Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of goblet cells and mucus in intestinal homeostasis

Abstract

The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.

Key points

  • The intestinal epithelium is covered by mucus with properties adapted to the local environment and associated challenges.

  • Intestinal goblet cells are represented by several subsets with different expression profiles linked to their differentiation and location.

  • Goblet cells sample luminal antigens and deliver them to the immune system for induction of adaptive immune responses, a process that occurs in a time-specific and location-specific manner.

  • Loss of mucus barrier function and altered composition of goblet cell populations are linked to the development of colitis.

  • Several commensal and pathogenic bacteria and viruses specifically use goblet cells as ports of entry to the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mucin biosynthesis and mucus formation.
Fig. 2: The role of the various goblet cells in the adult small and large intestine.
Fig. 3: Mucus and goblet cells during prenatal and postnatal development.
Fig. 4: Antigen sampling by goblet cells in the small intestine and colon.
Fig. 5: Impaired mucus barrier function and altered goblet cell composition in relation to inflammation.

Similar content being viewed by others

References

  1. Boron, W. F. & Boulpaep, E. L. Medical physiology 3rd edn (Elsevier, 2017).

  2. Johansson, M. E., Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl Acad. Sci. USA 108, 4659–4665 (2011).

    PubMed  Google Scholar 

  3. Lechuga, S. & Ivanov, A. I. Disruption of the epithelial barrier during intestinal inflammation: quest for new molecules and mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1864, 1183–1194 (2017).

    PubMed  Google Scholar 

  4. Atuma, C., Strugula, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G922–G929 (2001).

    PubMed  Google Scholar 

  5. Ermund, A., Schutte, A., Johansson, M. E., Gustafsson, J. K. & Hansson, G. C. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G341–G347 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Mestecky, J. et al. Mucosal Immunology (Academic, 2015).

  7. Birchenough, G. M., Nyström, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Grondin, J. A., Kwon, Y. H., Far, P. M., Haq, S. & Khan, W. I. Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies. Front. Immunol. https://doi.org/10.3389/fimmu.2020.02054 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Knoop, K. A. et al. Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight https://doi.org/10.1172/jci.insight.137943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bergstrom, K. et al. Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science 370, 467–472 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. Kulkarni, D. H. et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 13, 271–282 (2020).

    PubMed  Google Scholar 

  12. Witten, J., Samad, T. & Ribbeck, K. Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52, 124–133 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Rodriguez-Pineiro, A. M. et al. Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G348–G356 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. van der Post, S. et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68, 2142–2151 (2019).

    PubMed  Google Scholar 

  15. Nyström, E. E. L. et al. Calcium-activated chloride channel regulator 1 (CLCA1) controls mucus expansion in colon by proteolytic activity. EBioMedicine 33, 134–143 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Ehrencrona, E. et al. The IgG Fc-binding protein FCGBP is secreted with all GDPH sequences cleaved, but maintained by inter-fragment disulfide bonds. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100871 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jabbar, K. S. et al. Association between Brachyspira and irritable bowel syndrome with diarrhoea. Gut 70, 1117–1129 (2021).

    PubMed  Google Scholar 

  18. Ambort, D. et al. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1120269109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Javitt, G. et al. Assembly mechanism of mucin and von Willebrand factor polymers. Cell 183, 717–729.e6 (2020).

    PubMed  PubMed Central  Google Scholar 

  20. Recktenwald, C. V. & Hansson, G. C. The reduction-insensitive bonds of the MUC2 mucin are isopeptide bonds. J. Biol. Chem. 291, 13580–13590 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Arike, L., Hansson, G. C. & Recktenwald, C. V. Identifying transglutaminase reaction products via mass spectrometry as exemplified by the MUC2 mucin – pitfalls and traps. Anal. Biochem. 597, 113668 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergstrom, J. H. & Hansson, G. C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Javitt, G. et al. Intestinal Gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. J. Mol. Biol. 431, 3740–3752 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Neutra, M. R., O’Malley, L. J. & Specian, R. D. Regulation of intestinal goblet cell secretion. II. A survey of potential secretagogues. Am. J. Physiol. 242, G380–G387 (1982).

    PubMed  Google Scholar 

  25. Gustafsson, J. K. et al. Carbachol-induced colonic mucus formation requires transport via NKCC1, K(+) channels and CFTR. Pflugers Arch. 467, 1403–1415 (2015).

    PubMed  Google Scholar 

  26. Schutte, A. et al. Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc. Natl Acad. Sci. USA 111, 12396–12401 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Smithson, K. W., Millar, D. B., Jacobs, L. R. & Gray, G. M. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science 214, 1241–1244 (1981).

    PubMed  Google Scholar 

  28. Lai, S. K., Wang, Y.-Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Critchfield, A. S. et al. Cervical mucus properties stratify risk for preterm birth. PLoS ONE 8, e69528 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Krupa, L. et al. Comparing the permeability of human and porcine small intestinal mucus for particle transport studies. Sci. Rep. 10, 20290 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Witten, J. & Ribbeck, K. The particle in the spider’s web: transport through biological hydrogels. Nanoscale 9, 8080–8095 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. Kamphuis, J. B. J., Mercier-Bonin, M., Eutamene, H. & Theodorou, V. Mucus organisation is shaped by colonic content; a new view. Sci. Rep. 7, 8527 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Schneider, H., Pelaseyed, T., Svensson, F. & Johansson, M. E. V. Study of mucin turnover in the small intestine by in vivo labeling. Sci. Rep. 8, 5760 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Johansson, M. E. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS ONE 7, e41009 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Arike, L. et al. Protein turnover in epithelial cells and mucus along the gastrointestinal tract is coordinated by the spatial location and microbiota. Cell Rep. 30, 1077–1087.e3 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. Macierzanka, A., Mackie, A. R. & Krupa, L. Permeability of the small intestinal mucus for physiologically relevant studies: impact of mucus location and ex vivo treatment. Sci. Rep. 9, 17516 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Schroeder, B. O. et al. Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. J. Biol. Chem. 295, 15712–15726 (2020).

    PubMed  PubMed Central  Google Scholar 

  39. Sababi, M., Nilsson, E. & Holm, L. Mucus and alkali secretion in the rat duodenum: effects of indomethacin, Nω-nitro-L-arginine, and luminal acid. Gastroenterology 109, 1526–1534 (1995).

    PubMed  Google Scholar 

  40. McQueen, S., Hutton, D., Allen, A. & Garner, A. Gastric and duodenal surface mucus gel thickness in rat: effects of prostaglandins and damaging agents. Am. J. Physiol. 245, G388–G393 (1983).

    PubMed  Google Scholar 

  41. Sotres, J., Jankovskaja, S., Wannerberger, K. & Arnebrant, T. Ex-vivo force spectroscopy of intestinal mucosa reveals the mechanical properties of mucus blankets. Sci. Rep. 7, 7270 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Johansson, M. E. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291 (2014).

    PubMed  Google Scholar 

  43. Gustafsson, J. K. et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209, 1263–1272 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Allen, A. & Flemstrom, G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol. 288, C1–C19 (2005).

    PubMed  Google Scholar 

  45. Bell, A. E. et al. Properties of gastric and duodenal mucus: effect of proteolysis, disulfide reduction, bile, acid, ethanol, and hypertonicity on mucus gel structure. Gastroenterology 88, 269–280 (1985).

    PubMed  Google Scholar 

  46. Johansson, M. E. et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18, 582–592 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    PubMed  Google Scholar 

  48. Petersson, J. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G327–G333 (2011).

    PubMed  Google Scholar 

  49. Mukherjee, S. & Hooper, L. V. Antimicrobial defense of the intestine. Immunity 42, 28–39 (2015).

    PubMed  Google Scholar 

  50. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    PubMed  Google Scholar 

  51. Macpherson, A. J. & McCoy, K. D. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Semin. Immunol. 25, 358–363 (2013).

    PubMed  Google Scholar 

  52. Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57, 764–771 (2008).

    PubMed  Google Scholar 

  53. Gustafsson, J. K. et al. An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G430–G438 (2012).

    PubMed  Google Scholar 

  54. Nava, G. M., Friedrichsen, H. J. & Stappenbeck, T. S. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 5, 627–638 (2011).

    PubMed  Google Scholar 

  55. Hugenholtz, F. & de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol. Life Sci. 75, 149–160 (2018).

    PubMed  Google Scholar 

  56. Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S. & Doerffel, Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568–579 (2008).

    PubMed  Google Scholar 

  57. Nyström, E. E. L. et al. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science 372, eabb1590 (2021).

    PubMed  PubMed Central  Google Scholar 

  58. Burclaff, J. et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell. Mol. Gastroenterol. Hepatol. https://doi.org/10.1016/j.jcmgh.2022.02.007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bergstrom, J. H. et al. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proc. Natl Acad. Sci. USA 113, 13833–13838 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Luis, A. S. et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature 598, 332–337 (2021).

    PubMed  PubMed Central  Google Scholar 

  61. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Zou, J. et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23, 41–53.e4 (2018).

    PubMed  Google Scholar 

  64. Birchenough, G. M. et al. Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Sci. Rep. 7, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Burger-van Paassen, N. et al. Colitis development during the suckling-weaning transition in mucin Muc2-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G667–G678 (2011).

    PubMed  Google Scholar 

  66. Fu, J. et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest. 121, 1657–1666 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    PubMed  Google Scholar 

  68. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    PubMed  Google Scholar 

  69. Barker, N., Van de, W. M. & Clevers, H. The intestinal stem cell. Genes Dev. 22, 1856–1864 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Noah, T. K., Donahue, B. & Shroyer, N. F. Intestinal development and differentiation. Exp. Cell Res. 317, 2702–2710 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Koo, B.-K., van Es Johan, H., van den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl Acad. Sci. USA 112, 7548–7550 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Lo, Y. H. et al. Transcriptional regulation by ATOH1 and its target SPDEF in the intestine. Cell. Mol. Gastroenterol. Hepatol. 3, 51–71 (2017).

    PubMed  Google Scholar 

  73. Noah, T. K., Kazanjian, A., Whitsett, J. & Shroyer, N. F. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Exp. Cell Res. 316, 452–465 (2010).

    PubMed  Google Scholar 

  74. Shroyer, N. F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478–2488 (2007).

    PubMed  Google Scholar 

  75. Shroyer, N. F., Wallis, D., Venken, K. J. T., Bellen, H. J. & Zoghbi, H. Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19, 2412–2417 (2005).

    PubMed  PubMed Central  Google Scholar 

  76. Gregorieff, A. et al. The Ets-domain transcription factor Spdef promotes maturation of goblet and Paneth cells in the intestinal epithelium. Gastroenterology 137, 1333–1345 (2009).

    PubMed  Google Scholar 

  77. Wang, Y. et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J. Exp. Med. https://doi.org/10.1084/jem.20191130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Barker, N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33 (2014).

    PubMed  Google Scholar 

  79. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Google Scholar 

  81. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Herring, C. A. et al. Unsupervised trajectory analysis of single-cell RNA-Seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51.e9 (2018).

    PubMed  Google Scholar 

  83. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167.e15 (2018).

    PubMed  Google Scholar 

  84. Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).

    PubMed  Google Scholar 

  85. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Capdevila, C. et al. Cellular origins and lineage relationships of the intestinal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 321, G413–G425 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Mills, J. C., Stanger, B. Z. & Sander, M. Nomenclature for cellular plasticity: are the terms as plastic as the cells themselves? EMBO J. 38, e103148 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Larsen, H. L. & Jensen, K. B. Reprogramming cellular identity during intestinal regeneration. Curr. Opin. Genet. Dev. 70, 40–47 (2021).

    PubMed  Google Scholar 

  89. Radwan, K. A., Oliver, M. G. & Specian, R. D. Cytoarchitectural reorganization of rabbit colonic goblet cells during baseline secretion. Am. J. Anat. 189, 365–376 (1990).

    PubMed  Google Scholar 

  90. Rothenberg, M. E. et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology 142, 1195–1205.e6 (2012).

    PubMed  Google Scholar 

  91. Specian, R. D. & Neutra, M. R. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J. Cell Biol. 85, 626–640 (1980).

    PubMed  Google Scholar 

  92. Jaramillo, A. M. et al. Different Munc18 proteins mediate baseline and stimulated airway mucin secretion. JCI Insight https://doi.org/10.1172/jci.insight.124815 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cornick, S., Kumar, M., Moreau, F., Gaisano, H. & Chadee, K. VAMP8-mediated MUC2 mucin exocytosis from colonic goblet cells maintains innate intestinal homeostasis. Nat. Commun. 10, 4306 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176.e24 (2019).

    PubMed  Google Scholar 

  95. Halm, D. R. & Halm, S. T. Secretagogue response of goblet cells and columnar cells in human colonic crypts. Am. J. Physiol. Cell Physiol. 278, C212–C233 (2000).

    PubMed  Google Scholar 

  96. Garcia, M. A., Yang, N. & Quinton, P. M. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J. Clin. Invest. 119, 2613–2622 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Phillips, T. E. Both crypt and villus intestinal goblet cells secrete mucin in response to cholinergic stimulation. Am. J. Physiol. 262, G327–G331 (1992).

    PubMed  Google Scholar 

  98. Corfield, A. P. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta Gen. Subj. 1850, 236–252 (2015).

    Google Scholar 

  99. Harada, N. et al. Human IgGFc binding protein (FcγBP) in colonic epithelial cells exhibits mucin-like structure. J. Biol. Chem. 272, 15232–15241 (1997).

    PubMed  Google Scholar 

  100. Tsuru, A. et al. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl Acad. Sci. USA 110, 2864–2869 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Park, S. W. et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl Acad. Sci. USA 106, 6950–6955 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Dev. Biol. 338, 268–277 (2010).

    Google Scholar 

  103. Zheng, W. et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun. 7, 11–18 (2006).

    PubMed  Google Scholar 

  104. Cloots, E. et al. Evolution and function of the epithelial cell-specific ER stress sensor IRE1β. Mucosal Immunol. 14, 1235–1246 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. McGuckin, M. A., Eri, R. D., Das, I., Lourie, R. & Florin, T. H. ER stress and the unfolded protein response in intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G820–G832 (2010).

    PubMed  Google Scholar 

  107. Litvak, Y., Byndloss, M. X. & Baumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science https://doi.org/10.1126/science.aat9076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Montgomery, R. K., Mulberg, A. E. & Grand, R. J. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116, 702–731 (1999).

    PubMed  Google Scholar 

  109. Stanford, A. H. et al. A direct comparison of mouse and human intestinal development using epithelial gene expression patterns. Pediatr. Res. 88, 66–76 (2020).

    PubMed  Google Scholar 

  110. Gomes, J. R. et al. Goblet cells and intestinal alkaline phosphatase expression (IAP) during the development of the rat small intestine. Acta Histochem. 119, 71–77 (2017).

    PubMed  Google Scholar 

  111. Lev, R., Siegel, H. I. & Bartman, J. Histochemical studies of developing human fetal small intestine. Histochemie 29, 103–119 (1972).

    PubMed  Google Scholar 

  112. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Buisine, M. P. et al. Mucin gene expression in human embryonic and fetal intestine. Gut 43, 519–524 (1998).

    PubMed  PubMed Central  Google Scholar 

  114. Chambers, J. A., Hollingsworth, M. A., Trezise, A. E. & Harris, A. Developmental expression of mucin genes MUC1 and MUC2. J. Cell Sci. 107, 413–424 (1994).

    PubMed  Google Scholar 

  115. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826.e23 (2021).

    PubMed  PubMed Central  Google Scholar 

  116. Gao, S. et al. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat. Cell Biol. 20, 721–734 (2018).

    PubMed  Google Scholar 

  117. Colony, P. C. & Specian, R. D. Endocytosis and vesicular traffic in fetal and adult colonic goblet cells. Anat. Rec. 218, 365–372 (1987).

    PubMed  Google Scholar 

  118. Colony, P. C. & Neutra, M. R. Epithelial differentiation in the fetal rat colon. I. Plasma membrane phosphatase activities. Dev. Biol. 97, 349–363 (1983).

    PubMed  Google Scholar 

  119. Mathan, M., Moxey, P. C. & Trier, J. S. Morphogenesis of fetal rat duodenal villi. Am. J. Anat. 146, 73–92 (1976).

    PubMed  Google Scholar 

  120. Sumigray, K. D., Terwilliger, M. & Lechler, T. Morphogenesis and compartmentalization of the intestinal crypt. Dev. Cell 45, 183–197.e5 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. Arévalo Sureda, E., Weström, B., Pierzynowski, S. G. & Prykhodko, O. Maturation of the intestinal epithelial barrier in neonatal rats coincides with decreased FcRn expression, replacement of vacuolated enterocytes and changed Blimp-1 expression. PLoS ONE 11, e0164775 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Skrzypek, T. et al. The contribution of vacuolated foetal-type enterocytes in the process of maturation of the small intestine in piglets. J. Anim. Feed. Sci. 27, 187–201 (2018).

    Google Scholar 

  123. Clark, S. L. Jr. The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J. Biophys. Biochem. Cytol. 5, 41–50 (1959).

    PubMed  PubMed Central  Google Scholar 

  124. Reisinger, K. W. et al. Intestinal fatty acid-binding protein: a possible marker for gut maturation. Pediatr. Res. 76, 261–268 (2014).

    PubMed  Google Scholar 

  125. Israel, E. J., Simister, N., Freiberg, E., Caplan, A. & Walker, W. A. Immunoglobulin G binding sites on the human foetal intestine: a possible mechanism for the passive transfer of immunity from mother to infant. Immunology 79, 77–81 (1993).

    PubMed  PubMed Central  Google Scholar 

  126. Malmuthuge, N. & Griebel, P. J. Fetal environment and fetal intestine are sterile during the third trimester of pregnancy. Vet. Immunol. Immunopathol. 204, 59–64 (2018).

    PubMed  Google Scholar 

  127. Perez-Munoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Urushiyama, D. et al. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci. Rep. 7, 12171 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Wang, L. X. et al. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/β-catenin signalling. Animal 14, 790–798 (2020).

    PubMed  Google Scholar 

  130. Bergström, A. et al. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res. Notes 5, 402 (2012).

    PubMed  PubMed Central  Google Scholar 

  131. Fança-Berthon, P. et al. Intrauterine growth restriction alters postnatal colonic barrier maturation in rats. Pediatr. Res. 66, 47–52 (2009).

    PubMed  Google Scholar 

  132. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    PubMed  PubMed Central  Google Scholar 

  133. Hansen, G. H., Rasmussen, K., Niels-Christiansen, L. L. & Danielsen, E. M. Endocytic trafficking from the small intestinal brush border probed with FM dye. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G708–G715 (2009).

    PubMed  Google Scholar 

  134. Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    PubMed  Google Scholar 

  135. Noah, T. K. et al. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol. 144, 1058–1073.e3 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Gustafsson, J. K. et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. eLife 10, e67292 (2021).

    PubMed  PubMed Central  Google Scholar 

  137. Knoop, K. A. et al. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes 8, 400–411 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Knoop, K. A. et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, eaao1314 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288.e5 (2019).

    PubMed  Google Scholar 

  140. Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Barrios, B. E., Maccio-Maretto, L., Nazar, F. N. & Correa, S. G. A selective window after the food-intake period favors tolerance induction in mesenteric lymph nodes. Mucosal Immunol. 12, 108–116 (2019).

    PubMed  Google Scholar 

  142. Barbosa, F. L. et al. Goblet cells contribute to ocular surface immune tolerance-implications for dry eye disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18050978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ko, B. Y., Xiao, Y., Barbosa, F. L., de Paiva, C. S. & Pflugfelder, S. C. Goblet cell loss abrogates ocular surface immune tolerance. JCI Insight https://doi.org/10.1172/jci.insight.98222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kulkarni, D. H. et al. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 11, 1103–1113 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host–microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Volk, J. K. et al. The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. J. Exp. Med. 216, 2602–2618 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Grootjans, J. et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut 62, 250–258 (2013).

    PubMed  Google Scholar 

  148. Grootjans, J., Hundscheid, I. H. & Buurman, W. A. Goblet cell compound exocytosis in the defense against bacterial invasion in the colon exposed to ischemia–reperfusion. Gut Microbes 4, 232–235 (2013).

    PubMed  PubMed Central  Google Scholar 

  149. Johansson, M. E. & Hansson, G. C. The goblet cell: a key player in ischaemia–reperfusion injury. Gut 62, 188–189 (2013).

    PubMed  Google Scholar 

  150. Sovran, B. et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep. 9, 1437 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Hansen, A. K., Hansen, C. H., Krych, L. & Nielsen, D. S. Impact of the gut microbiota on rodent models of human disease. World J. Gastroenterol. 20, 17727–17736 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Johansson, M. E. et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS ONE 5, e12238 (2010).

    PubMed  PubMed Central  Google Scholar 

  153. Liu, J. Z. & Anderson, C. A. Genetic studies of Crohn’s disease: past, present and future. Best. Pract. Res. Clin. Gastroenterol. 28, 373–386 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    PubMed  PubMed Central  Google Scholar 

  155. Wehkamp, J. & Stange, E. F. An update review on the Paneth cell as key to ileal Crohn’s disease. Front. Immunol. 11, 646 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    PubMed  PubMed Central  Google Scholar 

  157. Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl Acad. Sci. USA 111, 7741–7746 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. Pullan, R. D. Colonic mucus, smoking and ulcerative colitis. Ann. R. Coll. Surg. Engl. 78, 85–91 (1996).

    PubMed  PubMed Central  Google Scholar 

  159. Pullan, R. D. et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35, 353–359 (1994).

    PubMed  PubMed Central  Google Scholar 

  160. Nonnecke, E. B. et al. Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Sci. Rep. 11, 12889 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Strugala, V., Dettmar, P. W. & Pearson, J. P. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn’s disease. Int. J. Clin. Pract. 62, 762–769 (2008).

    PubMed  Google Scholar 

  162. Gersemann, M. et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation 77, 84–94 (2009).

    PubMed  Google Scholar 

  163. Coleman, O. I. & Haller, D. ER stress and the UPR in shaping intestinal tissue homeostasis and immunity. Front. Immunol. https://doi.org/10.3389/fimmu.2019.02825 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Tawiah, A. et al. High MUC2 mucin biosynthesis in goblet cells impedes restitution and wound healing by elevating endoplasmic reticulum stress and altered production of growth factors. Am. J. Pathol. 188, 2025–2041 (2018).

    PubMed  Google Scholar 

  165. Wilson, R. et al. Identification of key pro-survival proteins in isolated colonic goblet cells of Winnie, a murine model of spontaneous colitis. Inflamm. Bowel Dis. 26, 80–92 (2020).

    PubMed  Google Scholar 

  166. Wang, R. et al. Gut microbiota shape the inflammatory response in mice with an epithelial defect. Gut Microbes 13, 1887720 (2021).

    PubMed Central  Google Scholar 

  167. Das, I. et al. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. J. Exp. Med. 210, 1201–1216 (2013).

    PubMed  PubMed Central  Google Scholar 

  168. Larsson, J. M. et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307 (2011).

    PubMed  Google Scholar 

  169. Tytgat, K. M., van der Wal, J. W., Einerhand, A. W., Buller, H. A. & Dekker, J. Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochem. Biophys. Res. Commun. 224, 397–405 (1996).

    PubMed  Google Scholar 

  170. Xiao, F. et al. Slc26a3 deficiency is associated with loss of colonic HCO secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiol. https://doi.org/10.1111/apha.12220 (2013).

    Article  Google Scholar 

  171. Gurney, M. A., Laubitz, D., Ghishan, F. K. & Kiela, P. R. Pathophysiology of Intestinal Na+/H+ exchange. Cell. Mol. Gastroenterol. Hepatol. 3, 27–40 (2017).

    PubMed  Google Scholar 

  172. Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    PubMed  PubMed Central  Google Scholar 

  173. Rigottier-Gois, L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 7, 1256–1261 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. Guo, X. Y., Liu, X. J. & Hao, J. Y. Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. J. Dig. Dis. 21, 147–159 (2020).

    PubMed  Google Scholar 

  175. Jakobsson, H. E. et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16, 164–177 (2015).

    PubMed  Google Scholar 

  176. Miyauchi, E. et al. Analysis of colonic mucosa-associated microbiota using endoscopically collected lavage. Sci. Rep. 12, 1758 (2022).

    PubMed  PubMed Central  Google Scholar 

  177. Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292 (2015).

    PubMed  Google Scholar 

  178. Lavelle, A. et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64, 1553–1561 (2015).

    PubMed  Google Scholar 

  179. Sunderhauf, A. et al. Loss of mucosal p32/gC1qR/HABP1 triggers energy deficiency and impairs goblet cell differentiation in ulcerative colitis. Cell. Mol. Gastroenterol. Hepatol. 12, 229–250 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Kumar, M. et al. Increased intestinal permeability exacerbates sepsis through reduced hepatic SCD-1 activity and dysregulated iron recycling. Nat. Commun. 11, 483 (2020).

    PubMed  PubMed Central  Google Scholar 

  181. Ozdirik, B., Muller, T., Wree, A., Tacke, F. & Sigal, M. The role of microbiota in primary sclerosing cholangitis and related biliary malignancies. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22136975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Fenton, C. G., Taman, H., Florholmen, J., Sorbye, S. W. & Paulssen, R. H. Transcriptional signatures that define ulcerative colitis in remission. Inflamm. Bowel Dis. 27, 94–105 (2021).

    PubMed  Google Scholar 

  183. Bergstrom, K. S. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS. Pathog. 6, e1000902 (2010).

    PubMed  PubMed Central  Google Scholar 

  184. Sharpe, C., Thornton, D. J. & Grencis, R. K. A sticky end for gastrointestinal helminths; the role of the mucus barrier. Parasite Immunol. 40, e12517 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Hasnain, S. Z., Gallagher, A. L., Grencis, R. K. & Thornton, D. J. A new role for mucins in immunity: insights from gastrointestinal nematode infection. Int. J. Biochem. Cell Biol. 45, 364–374 (2013).

    PubMed  Google Scholar 

  186. Allain, T., Amat, C. B., Motta, J. P., Manko, A. & Buret, A. G. Interactions of Giardia sp. with the intestinal barrier: epithelium, mucus, and microbiota. Tissue Barriers 5, e1274354 (2017).

    PubMed  PubMed Central  Google Scholar 

  187. Furter, M., Sellin, M. E., Hansson, G. C. & Hardt, W. D. Mucus architecture and near-surface swimming affect distinct Salmonella typhimurium infection patterns along the murine intestinal tract. Cell Rep. 27, 2665–2678.e3 (2019).

    PubMed  PubMed Central  Google Scholar 

  188. van der Post, S. et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288, 14636–14646 (2013).

    PubMed  PubMed Central  Google Scholar 

  189. Haider, K. et al. Production of mucinase and neuraminidase and binding of Shigella to intestinal mucin. J. Diarrhoeal Dis. Res. 11, 88–92 (1993).

    PubMed  Google Scholar 

  190. Luo, Q. et al. Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect. Immun. 82, 509–521 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. Gibold, L. et al. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli. Cell. Microbiol. 18, 617–631 (2016).

    PubMed  Google Scholar 

  192. Schauer, D. B. & Falkow, S. Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia. Infect. Immun. 61, 2486–2492 (1993).

    PubMed  PubMed Central  Google Scholar 

  193. Cornelis, G. R. The Yersinia deadly kiss. J. Bacteriol. 180, 5495–5504 (1998).

    PubMed  PubMed Central  Google Scholar 

  194. Levine, M. M. et al. Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J. Infect. Dis. 127, 261–270 (1973).

    PubMed  Google Scholar 

  195. Hansen-Wester, I., Stecher, B. & Hensel, M. Type III secretion of Salmonella enterica serovar typhimurium translocated effectors and SseFG. Infect. Immun. 70, 1403–1409 (2002).

    PubMed  PubMed Central  Google Scholar 

  196. Teschler, J. K. et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13, 255–268 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Scaletsky, I. C., Silva, M. L. & Trabulsi, L. R. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect. Immun. 45, 534–536 (1984).

    PubMed  PubMed Central  Google Scholar 

  198. Nikitas, G. et al. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J. Exp. Med. 208, 2263–2277 (2011).

    PubMed  PubMed Central  Google Scholar 

  199. Van Houdt, R. & Michiels, C. W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 156, 626–633 (2005).

    PubMed  Google Scholar 

  200. Sansonetti, P. J. & Phalipon, A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin. Immunol. 11, 193–203 (1999).

    PubMed  Google Scholar 

  201. Fasciano, A. C. et al. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes 13, 1988390 (2021).

    PubMed  PubMed Central  Google Scholar 

  202. Clark, M. A., Jepson, M. A., Simmons, N. L. & Hirst, B. H. Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res. Microbiol. 145, 543–552 (1994).

    PubMed  Google Scholar 

  203. Wassef, J. S., Keren, D. F. & Mailloux, J. L. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect. Immun. 57, 858–863 (1989).

    PubMed  PubMed Central  Google Scholar 

  204. Grützkau, A., Hanski, C., Hahn, H. & Riecken, E. O. Involvement of M cells in the bacterial invasion of Peyer’s patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 31, 1011–1015 (1990).

    PubMed  PubMed Central  Google Scholar 

  205. Kim, M., Fevre, C., Lavina, M., Disson, O. & Lecuit, M. Live imaging reveals Listeria hijacking of E-cadherin recycling as it crosses the intestinal barrier. Curr. Biol. 31, 1037–1047.e4 (2021).

    PubMed  Google Scholar 

  206. Linden, S. K. et al. Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch. Microbiol. 190, 101–104 (2008).

    PubMed  Google Scholar 

  207. Hohmann, A. W., Schmidt, G. & Rowley, D. Intestinal colonization and virulence of Salmonella in mice. Infect. Immun. 22, 763–770 (1978).

    PubMed  PubMed Central  Google Scholar 

  208. Tran, E. N. H. et al. Shigella flexneri targets human colonic goblet cells by O antigen binding to sialyl-Tn and Tn antigens via glycan–glycan interactions. ACS Infect. Dis. 6, 2604–2615 (2020).

    PubMed  Google Scholar 

  209. Clark, M. A., Hirst, B. H. & Jepson, M. A. M-cell surface β1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect. Immun. 66, 1237–1243 (1998).

    PubMed  PubMed Central  Google Scholar 

  210. Knoop, K. A. et al. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc. Natl Acad. Sci. USA 117, 7941–7949 (2020).

    PubMed  PubMed Central  Google Scholar 

  211. Liang, K., Wei, L. & Chen, L. Exocytosis, endocytosis, and their coupling in excitable cells. Front. Mol. Neurosci. 10, 109 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Wu, L. G., Hamid, E., Shin, W. & Chiang, H. C. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu. Rev. Physiol. 76, 301–331 (2014).

    PubMed  Google Scholar 

  213. Cortez, V. et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat. Commun. 11, 2097 (2020).

    PubMed  PubMed Central  Google Scholar 

  214. Ingle, H. et al. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol. 14, 751–761 (2021).

    PubMed  PubMed Central  Google Scholar 

  215. Good, C., Wells, A. I. & Coyne, C. B. Type III interferon signaling restricts enterovirus 71 infection of goblet cells. Sci. Adv. 5, eaau4255 (2019).

    PubMed  PubMed Central  Google Scholar 

  216. Holly, M. K. & Smith, J. G. Adenovirus infection of human enteroids reveals interferon sensitivity and preferential infection of goblet cells. J. Virol. https://doi.org/10.1128/JVI.00250-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cortez, V. & Schultz-Cherry, S. The role of goblet cells in viral pathogenesis. FEBS J. 288, 7060–7072 (2021).

    PubMed  PubMed Central  Google Scholar 

  218. Holm, L. & Phillipson, M. Assessment of mucus thickness and production in situ. Methods Mol. Biol. 842, 217–227 (2012).

    PubMed  Google Scholar 

  219. Vunjak-Novakovic, G., Ronaldson-Bouchard, K. & Radisic, M. Organs-on-a-chip models for biological research. Cell 184, 4597–4611 (2021).

    PubMed  PubMed Central  Google Scholar 

  220. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    PubMed  Google Scholar 

  221. VanDussen, K. L. et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911–920 (2015).

    PubMed  Google Scholar 

  222. Wang, Y., Kim, R., Sims, C. E. & Allbritton, N. L. Building a thick mucus hydrogel layer to improve the physiological relevance of in vitro primary colonic epithelial models. Cell. Mol. Gastroenterol. Hepatol. 8, 653–655.e5 (2019).

    PubMed  PubMed Central  Google Scholar 

  223. Knoop, K. A. et al. In vivo labeling of epithelial cell-associated antigen passages in the murine intestine. Lab. Anim. 49, 79–88 (2020).

    Google Scholar 

  224. Johansson, M. E. V. & Hansson, G. C. in Mucins: Methods and Protocols (eds McGuckin, M. A. & Thornton, D. J.) 229–235 (Humana, 2012).

  225. Johansson, M. E. V. & Hansson, G. C. in Mucins: Methods and Protocols (eds McGuckin, M. A. & Thornton, D. J.) 109–121 (Humana, 2012).

  226. Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

    PubMed  PubMed Central  Google Scholar 

  227. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    PubMed  Google Scholar 

  228. Moriya, S. et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int. J. Oncol. 42, 1541–1550 (2013).

    PubMed  PubMed Central  Google Scholar 

  229. van der Post, S., Birchenough, G. M. H. & Held, J. M. NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation. Cell Rep. 35, 108949 (2021).

    PubMed  Google Scholar 

  230. Liu, J., Walker, N. M., Ootani, A., Strubberg, A. M. & Clarke, L. L. Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J. Clin. Invest. 125, 1056–1068 (2015).

    PubMed  PubMed Central  Google Scholar 

  231. Wang, Y. et al. Long-term culture captures injury–repair cycles of colonic stem cells. Cell 179, 1144–1159.e15 (2019).

    PubMed  PubMed Central  Google Scholar 

  232. Wang, Y. et al. A microengineered collagen scaffold for generating a polarized crypt–villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    PubMed  PubMed Central  Google Scholar 

  233. Wang, Y. et al. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5, 113–130 (2018).

    PubMed  Google Scholar 

  234. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    PubMed  Google Scholar 

  235. Dutton, J. S., Hinman, S. S., Kim, R., Wang, Y. & Allbritton, N. L. Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol. 37, 744–760 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Swedish Research Council (2020-01588, 2019-0113420), the Crohn’s and Colitis foundation (580014) and the Sahlgrenska University Hospital (ALFGBG-724681, ALFGBG-965686). The authors thank S. van der Post and T. Pelaseyed for their constructive feedback and comments.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Malin E. V. Johansson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Michael McGuckin, Sumaira Hasnain and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafsson, J.K., Johansson, M.E.V. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 19, 785–803 (2022). https://doi.org/10.1038/s41575-022-00675-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00675-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing