Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways

Abstract

The Strecker reaction of aldehydes is the pre-eminent pathway to explain the prebiotic origins of α-amino acids. However, biology employs transamination of α-ketoacids to synthesize amino acids which are then transformed to nucleobases, implying an evolutionary switch—abiotically or biotically—of a prebiotic pathway involving the Strecker reaction into today’s biosynthetic pathways. Here we show that α-ketoacids react with cyanide and ammonia sources to form the corresponding α-amino acids through the Bucherer–Bergs pathway. An efficient prebiotic transformation of oxaloacetate to aspartate via N-carbamoyl aspartate enables the simultaneous formation of dihydroorotate, paralleling the biochemical synthesis of orotate as the precursor to pyrimidine nucleobases. Glyoxylate forms both glycine and orotate and reacts with malonate and urea to form aspartate and dihydroorotate. These results, along with the previously demonstrated protometabolic analogues of the Krebs cycle, suggest that there can be a natural emergence of congruent forerunners of biological pathways with the potential for seamless transition from prebiotic chemistry to modern metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the prebiotic and biotic routes to α-amino acids.
Fig. 2: Mechanistic pathway for the conversion of α-ketoacids to α-amino acids via the Bucherer–Bergs reaction.
Fig. 3: Synthesis of α-amino acids and orotate from α-ketoacids using DAP and cyanide.
Fig. 4: Reaction of α-ketoacid condensation products with ammonia sources produces compounds found in the Krebs cycle and its secondary metabolites.
Fig. 5: The emergence of the various pathways with incremental systems-chemistry complexity.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Burton, A. S., Stern, J. C., Elsila, J. E., Glavin, D. P. & Dworkin, J. P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459–5472 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, S. L. & Van Trump, J. E. in Origin of Life: Proceedings of the Third ISSOL Meeting and the Sixth ICOL Meeting, Jerusalem, June 22-27, 1980 (ed Y. Wolman) 135–141 (D. Reidel Publishing Company, 1981).

  5. Kitadai, N. & Maruyama, S. Origins of building blocks of life: a review. Geosci. Front. 9, 1117–1153 (2018).

    Article  CAS  Google Scholar 

  6. Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann. Chemie 75, 27–45 (1850). 3.

    Article  Google Scholar 

  7. Wu, L. F. & Sutherland, J. D. Provisioning the origin and early evolution of life. Emerg. Top. Life Sci. 3, 459–468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison, S. A. & Lane, N. Life as a guide to prebiotic nucleotide synthesis. Nat. Commun. 9, 5176 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McMurry, J. & Begley, T. The Organic Chemistry of Biological Pathways (Roberts and Company, 2005).

  10. Lazcano, A. & Miller, S. L. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85, 793–798 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Sutherland, J. D. The origin of life—out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016).

    Article  CAS  Google Scholar 

  12. Lazcano, A. & Miller, S. L. On the origin of metabolic pathways. J. Mol. Evol. 49, 424–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Forterre, P. & Gribaldo, S. The origin of modern terrestrial life. HFSP J 1, 156–168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, e18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krishnamurthy, R. Life’s biological chemistry: a destiny or destination starting from prebiotic chemistry? Chem. Eur. J. 24, 16708–16715 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Stubbs, R. T., Yadav, M., Krishnamurthy, R. & Springsteen, G. A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of alpha-ketoacids. Nat. Chem. 12, 1016–1022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yadav, M., Pulletikurti, S., Yerabolu, J. R. & Krishnamurthy, R. Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway. Nat. Chem. 14, 170–178 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Hafenbradl, D., Keller, M., Wächtershäuser, G. & Stetter, K. O. Primordial amino acids by reductive amination of α-oxo acids in conjunction with the oxidative formation of pyrite. Tetrahedron Lett. 36, 5179–5182 (1995).

    Article  CAS  Google Scholar 

  21. Huber, C. & Wächtershäuser, G. Primordial reductive amination revisited. Tetrahedron Lett. 44, 1695–1697 (2003).

    Article  CAS  Google Scholar 

  22. Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. 116, 4828–4833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. et al. Photocatalytic reversible amination of α-keto acids on a ZnS surface: implications for the prebiotic metabolism. Chem. Commun. 48, 2146–2148 (2012).

    Article  CAS  Google Scholar 

  24. Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muchowska, K. B., Varma, S. J. & Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104–107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Ashe, K. et al. Selective prebiotic synthesis of phosphoroaminonitriles and aminothioamides in neutral water. Commun. Chem. 2, 23 (2019).

    Article  Google Scholar 

  28. Osumah, A. & Krishnamurthy, R. Diamidophosphate (DAP)—a plausible prebiotic phosphorylating reagent with a chem to biochem potential? ChemBioChem 22, 3001–3009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bucherer, H. T. & Fischbeck, H. Hexahydrodiphenylamine and its derivatives. J. Prakt. Chem. 140, 69–89 (1934).

    CAS  Google Scholar 

  30. Ware, E. The chemistry of the hydantoins. Chem. Rev. 46, 403–470 (1950).

    Article  CAS  PubMed  Google Scholar 

  31. Bucherer, H. T. & Lieb, V. A. Über die bildung substituierter hydantoine aus aldehyden und ketonen. Synthese von hydantoinen. J. Prakt. Chemie 141, 5–43 (1934).

    Article  CAS  Google Scholar 

  32. Pascal R., Boiteau L. & Commeyras A. in Prebiotic Chemistry (ed Walde P.) 69–122 (Springer Berlin Heidelberg; Berlin, Heidelberg, 2005).

  33. Zhao, H., Yu, R., Qiao, H. & Liu, C. Study on the formation of glycine by hydantoin and its kinetics. ACS Omega 5, 13463–13472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konnert, L., Lamaty, F., Martinez, J. & Colacino, E. Recent advances in the synthesis of hydantoins: the state of the art of a valuable scaffold. Chem. Rev. 117, 13757–13809 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Taillades, J. et al. N-Carbamoyl-α-amino acids rather than free α-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Orig. Life Evol. Biosph. 28, 61–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Rousset, A., Lasperas, M., Taillades, J. & Commeyras, A. Systemes de strecker et apparentes—XI: Formation et stabilité de l’α-carboxyaminonitrile. Intermédiaire essentiel dans la synthèse des hydantoïnes selon Bucherer–Bergs. Tetrahedron 36, 2649–2661 (1980).

    Article  CAS  Google Scholar 

  37. Shimoyama, A. & Ogasawara, R. Dipeptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Orig. Life Evol. biosph. 32, 165–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Cooper, G. W. & Cronin, J. R. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim. Cosmochim. Acta 59, 1003–1015 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Maltais, T. R., VanderVelde, D., LaRowe, D. E., Goldman, A. D. & Barge, L. M. Reactivity of metabolic intermediates and cofactor stability under model early Earth conditions. Orig. Life Evol. Biosph. 50, 35–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Yamagata, Y. et al. Prebiotic synthesis of orotic acid parallel to the biosynthetic pathway. Orig. Life Evol. Biosph. 20, 389–399 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Clay, A. P. et al. A plausible prebiotic one-pot synthesis of orotate and pyruvate suggestive of common protometabolic pathways. Angew. Chemie Int. Ed. 61, e202112572 (2022).

    Article  CAS  Google Scholar 

  42. Basavaiah, D., Sharada, D. S. & Veerendhar, A. Organo-base mediated Cannizzaro reaction. Tetrahedron Lett. 47, 5771–5774 (2006).

    Article  CAS  Google Scholar 

  43. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Z. et al. Prebiotic photoredox synthesis from carbon dioxide and sulfite. Nat. Chem. 13, 1126–1132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ritson, D. J. A cyanosulfidic origin of the Krebs cycle. Sci. Adv. 7, eabh3981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cooper, G., Reed, C., Nguyen, D., Carter, M. & Wang, Y. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proc. Natl Acad. Sci. USA 108, 14015–14020 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yanagawa, H., Makino, Y., Sato, K., Nishizawa, M. & Egami, F. A novel way for the formation of α-amino acids and their derivatives in an aqueous medium. Adv. Space Res. 3, 69–74 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Collins Bishop, J., Cross, S. D. & Waddell, T. G. Prebiotic transamination. Orig. Life Evol. Biosph. 27, 319–324 (1997).

    Article  Google Scholar 

  49. Peretó, J. in Handbook of Astrobiology (ed Kolb, V.) 219–233 (CRC Press, Boca Raton, 2019).

  50. Lauber, N., Flamm, C. & Ruiz-Mirazo, K. ‘Minimal metabolism’: a key concept to investigate the origins and nature of biological systems. BioEssays 43, 2100103 (2021).

    Article  CAS  Google Scholar 

  51. Cooper, A. J. L., Ginos, J. Z. & Meister, A. Synthesis and properties of the alpha-keto acids. Chem. Rev. 83, 321–358 (1983).

    Article  CAS  Google Scholar 

  52. Bachmann, S., Knudsen, K. R. & Jørgensen, K. A. Mimicking enzymatic transaminations: attempts to understand and develop a catalytic asymmetric approach to chiral α-amino acids. Org. Biomol. Chem. 2, 2044–2049 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Parker, E. T., Karki, M., Glavin, D. P., Dworkin, J. P. & Krishnamurthy, R. A sensitive quantitative analysis of abiotically synthesized short homopeptides using ultraperformance liquid chromatography and time-of-flight mass spectrometry. J. Chromatogr. A 1630, 461509 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Cai, W. et al. Asymmetric biomimetic transamination of α-keto amides to peptides. Nat. Commun. 12, 5174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferris, J. P., Joshi, P. C. & Lawless, J. G. Chemical evolution. XXIX. Pyrimidines from hydrogen cyanide. BioSystems 9, 81–86 (1977).

    Article  CAS  PubMed  Google Scholar 

  59. Miyakawa, S., Cleaves, H. J. & Miller, S. L. The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig. Life Evol. Biosph. 32, 209–218 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Krishnamurthy, R. Giving rise to life: transition from prebiotic chemistry to protobiology. Acc. Chem. Res. 50, 455–459 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by NSF and the NASA Astrobiology Program under the NSF Center for Chemical Evolution, CHE-1504217, NASA Exobiology grant, 80NSSC18K1300 (to R.K.) and a grant from the Simons Foundation, 327124FY19 (to R.K.). We thank L. Leman and J. Peretó for feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.K. proposed the project. G.S. and R.K. designed and supervised research. S.P and M.Y. designed and performed the experiments and collected the data. S.P., M.Y., G.S. and R.K. analysed data. R.K. wrote the manuscript with feedback and edits from S.P., M.Y. and G.S.

Corresponding author

Correspondence to Ramanarayanan Krishnamurthy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks George Cody and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Non-interference from α-amino acids in the Bucherer–Bergs reaction.

The α-amino acids formed as products have the potential to compete and react with the starting α-ketoacids under the Bucherer-Bergs reaction conditions. Starting from pyruvate and cyanide, in the presence of glycine, only the adduct 4a formed (top pathway), and the substituted hydantoin 5f is not observed (Supplementary Figs. 56–57). When ammonia is present, the reaction is channelled towards the formation of 5-methylhydantoin 6 (bottom pathway, Supplementary Figs. 60–61). This is because while the aminonitrile adduct 4 is able to form the isocyanate intermediate 5c, the amino acid–nitrile adduct 4a cannot form the corresponding isocyanate intermediate leading to hydantoin 5f since the obligate intermediate 5e lacks the hydrogen atom necessary for the ring opening reaction (when compared to 5b)32.

Supplementary information

Supplementary Information

General experimental, experimental procedures, Supplementary Figs. 1–90, Tables 1–3, Schemes 1 and 2, references and NMR spectra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulletikurti, S., Yadav, M., Springsteen, G. et al. Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways. Nat. Chem. 14, 1142–1150 (2022). https://doi.org/10.1038/s41557-022-00999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00999-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing