Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mast cells in human and experimental cardiometabolic diseases

Key Points

  • The number of activated mast cells is increased in the coronary arteries, myocardium, aorta, and adipose tissue of patients with cardiometabolic diseases and associated complications

  • Mast-cell activation occurs when ligands such as IgE, IgG, lipopolysaccharide, complement peptides C3a and C5a, substance P, or neuropeptide Y interact with their respective receptors on the cell surface

  • Mast-cell activation results in the release of chemokines, cytokines, histamine, proteases, and many other mediators, which can contribute to the pathogenesis of human and experimental cardiometabolic diseases

  • Genetic depletion or pharmacological inactivation of mast cells confers protection from cardiometabolic pathologies in animal models

  • Genetic deficiency or pharmacological inhibition of mast cell mediators also confers protection from cardiometabolic pathologies in animal models

  • Common anti-allergy drugs that either stabilize mast cells or prevent their activation (for example, anti-IgE antibodies) are effective in ameliorating cardiometabolic diseases in animal models and potentially in humans

Abstract

Mast cells, like many other types of inflammatory cell, perform pleiotropic roles in cardiometabolic diseases such as atherosclerosis, abdominal aortic aneurysms, obesity, and diabetes mellitus, as well as complications associated with these diseases. Low numbers of mast cells are present in the heart, aorta, and adipose tissue of healthy humans, but patients with cardiometabolic diseases and animals with experimentally-induced cardiometabolic pathologies have high numbers of mast cells with increased activity in the affected tissues. Mediators released by the activated mast cells, such as chemokines, cytokines, growth factors, heparin, histamine, and proteases, not only function as biomarkers of cardiometabolic diseases, but might also directly contribute to the pathogenesis of such diseases. Mast-cell mediators impede the functions of vascular cells, the integrity of the extracellular matrix, and the activity of other inflammatory cells, thereby contributing to the pathobiology of the conditions at multiple levels. In mouse models, mast-cell activation aggravates the progression of various cardiometabolic pathologies, whereas a genetic deficiency or pharmacological stabilization of mast cells, or depletion or inhibition of specific mast-cell mediators, tends to delay the progression of such conditions. Pharmacological inhibition of mast-cell activation or their targeted effector functions offers potential novel therapeutic strategies for patients with cardiometabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mast cells in normal and atherosclerotic lesions.
Figure 2: Pathways leading to the activation of mast cells during the development and progression of atherosclerosis.
Figure 3: Mast-cell-mediated foam-cell formation in the arterial intima on activation.
Figure 4: Proatherogenic effects of mast cells and their important mediators in the arterial wall.
Figure 5: Mast cells and their mediators in the pathogenesis of AAAs.
Figure 6: Mast cells in obese and lean individuals.
Figure 7: Localization of mast cells and their progenitors in lean and obese WAT of mice.

Similar content being viewed by others

References

  1. Constantinides, P. Mast cells in human atherosclerosis. Science 120, 31–32 (1954).

    Article  PubMed  Google Scholar 

  2. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kokkonen, J. O. & Kovanen, P. T. Low density lipoprotein degradation by rat mast cells. Demonstration of extracellular proteolysis caused by mast cell granules. J. Biol. Chem. 260, 14756–14763 (1985).

    CAS  PubMed  Google Scholar 

  4. Kokkonen, J. O. & Kovanen, P. T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc. Natl Acad. Sci. USA 84, 2287–2291 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, M., Lindstedt, L. K. & Kovanen, P. T. Mast cell-mediated inhibition of reverse cholesterol transport. Arterioscler. Thromb. 12, 1329–1335 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).

    Article  PubMed  Google Scholar 

  7. Qiao, Q., Gao, W., Zhang, L., Nyamdorj, R. & Tuomilehto, J. Metabolic syndrome and cardiovascular disease. Ann. Clin. Biochem. 44, 232–263 (2007).

    Article  PubMed  Google Scholar 

  8. Poglio, S. et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28, 2065–2072 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Libby, P. Changing concepts of atherogenesis. J. Intern. Med. 247, 349–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kovanen, P. T., Kaartinen, M. & Paavonen, T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92, 1084–1088 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Kaartinen, M., Penttila, A. & Kovanen, P. T. Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler. Thromb. 14, 966–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Atkinson, J. B., Harlan, C. W., Harlan, G. C. & Virmani, R. The association of mast cells and atherosclerosis: a morphologic study of early atherosclerotic lesions in young people. Hum. Pathol. 25, 154–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Ribatti, D., Levi-Schaffer, F. & Kovanen, P. T. Inflammatory angiogenesis in atherogenesis —a double-edged sword. Ann. Med. 40, 606–621 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Willems, S. et al. Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur. Heart J. 34, 3699–3706 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Moreno, M. et al. Circulating tryptase as a marker for subclinical atherosclerosis in obese subjects. PLoS ONE 9, e97014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramalho, L. S. et al. Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases. Ann. Diagn. Pathol. 17, 28–31 (2013).

    Article  PubMed  Google Scholar 

  19. Pastorello, E. A. et al. Serum tryptase: a new biomarker in patients with acute coronary syndrome? Int. Arch. Allergy Immunol. 164, 97–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 13, 719–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bot., I. et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115, 2516–2525 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Duttlinger, R. et al. The Wsh and Ph mutations affect the c-kit expression profile: c-kit misexpression in embryogenesis impairs melanogenesis in Wsh and Ph mutant mice. Proc. Natl Acad. Sci. USA 92, 3754–3758 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heikkila, H. M. et al. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J. Cell. Biochem. 109, 615–623 (2010).

    PubMed  Google Scholar 

  24. Tang, Y. L. et al. Mast cell degranulator compound 48–80 promotes atherosclerotic plaque in apolipoprotein E knockout mice with perivascular common carotid collar placement. Chin. Med. J. (Engl.) 122, 319–325 (2009).

    CAS  Google Scholar 

  25. Wang, J. et al. Pharmaceutical stabilization of mast cells attenuates experimental atherogenesis in low-density lipoprotein receptor-deficient mice. Atherosclerosis 229, 304–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, T., Chen, W. Q., Zhang, C., Zhao, Y. X. & Zhang, Y. Chymase activity is closely related with plaque vulnerability in a hamster model of atherosclerosis. Atherosclerosis 207, 59–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Bot., I. et al. Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE−/− mice. Cardiovasc. Res. 89, 244–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Kovanen, P. T., Manttari, M., Palosuo, T., Manninen, V. & Aho, K. Prediction of myocardial infarction in dyslipidemic men by elevated levels of immunoglobulin classes A, E, and G, but not M. Arch. Intern. Med. 158, 1434–1439 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Korkmaz, M. E. et al. Levels of IgE in the serum of patients with coronary arterial disease. Int. J. Cardiol. 31, 199–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, e1001113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/- mice. J. Clin. Invest. 121, 3564–3577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Foks, A. C. et al. Interruption of the OX40-OX40 ligand pathway in LDL receptor-deficient mice causes regression of atherosclerosis. J. Immunol. 191, 4573–4580 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. den Dekker, W. K. et al. Mast cells induce vascular smooth muscle cell apoptosis via a toll-like receptor 4 activation pathway. Arterioscler. Thromb. Vasc. Biol. 32, 1960–1969 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Lappalainen, J., Lindstedt, K. A., Oksjoki, R. & Kovanen, P. T. OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis 214, 357–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Tsimikas, S. et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol. 41, 360–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Willems, S. et al. Circulating immunoglobulins are not associated with intraplaque mast cell number and other vulnerable plaque characteristics in patients with carotid artery stenosis. PLoS ONE 9, e88984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao, L., Starzyk, R. M. & Granger, D. N. Molecular determinants of oxidized low-density lipoprotein-induced leukocyte adhesion and microvascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 17, 437–444 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Meng, Z. et al. Oxidized low-density lipoprotein induces inflammatory responses in cultured human mast cells via Toll-like receptor 4. Cell Physiol. Biochem. 31, 842–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bot., M. et al. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation. J. Lipid Res. 54, 1265–1274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bot., M. et al. Atherosclerotic lesion progression changes lysophosphatidic acid homeostasis to favor its accumulation. Am. J. Pathol. 176, 3073–3084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laine, P., Naukkarinen, A., Heikkila, L., Penttila, A. & Kovanen, P. T. Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 101, 1665–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bot., I. et al. The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circ. Res. 106, 89–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Theoharides, T. C. & Cochrane, D. E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol. 146, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Alevizos, M., Karagkouni, A., Panagiotidou, S., Vasiadi, M. & Theoharides, T. C. Stress triggers coronary mast cells leading to cardiac events. Ann. Allergy Asthma Immunol. 112, 309–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lagraauw, H. M. et al. Vascular neuropeptide Y contributes to atherosclerotic plaque progression and perivascular mast cell activation. Atherosclerosis 235, 196–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Oksjoki, R. et al. Receptors for the anaphylatoxins C3a and C5a are expressed in human atherosclerotic coronary plaques. Atherosclerosis 195, 90–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Schepers, A. et al. Inhibition of complement component C3 reduces vein graft atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Circulation 114, 2831–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. de Vries, M. R. et al. Complement factor C5a as mast cell activator mediates vascular remodelling in vein graft disease. Cardiovasc. Res. 97, 311–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Kovanen, P. T. Mast cells in human fatty streaks and atheromas: implications for intimal lipid accumulation. Curr. Opin. Lipidol. 7, 281–286 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Lee-Rueckert, M. & Kovanen, P. T. Extracellular modifications of HDL in vivo and the emerging concept of proteolytic inactivation of prebeta-HDL. Curr. Opin. Lipidol. 22, 394–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kokkonen, J. O. Stimulation of rat peritoneal mast cells enhances uptake of low density lipoproteins by rat peritoneal macrophages in vivo. Atherosclerosis 79, 213–223 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Kaartinen, M., Penttilä, A. & Kovanen, P. T. Extracellular mast cell granules carry apolipoprotein B-100-containing lipoproteins into phagocytes in human arterial intima. Functional coupling of exocytosis and phagocytosis in neighboring cells. Arterioscler. Thromb. Vasc. Biol. 15, 2047–2054 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Lee-Rueckert, M. et al. Mast cell activation in vivo impairs the macrophage reverse cholesterol transport pathway in the mouse. Arterioscler. Thromb. Vasc. Biol. 31, 520–527 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Kovanen, P. T. Mast cells: multipotent local effector cells in atherothrombosis. Immunol. Rev. 217, 105–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Kunder, C. A., St. John, A. L. & Abraham, S. N. Mast cell modulation of the vascular and lymphatic endothelium. Blood 118, 5383–5393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J. et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS ONE 6, e14525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kinoshita, M., Okada, M., Hara, M., Furukawa, Y. & Matsumori, A. Mast cell tryptase in mast cell granules enhances MCP-1 and interleukin-8 production in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 25, 1858–1863 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Heikkila, H. M. et al. Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-alpha. Arterioscler. Thromb. Vasc. Biol. 28, 309–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Leskinen, M. J., Lindstedt, K. A., Wang, Y. & Kovanen, P. T. Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler. Thromb. Vasc. Biol. 23, 238–243 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Gautier, E. L. et al. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119, 1795–1804 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kolodgie, F. D. et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am. J. Pathol. 157, 1259–1268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bombeli, T., Karsan, A., Tait, J. F. & Harlan, J. M. Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429–2442 (1997).

    CAS  PubMed  Google Scholar 

  64. Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075–1080 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bennett, M. R., Evan, G. I. & Schwartz, S. M. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J. Clin. Invest. 95, 2266–2274 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mayranpaa, M. I., Heikkila, H. M., Lindstedt, K. A., Walls, A. F. & Kovanen, P. T. Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coron. Artery Dis. 17, 611–621 (2006).

    Article  PubMed  Google Scholar 

  67. Johnson, J. L., Jackson, C. L., Angelini, G. D. & George, S. J. Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 18, 1707–1715 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Ihara, M. et al. Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension 33, 1399–1405 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Balcells, E., Meng, Q. C., Johnson, W. H. Jr, Oparil, S. & Dell'Italia, L. J. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am. J. Physiol. 273, H1769–H1774 (1997).

    CAS  PubMed  Google Scholar 

  70. Tani, K. et al. Chymase is a potent chemoattractant for human monocytes and neutrophils. J. Leukoc. Biol. 67, 585–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, T. et al. Lentivirus-mediated RNA interference of chymase increases the plaque stability in atherosclerosis in vivo. Exp. Mol. Pathol. 95, 51–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zhi, X. et al. Tryptase promotes atherosclerotic plaque hemorrhage in ApoE−/− mice. PLoS ONE 8, e60960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lappalainen, H., Laine, P., Pentikainen, M. O., Sajantila, A. & Kovanen, P. T. Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator. Arterioscler. Thromb. Vasc. Biol. 24, 1880–1885 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Grutzkau, A. et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell 9, 875–884 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Satoh, T. et al. Histamine as an activator of cell growth and extracellular matrix reconstruction for human vascular smooth muscle cells. Atherosclerosis 110, 53–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Clejan, S. et al. Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J. Cell. Mol. Med. 6, 583–592 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rozenberg, I. et al. Histamine H1 receptor promotes atherosclerotic lesion formation by increasing vascular permeability for low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 30, 923–930 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Raveendran, V. V. et al. Chronic ingestion of H1-antihistamines increase progression of atherosclerosis in apolipoprotein E−/− mice. PLoS ONE 9, e102165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wezel, A. et al. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis 241, 289–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Ionita, M. G. et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler. Thromb. Vasc. Biol. 30, 1842–1848 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Rotzius, P. et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE−/− mice. Am. J. Pathol. 177, 493–500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122, 1837–1845 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Miyazawa, N., Umemura, K., Kondo, K. & Nakashima, M. Effects of pemirolast and tranilast on intimal thickening after arterial injury in the rat. J. Cardiovasc. Pharmacol. 30, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Ohsawa, H. et al. Preventive effects of an antiallergic drug, pemirolast potassium, on restenosis after percutaneous transluminal coronary angioplasty. Am. Heart J. 136, 1081–1087 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Ohsawa, H. et al. Preventive effect of an antiallergic drug, pemirolast potassium, on restenosis after stent placement: quantitative coronary angiography and intravascular ultrasound studies. J. Cardiol. 42, 13–22 (2003).

    PubMed  Google Scholar 

  86. Shiota, N. et al. Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. Circulation 99, 1084–1090 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Kikuchi, S., Umemura, K., Kondo, K. & Nakashima, M. Tranilast suppresses intimal hyperplasia after photochemically induced endothelial injury in the rat. Eur. J. Pharmacol. 295, 221–227 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Tamai, H. et al. Impact of tranilast on restenosis after coronary angioplasty: tranilast restenosis following angioplasty trial (TREAT). Am. Heart J. 138, 968–975 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Tamai, H. et al. The impact of tranilast on restenosis after coronary angioplasty: the Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2). Am. Heart J. 143, 506–513 (2002).

    Article  PubMed  Google Scholar 

  90. Holmes, D. R. Jr. et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation 106, 1243–1250 (2002).

    Article  PubMed  Google Scholar 

  91. Takai, S. et al. A novel chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[,4-dioxo-1-phenyl-7-(2-pyridyloxy)]2-heptyl]acetamide (NK3201), suppressed intimal hyperplasia after balloon injury. J. Pharmacol. Exp. Ther. 304, 841–844 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Kishi, K. et al. The effects of chymase on matrix metalloproteinase-2 activation in neointimal hyperplasia after balloon injury in dogs. Hypertens. Res. 30, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wasse, H. et al. Increased plasma chymase concentration and mast cell chymase expression in venous neointimal lesions of patients with CKD and ESRD. Semin. Dial. 24, 688–693 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jin, D. et al. Effect of chymase inhibition on the arteriovenous fistula stenosis in dogs. J. Am. Soc. Nephrol. 16, 1024–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Fang, Y. I. et al. Marked increase in the histamine content of neointima after stent implantation of pig coronary artery and growth-promoting effects of histamine in cultured smooth muscle cells. Life Sci. 77, 241–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Sasaguri, Y. et al. Role of histamine produced by bone marrow-derived vascular cells in pathogenesis of atherosclerosis. Circ. Res. 96, 974–981 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Miyazawa, N. et al. Role of histamine H1 and H2 receptor antagonists in the prevention of intimal thickening. Eur. J. Pharmacol. 362, 53–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Rogosnitzky, M., Danks, R. & Kardash, E. Therapeutic potential of tranilast, an anti-allergy drug, in proliferative disorders. Anticancer Res. 32, 2471–2478 (2012).

    CAS  PubMed  Google Scholar 

  99. Kent, K. C. Clinical practice. Abdominal aortic aneurysms. N. Engl. J. Med. 371, 2101–2108 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Swedenborg, J., Mayranpaa, M. I. & Kovanen, P. T. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 31, 734–740 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Furubayashi, K. et al. The significance of chymase in the progression of abdominal aortic aneurysms in dogs. Hypertens. Res. 30, 349–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Mayranpaa, M. I. et al. Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J. Vasc. Surg. 50, 388–395 (2009).

    Article  PubMed  Google Scholar 

  103. Nishimoto, M. et al. Increased local angiotensin II formation in aneurysmal aorta. Life Sci. 71, 2195–2205 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Tsunemi, K. et al. Possible roles of angiotensin II-forming enzymes, angiotensin converting enzyme and chymase-like enzyme, in the human aneurysmal aorta. Hypertens. Res. 25, 817–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Tsuruda, T. et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ. Res. 102, 1368–1377 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Anvari, M. S. et al. Do adventitial mast cells contribute to the pathogenesis of ascending thoracic aorta aneurysm? Int. J. Surg. Pathol. 20, 474–479 (2012).

    Article  PubMed  Google Scholar 

  107. Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Invest. 117, 3359–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, J. et al. Chemokine (C-C motif) receptor 2 mediates mast cell migration to abdominal aortic aneurysm lesions in mice. Cardiovasc. Res. 96, 543–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun, J. et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 120, 973–982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, J. et al. Mast cell tryptase deficiency attenuates mouse abdominal aortic aneurysm formation. Circ. Res. 108, 1316–1327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, J. et al. Cathepsin G deficiency reduces periaortic calcium chloride injury-induced abdominal aortic aneurysms in mice. J. Vasc. Surg. http://dx.doi.org/10.1016/j.jvs.2014.06.004.

  112. Tsunemi, K. et al. A specific chymase inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1,6-dihydropyrimidine-1-yl)-N-[[3,4-dioxo-1-phenyl-7-(2-pyridyloxy)]-2-heptyl]acetamide (NK3201), suppresses development of abdominal aortic aneurysm in hamsters. J. Pharmacol. Exp. Ther. 309, 879–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, J. et al. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol. Med. 6, 952–969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wypasek, E. et al. Mast cells in human stenotic aortic valves are associated with the severity of stenosis. Inflammation 36, 449–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Syvaranta, S., Helske, S., Lappalainen, J., Kupari, M. & Kovanen, P. T. Lymphangiogenesis in aortic valve stenosis—novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 221, 366–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Syvaranta, S. et al. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler. Thromb. Vasc. Biol. 30, 1220–1227 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Soini, Y., Salo, T. & Satta, J. Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis. Hum. Pathol. 34, 756–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kwon, J. S. et al. The novel role of mast cells in the microenvironment of acute myocardial infarction. J. Mol. Cell. Cardiol. 50, 814–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Mina, Y. et al. Mast cell inhibition attenuates myocardial damage, adverse remodeling, and dysfunction during fulminant myocarditis in the rat. J. Cardiovasc. Pharmacol. Ther. 18, 152–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Melendez, G. C. et al. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells. Cardiovasc. Res. 92, 420–429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shore, S. A. Obesity and asthma: possible mechanisms. J. Allergy Clin. Immunol. 121, 1087–1093 (2008).

    Article  PubMed  Google Scholar 

  122. Hersoug, L. G. & Linneberg, A. The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance? Allergy 62, 1205–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Mito, N., Kitada, C., Hosoda, T. & Sato, K. Effect of diet-induced obesity on ovalbumin-specific immune response in a murine asthma model. Metabolism 51, 1241–1246 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Schwartz, L. B. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol. Allergy Clin. North Am. 26, 451–463 (2006).

    Article  PubMed  Google Scholar 

  125. Fenger, R. V. et al. Determinants of serum tryptase in a general population: the relationship of serum tryptase to obesity and asthma. Int. Arch. Allergy Immunol. 157, 151–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Divoux, A. et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 97, E1677–E1685 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Klein-Wieringa, I. R. et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann. Rheum. Dis. 70, 851–857 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Spencer, M. et al. Pioglitazone treatment reduces adipose tissue inflammation through reduction of mast cell and macrophage number and by improving vascularity. PLoS ONE 9, e102190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gonzalez-Quintela, A. et al. Factors influencing serum total tryptase concentrations in a general adult population. Clin. Chem. Lab. Med. 48, 701–706 (2010).

    CAS  PubMed  Google Scholar 

  130. Ward, B. R., Arslanian, S. A., Andreatta, E. & Schwartz, L. B. Obesity is not linked to increased whole-body mast cell burden in children. J. Allergy Clin. Immunol. 129, 1164–1166 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Altintas, M. M. et al. Apoptosis, mastocytosis, and diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-induced obese mice. Lipids Health Dis. 10, 198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Ishijima, Y., Ohmori, S. & Ohneda, K. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice. FEBS Open Bio. 4, 18–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, Z. et al. Immunoglobulin E and mast cell proteases are potential risk factors of impaired fasting glucose and impaired glucose tolerance in humans. Ann. Med. 45, 220–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, J. M. & Shi, G. P. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr. Rev. 33, 71–108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. El-Haggar, S. M., Farrag, W. F. & Kotkata, F. A. Effect of ketotifen in obese patients with type 2 diabetes mellitus. J. Diabetes Complications 29, 427–432 (2015).

    Article  PubMed  Google Scholar 

  139. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Poglio, S. et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28, 2065–2072 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Simons, F. E. Anaphylaxis, killer allergy: long-term management in the community. J. Allergy Clin. Immunol. 117, 367–377 (2006).

    Article  PubMed  Google Scholar 

  142. Biteker, M. Current understanding of Kounis syndrome. Expert Rev. Clin. Immunol. 6, 777–788 (2010).

    Article  PubMed  Google Scholar 

  143. Vigorito, C. et al. Effects of histamine on coronary hemodynamics in humans: role of H1 and H2 receptors. J. Am. Coll. Cardiol. 10, 1207–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  144. Kalsner, S. & Richards, R. Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science 223, 1435–1437 (1984).

    Article  CAS  PubMed  Google Scholar 

  145. Steffel, J., Akhmedov, A., Greutert, H., Luscher, T. F. & Tanner, F. C. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation 112, 341–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Kauhanen, P., Kovanen, P. T., Reunala, T. & Lassila R. Effects of skin mast cells on bleeding time and coagulation activation at the site of platelet plug formation. Thromb. Haemost. 79, 843–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Worm, M. et al. Symptom profile and risk factors of anaphylaxis in Central Europe. Allergy 67, 691–698 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Knoflach, M. et al. Allergic rhinitis, asthma, and atherosclerosis in the Bruneck and ARMY studies. Arch. Intern. Med. 165, 2521–2526 (2005).

    Article  PubMed  Google Scholar 

  149. Schanen, J. G. et al. Asthma and incident cardiovascular disease: the Atherosclerosis Risk in Communities Study. Thorax 60, 633–638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Onufrak, S., Abramson, J. & Vaccarino, V. Adult-onset asthma is associated with increased carotid atherosclerosis among women in the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis 195, 129–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Otsuki, M., Miyatake, A., Fujita, K., Hamasaki, T. & Kasayama, S. Reduced carotid atherosclerosis in asthmatic patients treated with inhaled corticosteroids. Eur. Respir. J. 36, 503–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Wang, L. et al. Allergic asthma accelerates atherosclerosis dependent on Th2 and Th17 in apolipoprotein E deficient mice. J. Mol. Cell. Cardiol. 72, 20–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Simons, F. E. et al. World allergy organization guidelines for the assessment and management of anaphylaxis. World Allergy Organ. J. 4, 13–37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Greenberger, P. A., Rotskoff, B. D. & Lifschultz, B. Fatal anaphylaxis: postmortem findings and associated comorbid diseases. Ann. Allergy Asthma Immunol. 98, 252–257 (2007).

    Article  PubMed  Google Scholar 

  155. Sasvary, T. & Muller, U. Fatalities from insect stings in Switzerland to 1978 to 1987 [German]. Schweiz. Med. Wochenschr. 124, 1887–1894 (1994).

    CAS  PubMed  Google Scholar 

  156. Yilmaz, R., Yuksekbas, O., Erkol, Z., Bulut, E. R. & Arslan, M. N. Postmortem findings after anaphylactic reactions to drugs in Turkey. Am. J. Forensic Med. Pathol. 30, 346–349 (2009).

    Article  PubMed  Google Scholar 

  157. Kounis, N. G., Soufras, G. D. & Hahalis, G. Anaphylactic shock: Kounis hypersensitivity-associated syndrome seems to be the primary cause. N. Am. J. Med. Sci. 5, 631–636 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ferencz, V. et al. Increased bone fracture prevalence in postmenopausal women suffering from pollen-allergy. Osteoporos. Int. 17, 484–491 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by National Institutes of Health grants HL60942, HL81090, HL88547 (G.-P.S.), and a Dr Dekker Senior Postdoc grant from the Netherlands Heart Foundation (2012T083) (I.B.). Wihuri Research Institute is maintained by the Jenny and Antti Wihuri Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Petri T. Kovanen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, GP., Bot, I. & Kovanen, P. Mast cells in human and experimental cardiometabolic diseases. Nat Rev Cardiol 12, 643–658 (2015). https://doi.org/10.1038/nrcardio.2015.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing