle-Haller, B. Cell adhesion by integrins. Physiol. Rev. 99, 1655–1699 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87, 1162–1179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Brierley, S. M. Molecular basis of mechanosensitivity. Auton. Neurosci. 153, 58–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Kraichely, R. E. & Farrugia, G. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol. Motil. 19, 245–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Arnadottir, J. & Chalfie, M. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39, 111–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Corey, D. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Gottlieb, P. et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflug. Arch. 455, 1097–1103 (2008).

    Article  CAS  Google Scholar 

  147. Anishkin, A., Loukin, S. H., Teng, J. & Kung, C. Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc. Natl Acad. Sci. USA 111, 7898–7905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lyford, G. L. et al. alpha(1C) (Ca(V)1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am. J. Physiol. Cell Physiol. 283, C1001–C1008 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Hao, J. et al. Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron 77, 899–914 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Neshatian, L. et al. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G506–G512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, J. GPR68 senses flow and is essential for vascular physiology. Cell 173, 762–775.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mederos y Schnitzler, M. et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J. 27, 3092–3103 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Bagal, S. K. et al. Ion channels as therapeutic targets: a drug discovery perspective. J. Med. Chem. 56, 593–624 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Bohorquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68, 633–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Camunas-Soler, J. et al. Patch-Seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031 e1014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Drokhlyansky, E. et al. The human and mouse enteric nervous system at single-cell resolution. Cell 182, 1606–1622 e1623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rakhilin, N. et al. An intravital window to image the colon in real time. Nat. Commun. 10, 5647 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Fosque, B. F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Moeyaert, B. et al. Improved methods for marking active neuron populations. Nat. Commun. 9, 4440 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Guo, J., Wang, Y., Sachs, F. & Meng, F. Actin stress in cell reprogramming. Proc. Natl Acad. Sci. USA 111, E5252–E5261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Eisenstein, M. Mechanobiology: a measure of molecular muscle. Nature 544, 255–257 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Bozler, E. Myenteric reflex. Am. J. Physiol. 157, 329–337 (1949).

    Article  CAS  PubMed  Google Scholar 

  165. Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology 152, 124–133 e122 (2017).

    Article  PubMed  Google Scholar 

  166. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 e116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schemann, M. & Mazzuoli, G. Multifunctional mechanosensitive neurons in the enteric nervous system. Auton. Neurosci. 153, 21–25 (2010).

    Article  PubMed  Google Scholar 

  168. Gregersen, H. & Kassab, G. Biomechanics of the gastrointestinal tract. Neurogastroenterol. Mot. 8, 277–297 (1996).

    Article  CAS  Google Scholar 

  169. Vaishnav, R. N. & Vossoughi, J. Residual stress and strain in aortic segments. J. Biomech. 20, 235–239 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Mayo Clinic Enteric NeuroScience Program (ENSP) group (G. Farrugia, J. H. Szurszewski, S. J. Gibbons and D. R. Linden), P. Gottlieb (SUNY, Buffalo, NJ, USA) for their constructive feedback, and L. Busby for administrative assistance. NIH support is acknowledged for GM065841, DK128913 (A.M.-P.), and DK052766, DK106456, DK100223 (A.B.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Arthur Beyder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks L. Ashley Blackshaw, Stuart Brierley and Hongzhen Hu for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanosensors

Proteins directly involved in converting a mechanical stimulus into an intracellular electrochemical signal, for example, mechanogated ion channels that convert mechanical forces into an ionic flow.

Signal amplification

Intracellular signalling steps between the primary signal generated by the mechanosensor and the final cellular output.

Mechanotransducers

Proteins that amplify the signals generated by the mechanosensors and conduct the downstream cellular signalling in response to force.

Non-specialized mechanosensory cells

Cells with a given non-mechanosensory primary function that use mechanosensors to sense mechanical stimuli and tune their own function in response to the physical state of their environment.

Specialized mechanoreceptors

Cells whose primary function is the conversion of a mechanical stimulus into a physiological signal that influences the behaviour of other cells.

Receptor current

Ionic current generated during sensory transduction, such as the opening of the mechanogated ion channels.

Generator potentials

Transmembrane electrical potentials or voltage shifts due to receptor current that engage voltage-sensing transducer amplification elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado-Perez, A., Beyder, A. Gut feelings: mechanosensing in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 19, 283–296 (2022). https://doi.org/10.1038/s41575-021-00561-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00561-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing