Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization and expression of the mammalian mitochondrial genome

Abstract

The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences in bacterial, nuclear and mitochondrial genome organization and regulation.
Fig. 2: Organization of the mitochondrial genome and its replication.
Fig. 3: The mitochondrial transcriptome and RNA metabolism.
Fig. 4: Regulation of mitochondrial translation.
Fig. 5: Disease mutations in genes required for mitochondrial gene expression.
Fig. 6: Genetic models of impaired mitochondrial gene expression.
Fig. 7: Mitochondrial genome- and transcriptome-driven stress signalling and interorganellar communication.

Similar content being viewed by others

References

  1. Vafai, S. B. & Mootha, V. K. Mitochondrial disorders as windows into an ancient organelle. Nature 491, 374–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ojala, D., Montoya, J. & Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Denslow, N., Michaels, G., Montoya, J., Attardi, G. & O’Brien, T. Mechanism of mRNA binding to bovine mitochondrial ribosomes. J. Biol. Chem. 264, 8328–8338 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, R. G., Rudler, D. L., Rackham, O. & Filipovska, A. Is mitochondrial gene expression coordinated or stochastic? Biochem. Soc. Trans. 46, 1239–1246 (2018).

    Article  PubMed  Google Scholar 

  5. Hallberg, B. M. & Larsson, N.-G. Making proteins in the powerhouse. Cell Metab. 20, 226–240 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Rackham, O. et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17, 2085–2093 (2011). The study was the first to report the existence of mitochondrial long non-coding RNAs and their potential roles in gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011). This paper comprehensively profiles mitochondrial gene organization and expression in diverse tissues and cell lines with unprecedented detail.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, G. et al. Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting. Cell Rep. 5, 839–848 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Rudler, D. L. et al. Fidelity of translation initiation is required for coordinated respiratory complex assembly. Sci. Adv. 5, eaay2118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuznetsova, I. et al. Simultaneous processing and degradation of mitochondrial RNAs revealed by circularized RNA sequencing. Nucleic Acids Res. 45, 5487–5500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greber, B. J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015). The 2015 papers by Greber et al. and Amunts et al. were the first to report the cryoEM structure of the mammalian mitochondrial ribosome, identifying new and unexpected features of organelle translation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kummer, E. et al. Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 560, 263–267 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Perks, K. L. et al. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Rep. 23, 127–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Kühl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 6, 1494 (2017).

    Article  Google Scholar 

  16. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020). This Article describes a new approach to modulating the mitochondrial genome, opening the way to treating diseases caused by mutations in mtDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018). This paper reports a new gene therapy approach to rescue mtDNA mutations shown in an in vivo model of mitochondrial disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nissanka, N., Minczuk, M. & Moraes, C. T. Mechanisms of mitochondrial DNA deletion formation. Trends Genet. 35, 235–244 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022). This Article provides a comprehensive review of the potential new tools for mitochondrial genome editing and their applications in biology and in disease treatments.

    Article  CAS  PubMed  Google Scholar 

  20. Gustafsson, C. M., Falkenberg, M. & Larsson, N.-G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 1–28 (2016).

    Article  CAS  Google Scholar 

  21. Crews, S., Ojala, D., Posakony, J., Nishiguchi, J. & Attardi, G. Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature 277, 192–198 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Montoya, J., Ojala, D. & Attardi, G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290, 465–470 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. Temperley, R. J., Wydro, M., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. Human mitochondrial mRNAs — like members of all families, similar but different. Biochim. Biophys. Acta 1797, 1081–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kukat, C. et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl Acad. Sci. USA 112, 11288–11293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 18, 3225–3236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parisi, M. & Clayton, D. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252, 965–969 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Bogenhagen, D. F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, M. et al. The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci. Adv. 7, eabf8631 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Yasukawa, T. & Kang, D. An overview of mammalian mitochondrial DNA replication mechanisms. J. Biochem. 164, 183–193 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Viscomi, C. & Zeviani, M. MtDNA-maintenance defects: syndromes and genes. J. Inherit. Metab. Dis. 40, 587–599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hillen, H. S., Morozov, Y. I., Sarfallah, A., Temiakov, D. & Cramer, P. Structural basis of mitochondrial transcription initiation. Cell 171, 1072–1081.e10 (2017). This paper describes a detailed molecular mechanism of mitochondrial transcription initiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuehl, I. et al. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2, e1600963 (2016).

    Article  CAS  Google Scholar 

  34. Minczuk, M. et al. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 39, 4284–4299 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, S. et al. TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep. 20, e48101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Agaronyan, K., Morozov, Y. I., Anikin, M. & Temiakov, D. Mitochondrial biology. Replication–transcription switch in human mitochondria. Science 347, 548–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Posse, V., Shahzad, S., Falkenberg, M., Hällberg, B. M. & Gustafsson, C. M. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res. 43, 2615–2624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yakubovskaya, E., Mejia, E., Byrnes, J., Hambardjieva, E. & Garcia-Diaz, M. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 141, 982–993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terzioglu, M. et al. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab. 17, 618–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, Y. et al. Mitochondrial transcription termination factor 1 directs polar replication fork pausing. Nucleic Acids Res. 44, 5732–5742 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rackham, O. et al. Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep. 16, 1874–1890 (2016). This paper is the first report of in vivo hierarchical RNA processing in mitochondria that links transcription to mitochondrial ribosome assembly.

    Article  CAS  PubMed  Google Scholar 

  42. Gammage, P. A., Moraes, C. T. & Minczuk, M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends Genet. 34, 101–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holzmann, J. et al. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135, 462–474 (2008). This Article describes the first report of the unique proteinaceous RNase P complex found in human mitochondria, which is devoid of a catalytic RNA.

    Article  CAS  PubMed  Google Scholar 

  44. Bhatta, A., Dienemann, C., Cramer, P. & Hillen, H. S. Structural basis of RNA processing by human mitochondrial RNase P. Nat. Struct. Mol. Biol. 28, 713–723 (2021). This paper reports the complete atomic structure of the mitochondrial RNase P complex revealed by cryoEM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reinhard, L., Sridhara, S. & Hallberg, B. M. Structure of the nuclease subunit of human mitochondrial RNase P. Nucleic Acids Res. 43, 5664–5672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, F., Liu, X., Zhou, W., Yang, X. & Shen, Y. Auto-inhibitory mechanism of the human mitochondrial RNase P protein complex. Sci. Rep. 5, 9878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rossmanith, W. Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS ONE 6, e19152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siira, S. J. et al. Concerted regulation of mitochondrial and nuclear non-coding RNAs by a dual-targeted RNase Z. EMBO Rep. 19, e46198 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sanchez, M. I. G. L. et al. RNA processing in human mitochondria. Cell Cycle 10, 2904–2916 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Jourdain, A. A. et al. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Res. 45, gkx772 (2017).

    Article  CAS  Google Scholar 

  51. Ohkubo, A. et al. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet. 17, e1009873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Antonicka, H. & Shoubridge, E. A. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep. 10, 920–932 (2015). This paper provides a detailed study of new RNA-binding proteins that are components of the mitochondrial granules that regulate gene expression and ribosome biogenesis.

    Article  CAS  PubMed  Google Scholar 

  53. Rey, T. et al. Mitochondrial RNA granules are fluid condensates positioned by membrane dynamics. Nat. Cell Biol. 22, 1180–1186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bogenhagen, D. F., Martin, D. W. & Koller, A. Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab. 19, 618–629 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Nagaike, T. et al. Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J. Biol. Chem. 276, 40041–40049 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki, T. et al. Complete chemical structures of human mitochondrial tRNAs. Nat. Commun. 11, 4269 (2020). The Article provides the most comprehensive account to date of mitochondrial tRNA modifications, validated by mass spectrometry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Schöller, E. et al. Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Mol. Cell 81, 4810–4825.e12 (2021).

    Article  PubMed  CAS  Google Scholar 

  59. Bohnsack, M. T. & Sloan, K. E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol. Life Sci. 75, 241–260 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Vilardo, E. et al. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 40, 11583–11593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakano, S. et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. Nat. Chem. Biol. 12, 546–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Kawarada, L. et al. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 45, 7401–7415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haag, S. et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 35, 2104–2119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yarham, J. W. et al. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet. 10, e1004424 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. LenarČiČ, T. et al. Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nat. Commun. 12, 3671 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zaganelli, S. et al. The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J. Biol. Chem. 292, 4519–4532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Antonicka, H. et al. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep. 18, 28–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Bar-Yaacov, D. et al. Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 14, e1002557 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lee, K.-W. & Bogenhagen, D. F. Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16S ribosomal RNA (rRNA). J. Biol. Chem. 289, 24936–24942 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Metodiev, M. D. et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10, e1004110 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Laptev, I. et al. METTL15 interacts with the assembly intermediate of murine mitochondrial small ribosomal subunit to form m4C840 12S rRNA residue. Nucleic Acids Res. 48, 8022–8034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Metodiev, M. et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 9, 386–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Powell, C. A. & Minczuk, M. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. RNA Biol. 17, 451–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Temperley, R., Richter, R., Dennerlein, S., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. Hungry codons promote frameshifting in human mitochondrial ribosomes. Science 327, 301–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Chang, J. H. & Tong, L. Mitochondrial poly(A) polymerase and polyadenylation. Biochim. Biophys. Acta 1819, 992–997 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Ruzzenente, B. et al. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 31, 443–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Sasarman, F. et al. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol. Biol. Cell 21, 1315–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Siira, S. J. et al. LRPPRC-mediated folding of the mitochondrial transcriptome. Nat. Commun. 8, 1532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lagouge, M. et al. SLIRP regulates the rate of mitochondrial protein synthesis and protects LRPPRC from degradation. PLoS Genet. 11, e1005423 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Aibara, S., Singh, V., Modelska, A. & Amunts, A. Structural basis of mitochondrial translation. eLife 9, e58362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jourdain, A. A. et al. A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Rep. 10, 1110–1121 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. O’Reilly, F. J. et al. In-cell architecture of an actively transcribing–translating expressome. Science 369, 554–557 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lee, R. G. et al. Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis. J. Cell Sci. 133, jcs240374 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki, T. et al. Analysis of the mammalian mitochondrial ribosome: identification of protein components in the 28S small subunit. J. Biol. Chem. 276, 33181–33195 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Brown, A. et al. Structure of the large ribosomal subunit from human mitochondria. Science 346, 718–722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Greber, B. J. et al. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515, 283–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Rorbach, J. et al. Human mitochondrial ribosomes can switch their structural RNA composition. Proc. Natl Acad. Sci. USA 113, 12198–12201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bogenhagen, D. F., Ostermeyer-Fay, A. G., Haley, J. D. & Garcia-Diaz, M. Kinetics and mechanism of mammalian mitochondrial ribosome assembly. Cell Rep. 22, 1935–1944 (2018). This paper describes detailed SILAC pulse-labelling experiments revealing the import and assembly rates of mitochondrial proteins into mitoribosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, A. et al. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24, 866–869 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hillen, H. S. et al. Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat. Commun. 12, 3672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cipullo, M., Gesé, G. V., Khawaja, A., Hällberg, B. M. & Rorbach, J. Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat. Commun. 12, 3673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chandrasekaran, V. et al. Visualizing formation of the active site in the mitochondrial ribosome. eLife 10, e68806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheng, J., Berninghausen, O. & Beckmann, R. A distinct assembly pathway of the human 39S late pre-mitoribosome. Nat. Commun. 12, 4544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kummer, E. & Ban, N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Khawaja, A. et al. Distinct pre-initiation steps in human mitochondrial translation. Nat. Commun. 11, 2932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Christian, B. E. & Spremulli, L. L. Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry 48, 3269–3278 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Tucker, E. J. et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 14, 428–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sasarman, F., Antonicka, H. & Shoubridge, E. A. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum. Mol. Genet. 17, 3697–3707 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kummer, E., Schubert, K. N., Schoenhut, T., Scaiola, A. & Ban, N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol. Cell 81, 2566–2582.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Itoh, Y. et al. Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371, 846–849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Soleimanpour-Lichaei, H. R. et al. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol. Cell 27, 745–757 (2007). This paper describes the characterization of a mitochondrial translation release factor that acts at the mitochondrial UAA/UAG codons for translation termination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Akabane, S., Ueda, T., Nierhaus, K. H. & Takeuchi, N. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. PLoS Genet. 10, e1004616 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Young, D. J. et al. Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria. RNA 16, 1146–1155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Desai, N. et al. Elongational stalling activates mitoribosome-associated quality control. Science 370, 1105–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Matic, S. et al. Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat. Commun. 9, 1202 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Nicholls, T. J. et al. Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum. Mol. Genet. 23, 6147–6162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Szczesny, R. J. et al. Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Res. 41, 3144–3161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Szczesny, R. J. et al. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res. 38, 279–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Borowski, L. S. L., Dziembowski, A. A., Hejnowicz, M. S. M., Stepien, P. P. P. & Szczesny, R. J. R. Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci. Nucleic Acids Res. 41, 1223–1240 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Nicholls, T. J. et al. Dinucleotide degradation by REXO2 maintains promoter specificity in mammalian mitochondria. Mol. Cell 76, 784–796.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chujo, T. et al. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res. 40, 8033–8047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pietras, Z. et al. Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat. Commun. 9, 2558 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Rorbach, J., Nicholls, T. J. J. & Minczuk, M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res. 39, 7750–7763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fiedler, M., Rossmanith, W., Wahle, E. & Rammelt, C. Mitochondrial poly(A) polymerase is involved in tRNA repair. Nucleic Acids Res. 43, 9937–9949 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pearce, S. F. et al. Maturation of selected human mitochondrial tRNAs requires deadenylation. eLife 6, e27596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Levy, S. et al. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res. 44, 1813–1832 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  118. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hagström, E., Freyer, C., Battersby, B. J., Stewart, J. B. & Larsson, N.-G. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res. 42, 1111–1116 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Wallis, C. P., Scott, L. H., Filipovska, A. & Rackham, O. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Phil. Trans. R. Soc. B 375, 20190185 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Rahman, J. & Rahman, S. Mitochondrial medicine in the omics era. Lancet 391, 2560–2574 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Metodiev, M. D. et al. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am. J. Hum. Genet. 98, 993–1000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Haack, T. B. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 93, 211–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dotto, V. D. et al. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. J. Clin. Investig. 130, 108–125 (2020).

    Article  PubMed  Google Scholar 

  125. Lake, N. J. et al. Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and Leigh syndrome. Am. J. Hum. Genet. 101, 239–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suomalainen, A. & Battersby, B. J. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. 19, 77–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Gustafson, M. A., Sullivan, E. D. & Copeland, W. C. Consequences of compromised mitochondrial genome integrity. DNA Repair 93, 102916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oláhová, M. et al. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat. Commun. 12, 1135 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Park, C. B. et al. Identification of a rare homozygous c.790 C>T variation in the TFB2M gene in Korean patients with autism spectrum disorder. Biochem. Biophys. Res. Commun. 507, 148–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Nicholas, L. M. et al. Mitochondrial transcription factor B2 is essential for mitochondrial and cellular function in pancreatic β-cells. Mol. Metab. 6, 651–663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Deutschmann, A. J. et al. Mutation or knock-down of 17β-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum. Mol. Genet. 23, 3618–3628 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Hochberg, I. et al. Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. Am. J. Hum. Genet. 108, 2195–2204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Merante, F. et al. A biochemically distinct form of cytochrome oxidase (COX) deficiency in the Saguenay-Lac–Saint-Jean region of Quebec. Am. J. Hum. Genet. 53, 481–487 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ghezzi, D. et al. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 83, 415–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wilson, W. C. et al. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Hum. Mol. Genet. 23, 6345–6355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. von Ameln, S. et al. A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am. J. Hum. Genet. 91, 919–927 (2012).

    Article  CAS  Google Scholar 

  137. Richter, U. et al. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis. Nat. Commun. 9, 3966 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Boczonadi, V. & Horvath, R. Mitochondria: impaired mitochondrial translation in human disease. Int. J. Biochem. Cell Biol. 48, 77–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Antonicka, H., Sasarman, F., Kennaway, N. & Shoubridge, E. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum. Mol. Genet. 15, 1835–1846 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Smeitink, J. et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am. J. Hum. Genet. 79, 869–877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Valente, L. et al. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am. J. Hum. Genet. 80, 44–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Weraarpachai, W. et al. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41, 833–837 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Ferreira, N. et al. Murine cytomegalovirus infection exacerbates complex IV deficiency in a model of mitochondrial disease. PLoS Genet. 16, e1008604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Antonicka, H. et al. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am. J. Hum. Genet. 87, 115–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Koeck, T. et al. A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab. 13, 80–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Rossetti, G. et al. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Sci. Adv. 7, eabi7514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Richman, T. R. et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 20, e13408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Inoue, K. et al. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet. 26, 176–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Stewart, J. B. Current progress with mammalian models of mitochondrial DNA disease. J. Inherit. Metab. Dis. 44, 325–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Kasahara, A. et al. Generation of trans-mitochondrial mice carrying homoplasmic mtDNAs with a missense mutation in a structural gene using ES cells. Hum. Mol. Genet. 15, 871–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Fan, W. et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319, 958–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lin, C. S. et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc. Natl Acad. Sci. USA 109, 20065–20070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Larsson, N.-G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998). This paper is the first report of the in vivo role of TFAM.

    Article  CAS  PubMed  Google Scholar 

  154. Hance, N., Ekstrand, M. I. & Trifunovic, A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14, 1775–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Milenkovic, D. et al. TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum. Mol. Genet. 22, 1983–1993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tyynismaa, H. et al. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc. Natl Acad. Sci. USA 102, 17687–17692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004). This paper describes a revolutionary model of premature ageing that is a consequence of the accumulation of mtDNA mutations, which has formed the basis for many important studies of mitochondrial gene regulation and diseases.

    Article  CAS  PubMed  Google Scholar 

  158. Lee, C.-K., Klopp, R., Weindruch, R. & Prolla, T. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Bratic, A. et al. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat. Commun. 6, 8808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Baris, O. R. et al. Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metab. 21, 667–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Kauppila, J. H. K. et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 16, 2980–2990 (2016). This study is the first to report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation that models a mitochondrial disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Perks, K. L. et al. Adult-onset obesity is triggered by impaired mitochondrial gene expression. Sci. Adv. 3, e1700677 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Zschocke, J. HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J. Inherit. Metab. Dis. 35, 81–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Taylor, R. W. et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312, 68 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Cuillerier, A. et al. Loss of hepatic LRPPRC alters mitochondrial bioenergetics, regulation of permeability transition and trans-membrane ROS diffusion. Hum. Mol. Genet. 26, 3186–3201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cámara, Y. Y. et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 13, 527–539 (2011).

    Article  PubMed  CAS  Google Scholar 

  167. Dogan, S. A. et al. Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab. 19, 458–469 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Park, C. B. et al. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130, 273–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Richman, T. R. et al. Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction. PLoS Genet. 11, e1005089 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Richman, T. R. et al. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7, 11884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hodgkinson, A. et al. High-resolution genomic analysis of human mitochondrial RNA sequence variation. Science 344, 413–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Ferreira, N. et al. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J. 38, e102155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Akbergenov, R. et al. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep. 19, e46193 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Zhao, Q. et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21, 4411–4419 (2002). The paper reports the discovery of transcription factors that are activated in response to a mitochondrial unfolded stress response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wu, Z., Sainz, A. G. & Shadel, G. S. Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem. Sci. 46, 812–821 (2021). This comprehensive Review covers the current state of knowledge and new frontiers for discoveries in signalling responses to mtDNA release in the cytoplasm by the group that discovered this phenomenon.

    Article  CAS  PubMed  Google Scholar 

  176. Perks, K. L. et al. Reduced mitochondrial translation prevents diet-induced metabolic dysfunction but not inflammation. Aging 12, 19677–19700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kaspar, S. et al. Adaptation to mitochondrial stress requires CHOP-directed tuning of ISR. Sci. Adv. 7, eabf0971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, C. et al. MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome–nascent chain complex. EMBO Rep. 21, 1–12 (2019).

    Google Scholar 

  180. Molenaars, M. et al. A conserved mito-cytosolic translational balance links two longevity pathways. Cell Metab. 31, 549–563.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Tadepalle, N. & Shadel, G. S. RNA reports breaking news from mitochondria. Mol. Cell 81, 1863–1865 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Grochowska, J., Czerwinska, J., Borowski, L. S. & Szczesny, R. J. Mitochondrial RNA, a new trigger of the innate immune system. Wiley Interdiscip. Rev. RNA 8, e1690 (2021).

    Google Scholar 

  184. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015). The paper was the first to report on mtDNA stress that initiates an innate immune response in cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Hensen, F. et al. Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB. Nucleic Acids Res. 47, 3680–3698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose work we were unable to cite because of space limitations. The authors thank current and past members of their groups, collaborators and colleagues who have contributed to discoveries discussed in this Review and for critical advice on this manuscript. A.F. and O.R. are supported by fellowships and grants from the National Health and Medical Research Council, the Australian Research Council, the Cancer Council of Western Australia and Telethon Kids Institute.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aleksandra Filipovska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks R. Lightowlers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Nucleoid

A complex composed of mitochondrial DNA and its associated proteins that regulate the organization and expression of the mitochondrial genome.

G-quadruplexes

Secondary structures formed between guanine residues within nucleic acids, which are important for gene organization and expression. Sets of four guanine bases bound via Hoogsteen hydrogen bonds stack on top of each other to form stable structures.

Mitochondrial RNA granule

(MRGs) A heterogeneous complex composed of mitochondrial RNA and proteins involved in RNA regulation.

Mitochondrial diseases

A group of multi-systemic diseases that are primarily caused by defects in nuclear or mitochondrial DNA genes, causing mitochondrial dysfunction and resulting in a range of symptoms that predominantly affect organs with high energy demands and aerobic metabolism.

Heteroplasmy

The co-existence of mutant and wild-type mitochondrial DNA molecules within the same mitochondrion or within a cell.

Cytoplast

A cell devoid of a nucleus that contains mitochondria and can be fused with a nucleus from a donor cell.

Cybrid

Created by introducing a donor nucleus introduced into a cytoplast. Because cybrids contain the nuclear genes from one cell and the mitochondrial genes from another, they can be used to assess the contributions of mitochondrial genes and nuclear genes independently.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rackham, O., Filipovska, A. Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 23, 606–623 (2022). https://doi.org/10.1038/s41576-022-00480-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00480-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing