Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Measuring and interpreting transposable element expression

Abstract

Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene–TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TE classes and their intermediates.
Fig. 2: Postintegration alterations and TE consensus sequences.
Fig. 3: Origins of TE-derived transcripts.
Fig. 4: Origins of ambiguous mapping.
Fig. 5: Recent strategies to measure TE expression from RNA-seq data.
Fig. 6: Challenges associated with the study of TE transcription.

Similar content being viewed by others

References

  1. Chénais, B., Caruso, A., Hiard, S. & Casse, N. The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene 509, 7–15 (2012).

    PubMed  Google Scholar 

  2. Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    CAS  PubMed  Google Scholar 

  3. Faulkner, G. J. & Garcia-Perez, J. L. L1 Mosaicism in mammals: extent, effects, and evolution. Trends Genet. 33, 802–816 (2017).

    CAS  PubMed  Google Scholar 

  4. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    CAS  PubMed  Google Scholar 

  5. Payer, L. M. & Burns, K. H. Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019).

    CAS  PubMed  Google Scholar 

  6. Tam, O. H., Ostrow, L. W. & Gale Hammell, M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob. DNA 10, 32 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Sotero-Caio, C. G., Platt, R. N. II, Suh, A. & Ray, D. A. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho, J. & Paszkowski, J. Regulation of rice root development by a retrotransposon acting as a microRNA sponge. eLife 6, 796 (2017).

    Google Scholar 

  9. Brattås, P. L. et al. TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep. 18, 1–11 (2017).

    PubMed  Google Scholar 

  10. Petri, R. et al. LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet. 15, e1008036 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kashkush, K., Feldman, M. & Levy, A. A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat. Genet. 33, 102–106 (2003).

    CAS  PubMed  Google Scholar 

  12. Percharde, M. et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Conte, C., Dastugue, B. & Vaury, C. Promoter competition as a mechanism of transcriptional interference mediated by retrotransposons. EMBO J. 21, 3908–3916 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

    CAS  PubMed  Google Scholar 

  15. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    CAS  PubMed  Google Scholar 

  17. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Goic, B. et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat. Immunol. 14, 396–403 (2013).

    CAS  PubMed  Google Scholar 

  19. Bourgeois, Y. & Boissinot, S. On the population dynamics of junk: a review on the population genomics of transposable elements. Genes 10, 419–423 (2019).

    CAS  PubMed Central  Google Scholar 

  20. Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78–87 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, C. R. L., Burns, K. H. & Boeke, J. D. Active transposition in genomes. Annu. Rev. Genet. 46, 651–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mills, R. E., Bennett, E. A., Iskow, R. C. & Devine, S. E. Which transposable elements are active in the human genome? Trends Genet. 23, 183–191 (2007).

    CAS  PubMed  Google Scholar 

  23. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tubio, J. M. C. et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Martin, B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020). Tubio et al. (2014), Gardner et al. (2017) and Rodriguez-Martin et al. (2020) identify progenitor L1 elements active in humans from whole-genome sequencing using 3′ transductions and internal SNPs in L1 sequences.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deininger, P. L., Batzer, M. A., Hutchison, C. A. & Edgell, M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307–311 (1992).

    CAS  PubMed  Google Scholar 

  29. Jacobs, F. M. J. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Imbeault, M., Helleboid, P.-Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

    CAS  PubMed  Google Scholar 

  31. Sanchez-Luque, F. J. et al. LINE-1 evasion of epigenetic repression in humans. Mol. Cell 75, 590–604 (2019).

    CAS  PubMed  Google Scholar 

  32. Boissinot, S., Entezam, A., Young, L., Munson, P. J. & Furano, A. V. The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 14, 1221–1231 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016). This study resequenced all non-reference L1 elements in a colon cancer case to identify internal diagnostic SNPs and subsequently which elements are expressed in the sample.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chalopin, D., Naville, M., Plard, F., Galiana, D. & Volff, J.-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol. Evol. 7, 567–580 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5, e15716 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. McCullers, T. J. & Steiniger, M. Transposable elements in Drosophila. Mob. Genet. Elem. 7, 1–18 (2017).

    CAS  Google Scholar 

  37. Vitte, C. & Panaud, O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet. Genome Res. 110, 91–107 (2005).

    CAS  PubMed  Google Scholar 

  38. Hawkins, J. S., Proulx, S. R., Rapp, R. A. & Wendel, J. F. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl Acad. Sci. USA 106, 17811–17816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapusta, A., Suh, A. & Feschotte, C. Dynamics of genome size evolution in birds and mammals. Proc. Natl Acad. Sci. USA 114, E1460–E1469 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goerner-Potvin, P. & Bourque, G. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688–704 (2018).

    CAS  PubMed  Google Scholar 

  41. Vendrell-Mir, P. et al. A benchmark of transposon insertion detection tools using real data. Mob. DNA 10, 53 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Neill, K., Brocks, D. & Hammell, M. G. Mobile genomics: tools and techniques for tackling transposons. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190345 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ewing, A. D. & Kazazian, H. H. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20, 1262–1270 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maksakova, I. A. et al. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet. 2, e2 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y., Maksakova, I. A., Gagnier, L., van de Lagemaat, L. N. & Mager, D. L. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet. 4, e1000007 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Nellåker, C. et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 13, R45 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Richardson, S. R. et al. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res. 27, 1395–1405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Carpentier, M.-C. et al. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun. 10, 24 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Feusier, J. et al. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 29, 1567–1577 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rech, G. E. et al. Stress response, behavior, and development are shaped by transposable element-induced mutations in Drosophila. PLoS Genet. 15, e1007900 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. González, J., Karasov, T. L., Messer, P. W. & Petrov, D. A. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet. 6, e1000905 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Payer, L. M. et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl Acad. Sci. USA 114, E3984–E3992 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kazazian, H. H. Jr & Moran, J. V. Mobile DNA in health and disease. N. Engl. J. Med. 377, 361–370 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Seleme, M. D. C. et al. Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc. Natl Acad. Sci. USA 103, 6611–6616 (2006). Seleme et al. (2006) and Sanchez-Luque et al. (2019) show that a given L1 locus can exhibit internal sequence variation leading to differences in retrotransposition activity between individuals.

    CAS  PubMed  Google Scholar 

  56. Swergold, G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Thompson, P. J., Macfarlan, T. S. & Lorincz, M. C. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62, 766–776 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mighell, A. J., Markham, A. F. & Robinson, P. A. Alu sequences. FEBS Lett. 417, 1–5 (1997).

    CAS  PubMed  Google Scholar 

  59. Hancks, D. C., Ewing, A. D., Chen, J. E., Tokunaga, K. & Kazazian, H. H. Exon-trapping mediated by the human retrotransposon SVA. Genome Res. 19, 1983–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Honigman, A., Bar-Shira, A., Silberberg, H. & Panet, A. Generation of a uniform 3’ end RNA of murine leukemia virus. J. Virol. 53, 330–334 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dombroski, B. A., Mathias, S. L., Nanthakumar, E., Scott, A. F. & Kazazian, H. H. Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    CAS  PubMed  Google Scholar 

  62. Conti, A. et al. Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data. Nucleic Acids Res. 43, 817–835 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Holmes, S. E., Dombroski, B. A., Krebs, C. M., Boehm, C. D. & Kazazian, H. H. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat. Genet. 7, 143–148 (1994).

    CAS  PubMed  Google Scholar 

  64. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

    CAS  PubMed  Google Scholar 

  65. McKerrow, W. & Fenyö, D. L1EM: A tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics 544, 115 (2019).

    Google Scholar 

  66. Pickeral, O. K., Makałowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Transduction of 3’-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657 (2000).

    CAS  PubMed  Google Scholar 

  68. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  Google Scholar 

  69. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Damert, A. et al. 5’-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res. 19, 1992–2008 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Eickbush, D. G. & Eickbush, T. H. R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol. Cell. Biol. 30, 3142–3150 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363–366 (2003).

    CAS  PubMed  Google Scholar 

  73. Schrom, E.-M., Moschall, R., Schuch, A. & Bodem, J. Regulation of retroviral polyadenylation. Adv. Virus Res. 85, 1–24 (2013).

    CAS  PubMed  Google Scholar 

  74. Belancio, V. P., Hedges, D. J. & Deininger, P. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 34, 1512–1521 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Teixeira, F. K. et al. PiRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552, 268–272 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kines, K. J., Sokolowski, M., DeHaro, D. L., Christian, C. M. & Belancio, V. P. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Nucleic Acids Res. 42, 10488–10502 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Saha, A. et al. A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. J. Virol. 89, 3922–3938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cruickshanks, H. A. & Tufarelli, C. Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 94, 397–406 (2009).

    CAS  PubMed  Google Scholar 

  80. Weber, B., Kimhi, S., Howard, G., Eden, A. & Lyko, F. Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29, 5775–5784 (2010).

    CAS  PubMed  Google Scholar 

  81. Li, J. et al. An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition. Nucleic Acids Res. 42, 4546–4562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Denli, A. M. et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163, 583–593 (2015). This is first study to use mass spectrometry data on a large scale to identify unknown TE chimeric proteins.

    CAS  PubMed  Google Scholar 

  83. Russo, J., Harrington, A. W. & Steiniger, M. Antisense transcription of retrotransposons in Drosophila: an origin of endogenous small interfering RNA precursors. Genetics 202, 107–121 (2016).

    CAS  PubMed  Google Scholar 

  84. Harrington, A. W. & Steiniger, M. Bioinformatic analyses of sense and antisense expression from terminal inverted repeat transposons in Drosophila somatic cells. FLY 10, 1–10 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Zingler, N. et al. Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. Genome Res. 15, 780–789 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Suzuki, J. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 5, e1000461 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Larson, P. A. et al. Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol. 16, e2003067 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Penzkofer, T. et al. L1Base 2 - more retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res. 45, D68–D73 (2017).

    CAS  PubMed  Google Scholar 

  89. Wirth, T., Glöggler, K., Baumruker, T., Schmidt, M. & Horak, I. Family of middle repetitive DNA sequences in the mouse genome with structural features of solitary retroviral long terminal repeats. Proc. Natl Acad. Sci. USA 80, 3327–3330 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mager, D. L. & Goodchild, N. L. Homologous recombination between the LTRs of a human retrovirus-like element causes a 5-kb deletion in two siblings. Am. J. Hum. Genet. 45, 848–854 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vitte, C. & Panaud, O. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20, 528–540 (2003).

    CAS  PubMed  Google Scholar 

  92. Cossu, R. M. et al. LTR Retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biol. Evol. 9, 3449–3462 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rebollo, R., Farivar, S. & Mager, D. L. C-GATE - catalogue of genes affected by transposable elements. Mob. DNA 3, 9 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013). Kapusta et al. (2013) and Kelley and Rinn (2012) discovered that a large fraction of lncRNA derives from TEs in vertebrates.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lu, X. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21, 423–425 (2014).

    CAS  PubMed  Google Scholar 

  97. Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    CAS  PubMed  Google Scholar 

  98. Izsvák, Z., Wang, J., Singh, M., Mager, D. L. & Hurst, L. D. Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity? BioEssays 38, 109–117 (2015).

    Google Scholar 

  99. Deininger, P. et al. A comprehensive approach to expression of L1 loci. Nucleic Acids Res. 45, e31 (2017).

    PubMed  Google Scholar 

  100. Navarro, F. C. P. et al. TeXP: Deconvolving the effects of pervasive and autonomous transcription of transposable elements. PLoS Comput. Biol. 15, e1007293 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jensen, T. H., Jacquier, A. & Libri, D. Dealing with pervasive transcription. Mol. Cell 52, 473–484 (2013).

    CAS  PubMed  Google Scholar 

  102. Lee, H., Zhang, Z. & Krause, H. M. Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet. 35, 892–902 (2019).

    CAS  PubMed  Google Scholar 

  103. Kim, T.-K., Hemberg, M. & Gray, J. M. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb. Perspect. Biol. 7, a018622 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Wassenegger, M., Heimes, S., Riedel, L. & Sänger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    CAS  PubMed  Google Scholar 

  105. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  106. Yang, N. & Kazazian, H. H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763–771 (2006).

    CAS  PubMed  Google Scholar 

  107. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 1451–1454 (2009).

    Google Scholar 

  108. Heras, S. R. et al. The Microprocessor controls the activity of mammalian retrotransposons. Nat. Struct. Mol. Biol. 20, 1173–1181 (2013).

    CAS  PubMed  Google Scholar 

  109. Cuerda-Gil, D. & Slotkin, R. K. Non-canonical RNA-directed DNA methylation. Nat. Plants 2, 567–568 (2016).

    Google Scholar 

  110. van de Lagemaat, L. N., Medstrand, P. & Mager, D. L. Multiple effects govern endogenous retrovirus survival patterns in human gene introns. Genome Biol. 7, R86 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. Berrens, R. V. et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Stem Cell 21, 694–703.e7 (2017).

    CAS  Google Scholar 

  112. Gong, C., Tang, Y. & Maquat, L. E. mRNA-mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 20, 1214–1222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Skowronski, J. & Singer, M. F. Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. Proc. Natl Acad. Sci. USA 82, 6050–6054 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Belancio, V. P., Roy-Engel, A. M., Pochampally, R. R. & Deininger, P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res. 38, 3909–3922 (2010). Together with Deininger et al. (2017), this work shows that most of the L1 RNA detected in somatic cells is not unit-length RNA but is rather truncated L1 RNA or derives from co-transcription or pervasive transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Morillon, A., Bénard, L., Springer, M. & Lesage, P. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Mol. Cell. Biol. 22, 2078–2088 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    CAS  PubMed  Google Scholar 

  119. Pizarro, J. G. & Cristofari, G. Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front. Cell Dev. Biol. 4, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 344 (2016).

    Google Scholar 

  121. Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hohjoh, H. & Singer, M. F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Biczysko, W., Pienkowski, M., Solter, D. & Koprowski, H. Virus particles in early mouse embryos. J. Natl Cancer Inst. 51, 1041–1050 (1973).

    CAS  PubMed  Google Scholar 

  124. Kulpa, D. A. & Moran, J. V. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14, 3237–3248 (2005).

    CAS  PubMed  Google Scholar 

  125. Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Seifarth, W. et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J. Virol. 79, 341–352 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Picault, N. et al. Identification of an active LTR retrotransposon in rice. Plant. J. 58, 754–765 (2009).

    CAS  PubMed  Google Scholar 

  128. Horard, B. et al. Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4, 339–350 (2009).

    CAS  PubMed  Google Scholar 

  129. Reichmann, J. et al. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells. PLoS Comput. Biol. 8, e1002486 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gnanakkan, V. P. et al. TE-array–a high throughput tool to study transposon transcription. BMC Genomics 14, 869 (2013).

    PubMed  PubMed Central  Google Scholar 

  131. Faulkner, G. J. et al. A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91, 281–288 (2008).

    CAS  PubMed  Google Scholar 

  132. Chung, N. et al. Transcriptome analyses of tumor-adjacent somatic tissues reveal genes co-expressed with transposable elements. Mob. DNA 10, 15 (2019). Chung et al. (2019) and McKerrow and Fenyö (2019) propose strategies based on the EM algorithm to discriminate and quantify TE transcript types.

    Google Scholar 

  133. Sexton, C. E. & Han, M. V. Paired-end mappability of transposable elements in the human genome. Mob. DNA 10, 29 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Teissandier, A., Servant, N., Barillot, E. & Bourc’his, D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA 10, 52 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Lerat, E., Fablet, M., Modolo, L., Lopez-Maestre, H. & Vieira, C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 45, 1–12 (2017).

    Google Scholar 

  137. Romero-Soriano, V. et al. Transposable element misregulation is linked to the divergence between parental piRNA pathways in Drosophila hybrids. Genome Biol. Evol. 9, 1450–1470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zeng, Z. et al. Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen Heterobasidion parviporum. Epigenetics 14, 16–40 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. Song, H. et al. Rapid evolution of piRNA pathway and its transposon targets in Japanese flounder (Paralichthys olivaceus). Comp. Biochem. Physiol. Part. D Genomics Proteom. 31, 100609 (2019).

    CAS  Google Scholar 

  140. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dobin, A. et al. STAR - ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  144. Criscione, S. W., Zhang, Y., Thompson, W., Sedivy, J. M. & Neretti, N. Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15, 583 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Valdebenito-Maturana, B. & Riadi, G. TEcandidates: prediction of genomic origin of expressed transposable elements using RNA-seq data. Bioinformatics 34, 3915–3916 (2018).

    CAS  PubMed  Google Scholar 

  147. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

    CAS  Google Scholar 

  148. Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599 (2015). TEtranscripts is the first application of the EM algorithm to TE RNA-seq analyses, and one of the most popular software packages dedicated to this task since its release.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bendall, M. L. et al. Telescope: characterization of the retrotranscriptome by accurate estimation of transposable element expression. PLoS Comput. Biol. 15, e1006453 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS  PubMed  Google Scholar 

  151. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Jeong, H.-H., Yalamanchili, H. K., Guo, C., Shulman, J. M. & Liu, Z. An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac. Symp. Biocomput. 23, 168–179 (2018).

    PubMed  Google Scholar 

  153. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Philippe, C. et al. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 5, 166 (2016). This study proposes the first strategy to profile the expression of reference and non-reference L1 elements at the locus level by integrating targeted resequencing of L1 elements (ATLAS sequencing), RNA-seq data and ChIP–seq data.

    Google Scholar 

  155. Ewing, A. D. Transposable element detection from whole genome sequence data. Mob. DNA 6, 24 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. Mir, A. A., Philippe, C. & Cristofari, G. euL1db: the European database of L1HS retrotransposon insertions in humans. Nucleic Acids Res. 43, D43–D47 (2015).

    CAS  PubMed  Google Scholar 

  157. Tokuyama, M. et al. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl Acad. Sci. USA 115, 12565–12572 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Ansaloni, F., Scarpato, M., Di Schiavi, E., Gustincich, S. & Sanges, R. Exploratory analysis of transposable elements expression in the C. elegans early embryo. BMC Bioinforma. 20, 484 (2019).

    CAS  Google Scholar 

  159. Kaul, T., Morales, M. E., Sartor, A. O., Belancio, V. P. & Deininger, P. Comparative analysis on the expression of L1 loci using various RNA-Seq preparations. Mob. DNA 11, 860 (2020).

    Google Scholar 

  160. Faulkner, G. J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563–571 (2009). This article offers the first genome-wide description of TE transcription across multiple tissues using CAGE data from the PHANTOM project.

    CAS  PubMed  Google Scholar 

  161. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).Brocks et al. (2017), Roulois et al. (2015) and Chiappinelli et al. (2015) reveal mechanisms by which the reactivation of TE with drugs targeting epigenetic pathways can kill cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Batut, P., Dobin, A., Plessy, C., Carninci, P. & Gingeras, T. R. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res. 23, 169–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rangwala, S. H., Zhang, L. & Kazazian, H. H. Many LINE1 elements contribute to the transcriptome of human somatic cells. Genome Biol. 10, R100 (2009).

    PubMed  PubMed Central  Google Scholar 

  164. Macia, A. et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol. Cell. Biol. 31, 300–316 (2011).

    CAS  PubMed  Google Scholar 

  165. Lock, F. E. et al. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 111, E3534–E3543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    CAS  PubMed  Google Scholar 

  167. Wheelan, S. J., Aizawa, Y., Han, J. S. & Boeke, J. D. Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res. 15, 1073–1078 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Shen, S. et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc. Natl Acad. Sci. USA 108, 2837–2842 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Butelli, E. et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant. Cell 24, 1242–1255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Ong-Abdullah, M. et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525, 533–537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    CAS  PubMed  Google Scholar 

  172. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019). Attig et al. (2019) and Jang et al. (2019) provides a systematic review of tumour-specific transcripts and antigens derived from TEs.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Nigumann, P., Redik, K., Mätlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    CAS  PubMed  Google Scholar 

  175. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    CAS  PubMed  Google Scholar 

  176. Lipatov, M., Lenkov, K., Petrov, D. A. & Bergman, C. M. Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol. 3, 24 (2005).

    PubMed  PubMed Central  Google Scholar 

  177. Ha, H.-S. et al. Identification and characterization of transposable element-mediated chimeric transcripts from porcine Refseq and EST databases. Genes. Genom. 34, 409–414 (2012).

    CAS  Google Scholar 

  178. Criscione, S. W. et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 17, 463 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. Pinson, M.-E., Pogorelcnik, R., Court, F., Arnaud, P. & Vaurs-Barrière, C. CLIFinder: identification of LINE-1 chimeric transcripts in RNA-seq data. Bioinformatics 34, 688–690 (2017).

    Google Scholar 

  180. Babaian, A. et al. LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics 35, 3839–3841 (2019).

    CAS  PubMed  Google Scholar 

  181. Wang, T. et al. A novel analytical strategy to identify fusion transcripts between repetitive elements and protein coding-exons using RNA-Seq. PLoS One 11, e0159028 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Larrosa, R., Arroyo, M., Bautista, R., López-Rodríguez, C. M. & Claros, M. G. NearTrans can identify correlated expression changes between retrotransposons and surrounding genes in human cancer. Bioinforma. Biomed. Eng. 10813, 373–382 (2018).

    CAS  Google Scholar 

  183. Karakülah, G., Arslan, N., Yandin, C. & Suner, A. TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ 7, e8192 (2019).

    PubMed  PubMed Central  Google Scholar 

  184. Decker, C. J. et al. dsRNA-Seq: identification of viral infection by purifying and sequencing dsRNA. Viruses 11, 943 (2019).

    CAS  PubMed Central  Google Scholar 

  185. Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Johnson, N. R., Yeoh, J. M., Coruh, C. & Axtell, M. J. Improved placement of multi-mapping small RNAs. G3 6, 2103–2111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Bousios, A., Gaut, B. S. & Darzentas, N. Considerations and complications of mapping small RNA high-throughput data to transposable elements. Mob. DNA 8, 3 (2017).

    PubMed  PubMed Central  Google Scholar 

  188. Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Rakocevic, G. et al. Fast and accurate genomic analyses using genome graphs. Nat. Genet. 51, 354–362 (2019).

    CAS  PubMed  Google Scholar 

  190. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sherman, R. M. & Salzberg, S. L. Pan-genomics in the human genome era. Nat. Rev. Genet. 21, 243–254 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Maringer, K. et al. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics 18, 101 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Davidson, A. D., Matthews, D. A. & Maringer, K. Proteomics technique opens new frontiers in mobilome research. Mob. Genet. Elem. 7, 1–9 (2017).

    Google Scholar 

  194. Ardeljan, D. et al. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob. DNA 11, 1–19 (2019).

    PubMed  PubMed Central  Google Scholar 

  195. Brocks, D., Chomsky, E., Mukamel, Z., Lifshitz, A. & Tanay, A. Single cell analysis reveals dynamics of transposable element transcription following epigenetic de-repression. BioRxiv https://doi.org/10.1101/462853 (2019).

  196. Shahid, S. & Slotkin, R. K. The current revolution in transposable element biology enabled by long reads. Curr. Opin. Genet. Dev. 54, 49–56 (2020).

    CAS  Google Scholar 

  197. Jiang, F. et al. Long-read direct RNA sequencing by 5’-cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol. 16, 950–959 (2019). This study provides the first use of direct RNA-seq by Oxford Nanopore technology to characterize the impact of TE transcription on the transcriptome of a non-model organism.

    PubMed  PubMed Central  Google Scholar 

  198. Debladis, E., Llauro, C., Carpentier, M.-C., Mirouze, M. & Panaud, O. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore sequencing technology. BMC Genomics 18, 537 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Zhou, W. et al. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res. 409, 860 (2019).

    Google Scholar 

  200. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS  PubMed  Google Scholar 

  202. Liu, Q. et al. Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10, 2449 (2019).

    PubMed  PubMed Central  Google Scholar 

  203. Liu, Q., Georgieva, D. C., Egli, D. & Wang, K. NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data. BMC Genomics 20, 78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Kutter, C., Jern, P. & Suh, A. Bridging gaps in transposable element research with single-molecule and single-cell technologies. Mob. DNA 9, 34 (2018).

    CAS  PubMed Central  Google Scholar 

  205. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Slotkin, R. K. The case for not masking away repetitive DNA. Mob. DNA 9, 15 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989).

    CAS  PubMed  Google Scholar 

  208. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    CAS  PubMed  Google Scholar 

  209. Piégu, B., Bire, S., Arensburger, P. & Bigot, Y. A survey of transposable element classification systems–a call for a fundamental update to meet the challenge of their diversity and complexity. Mol. Phylogenet. Evol. 86, 90–109 (2015).

    PubMed  Google Scholar 

  210. Curcio, M. J. & Derbyshire, K. M. The outs and ins of transposition: from mu to kangaroo. Nat. Rev. Mol. Cell Biol. 4, 865–877 (2003).

    CAS  PubMed  Google Scholar 

  211. Hubley, R. et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 44, D81–D89 (2016).

    CAS  PubMed  Google Scholar 

  212. Amselem, J. et al. RepetDB: a unified resource for transposable element references. Mob. DNA 10, 6–8 (2019).

    PubMed  PubMed Central  Google Scholar 

  213. Herquel, B. et al. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat. Struct. Mol. Biol. 20, 339–346 (2013).

    CAS  PubMed  Google Scholar 

  214. Fadloun, A. et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat. Struct. Mol. Biol. 20, 332–338 (2013).

    CAS  PubMed  Google Scholar 

  215. Derrien, T. et al. Fast computation and applications of genome mappability. PLoS One 7, e30377 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap: quantifying genome and methylome mappability. Nucleic Acids Res. 46, e120 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the many colleagues who have made significant contributions to the field but whose work could not be cited or discussed owing to space limitations. The authors are grateful to P. A. Defossez and A. Doucet for critical reading of the manuscript. This work was supported by grants to G.C. from the Fondation pour la Recherche Médicale (DEQ20180339170), the Agence Nationale de la Recherche (LABEX SIGNALIFE, ANR-11-LABX-0028-01; RetroMet, ANR-16-CE12-0020; ImpacTE, ANR-19-CE12-0032), the Canceropôle Provence–Alpes–Côte d’Azur, the French National Cancer Institute (INCa) and the Provence–Alpes–Côte d’Azur Region, CNRS (GDR 3546), and the University Hospital Federation (FHU) OncoAge.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gael Cristofari.

Ethics declarations

Competing interests

G.C. is an unpaid associate editor of the journal Mobile DNA (Springer Nature). S.L. declares no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G. J. Faulkner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autonomous TE unit transcription

TE transcription driven by its own internal promoter.

Chimeric transcripts

Transcripts containing both TE and non-TE (typically a gene) sequences.

Co-transcription

Intronic TE expression through the expression of its surrounding gene without the implication of the promoter activity of the TE. Synonymous with ‘readthrough transcription’.

Polymorphic

A term often used for TE insertional polymorphisms, whereby a TE insertion can be present or absent at a given locus or allele in a subset of individuals from the same species.

Positive selection

A type of natural selection that promotes the spread of a beneficial trait or genetic variant within a given population.

Long terminal repeat (LTR) retrotransposons

A class of retrotransposons that contains two long repeated sequences in direct orientation at both ends.

TE unit-length transcripts

Full-length TE transcripts that can serve as a template for reverse transcription to produce a new intact copy.

Pervasive transcription

Transcription of regions well beyond the boundaries of known genes.

Multimappers

Sequencing reads that map ambiguously at multiple locations in the reference genome.

Unimappers

Sequencing reads that can map non-ambiguously to a single location in the reference genome.

k-mers

Short sequences with a length of k bases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanciano, S., Cristofari, G. Measuring and interpreting transposable element expression. Nat Rev Genet 21, 721–736 (2020). https://doi.org/10.1038/s41576-020-0251-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0251-y

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics