Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning

Abstract

Non-invasive imaging methods for detecting intratumoural viral spread and host responses to oncolytic virotherapy are either slow, lack specificity or require the use of radioactive or metal-based contrast agents. Here we show that in mice with glioblastoma multiforme, the early apoptotic responses to oncolytic virotherapy (characterized by decreased cytosolic pH and reduced protein synthesis) can be rapidly detected via chemical-exchange-saturation-transfer magnetic resonance fingerprinting (CEST-MRF) aided by deep learning. By leveraging a deep neural network trained with simulated magnetic resonance fingerprints, CEST-MRF can generate quantitative maps of intratumoural pH and of protein and lipid concentrations by selectively labelling the exchangeable amide protons of endogenous proteins and the exchangeable macromolecule protons of lipids, without requiring exogenous contrast agents. We also show that in a healthy volunteer, CEST-MRF yielded molecular parameters that are in good agreement with values from the literature. Deep-learning-aided CEST-MRF may also be amenable to the characterization of host responses to other cancer therapies and to the detection of cardiac and neurological pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of deep-learning-boosted molecular MRI pipeline.
Fig. 2: Quantitative molecular images of a representative OV-treated mouse.
Fig. 3: Histology validation.
Fig. 4: Assessment of deep-learning-boosted molecular MRI in a healthy volunteer at 3 T.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but they are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

CEST MR fingerprinting dictionaries were generated on the basis of previously published methods44,65 and used the following components: Matlab R2018a (Mathworks) and C++. These dictionaries can be reproduced using the open-source code available in https://pulseq-cest.github.io (ref. 89) with the parameters described in Supplementary Table 1. Conventional CEST analysis can be performed using the code available in https://github.com/cest-sources. The deep-learning models can be reproduced using standard libraries and scripts available in Python 3.6 and TensorFlow 1.4.1. All source code is available from the corresponding authors upon request.

References

  1. Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 14, 559 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Markert, J. M. et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther. 17, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Tamura, K. et al. Multimechanistic tumor targeted oncolytic virus overcomes resistance in brain tumors. Mol. Ther. 21, 68–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Cheema, T. A. et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc. Natl Acad. Sci. USA 110, 12006–12011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pol, J., Kroemer, G. & Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunlogy 5, e1115641 (2015).

    Article  CAS  Google Scholar 

  6. Kuruppu, D. et al. Positron emission tomography of herpes simplex virus 1 oncolysis. Cancer Res. 67, 3295–3300 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, J. et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat. Med. 17, 130–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Ward, K., Aletras, A. & Balaban, R. S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143, 79–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. van Zijl, P. C., Lam, W. W., Xu, J., Knutsson, L. & Stanisz, G. J. Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum. Neuroimage 168, 222–241 (2018).

    Article  PubMed  Google Scholar 

  10. Ma, D. et al. Magnetic resonance fingerprinting. Nature 495, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, K. et al. Assessing amide proton transfer (APT) MRI contrast origins in 9L gliosarcoma in the rat brain using proteomic analysis. Mol. Imaging Biol. 17, 479–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heo, H.-Y., Zhang, Y., Lee, D.-H., Hong, X. & Zhou, J. Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla. Magn. Reson. Med. 75, 137–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Quesson, B. et al. Magnetization transfer fast imaging of implanted glioma in the rat brain at 4.7 T: interpretation using a binary spin-bath model. J. Magn. Reson. Imaging 7, 1076–1083 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Hobbs, S. K. et al. Magnetic resonance image–guided proteomics of human glioblastoma multiforme. J. Magn. Reson. Imaging 18, 530–536 (2003).

    Article  PubMed  Google Scholar 

  15. Xu, J. et al. On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed. 27, 406–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Jeffrey, I. W., Bushell, M., Tilleray, V. J., Morley, S. & Clemens, M. J. Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor α family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase. Cancer Res. 62, 2272–2280 (2002).

    CAS  PubMed  Google Scholar 

  18. Nilsson, C., Johansson, U., Johansson, A.-C., Kågedal, K. & Öllinger, K. Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells. Apoptosis 11, 1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hendrich, A. & Michalak, K. Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr. Drug Targets 4, 23–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Gregory, R. B., Crabo, L., Percy, A. J. & Rosenberg, A. Water catalysis of peptide hydrogen isotope exchange. Biochemistry 22, 910–917 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Stanisz, G. J. et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 54, 507–512 (2005).

    Article  PubMed  Google Scholar 

  22. Van Zijl, P. C. et al. Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn. Reson. Med. 49, 440–449 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Kettunen, M. I. & Brindle, K. M. Apoptosis detection using magnetic resonance imaging and spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 3, 175–185 (2005).

    Article  CAS  Google Scholar 

  24. Kim, H. et al. Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology 248, 844–851 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blankenberg, F. & Strauss, H. Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6, 117–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Schellenberger, E. A. et al. Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia 5, 187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edgington, L. E. et al. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat. Med. 15, 967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blankenberg, F. G. In vivo detection of apoptosis. J. Nucl. Med. 49, 81S–95S (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, M., Li, Z. & Bugenhagen, S. 99mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J. Nucl. Med. 49, 1345–1352 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Banihashemi, B. et al. Ultrasound imaging of apoptosis in tumor response: novel preclinical monitoring of photodynamic therapy effects. Cancer Res. 68, 8590–8596 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Blankenberg, F. G. & Norfray, J. F. Multimodality molecular imaging of apoptosis in oncology. Am. J. Roentgen 197, 308–317 (2011).

    Article  Google Scholar 

  33. Zhao, M., Beauregard, D. A., Loizou, L., Davletov, B. & Brindle, K. M. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J., Payen, J.-F., Wilson, D. A., Traystman, R. J. & van Zijl, P. C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 9, 1085 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, X. et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn. Reson. Med. 66, 1033–1041 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Desmond, K. L. et al. Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis. Magn. Reson. Med. 78, 1110–1120 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Regnery, S. et al. Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget 9, 28772–28783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zaiss, M. et al. Relaxation-compensated CEST-MRI of the human brain at 7 T: unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112, 180–188 (2015).

    Article  PubMed  Google Scholar 

  39. Mehrabian, H., Myrehaug, S., Soliman, H., Sahgal, A. & Stanisz, G. J. Evaluation of glioblastoma response to therapy with chemical exchange saturation transfer. Int. J. Radiat. Oncol. Bio. Phys. 101, 713–723 (2018).

    Article  CAS  Google Scholar 

  40. Scheidegger, R., Wong, E. T. & Alsop, D. C. Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99, 256–268 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sagiyama, K. et al. In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc. Natl Acad. Sci. USA 111, 4542–4547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray, K. J. et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging. Cancer Res. 79, 1343–1352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Windschuh, J. et al. Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. NMR Biomed. 28, 529–537 (2015).

    Article  PubMed  Google Scholar 

  44. Cohen, O., Huang, S., McMahon, M. T., Rosen, M. S. & Farrar, C. T. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn. Reson. Med. 80, 2449–2463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glang, F. et al. DeepCEST 3T: robust MRI parameter determination and uncertainty quantification with neural networks — application to CEST imaging of the human brain at 3T. Magn. Reson. Med. 84, 450–466 (2020).

    Article  PubMed  Google Scholar 

  46. Chen, L. et al. In vivo imaging of phosphocreatine with artificial neural networks. Nat. Commun. 11, 1072 (2020).

  47. Akbey, S., Ehses, P., Stirnberg, R., Zaiss, M. & Stöcker, T. Whole-brain snapshot CEST imaging at 7 T using 3D-EPI. Magn. Reson. Med. 82, 1741–1752 (2019).

    Article  PubMed  Google Scholar 

  48. Setsompop, K. et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67, 1210–1224 (2012).

    Article  PubMed  Google Scholar 

  49. Cohen, O. & Polimeni, J. R. Optimized inversion-time schedules for quantitative T1 measurements based on high-resolution multi-inversion EPI. Magn. Reson. Med. 79, 2101–2112 (2018).

    Article  PubMed  Google Scholar 

  50. Cohen, O. & Rosen, M. S. Algorithm comparison for schedule optimization in MR fingerprinting. Magn. Reson. Imaging 41, 15–21 (2017).

    Article  PubMed  Google Scholar 

  51. Sommer, K. et al. Towards predicting the encoding capability of MR fingerprinting sequences. Magn. Reson. Imaging 41, 7–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, B., Liu, J., Koonjoo, N., Rosen, B. & Rosen, M. S. Automated pulse sequence generation (Autoseq) and neural network decoding for fast quantitative MR parameter measurement using continuous and simultaneous RF transmit and receive. In ISMRM 27th Annual Meeting & Exhibition (ISMRM, 2019).

  53. Guicciardi, M. E., Malhi, H., Mott, J. L. & Gores, G. J. Apoptosis and necrosis in the liver. Compr. Physiol. 3, 977–1010 (2013).

    Article  PubMed  Google Scholar 

  54. Borys, J. et al. Free radical production, inflammation and apoptosis in patients treated with titanium mandibular fixations—an observational study. Front. Immunol. 10, 2662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Radi, E., Formichi, P., Battisti, C. & Federico, A. Apoptosis and oxidative stress in neurodegenerative diseases. J. Alzheimers Dis. 42, S125–S152 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Zhou, J., Heo, H.-Y., Knutsson, L., van Zijl, P. C. & Jiang, S. APT-weighted MRI: techniques, current neuro applications, and challenging issues. J. Magn. Reson. Imaging 50, 347–364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sakata, A. et al. Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J. Neurooncol. 122, 339–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Farrar, C. T. et al. Establishing the lysine-rich protein CEST reporter gene as a CEST MR imaging detector for oncolytic virotherapy. Radiology 275, 746–754 (2015).

    Article  PubMed  Google Scholar 

  60. Meier, S. et al. Non-invasive detection of adeno-associated viral gene transfer using a genetically encoded CEST-MRI reporter gene in the murine heart. Sci. Rep. 8, 4638 (2018).

  61. Mehrabian, H., Desmond, K. L., Soliman, H., Sahgal, A. & Stanisz, G. J. Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin. Cancer Res. 23, 3667–3675 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Henkelman, R., Stanisz, G. & Graham, S. Magnetization transfer in MRI: a review. NMR Biomed. 14, 57–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, R. et al. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: a preliminary study. Chin. Med. J. 128, 615 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, M., Gillen, J., Landman, B. A., Zhou, J. & van Zijl, P. C. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn. Reson. Med. 61, 1441–1450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Perlman, O. et al. CEST MR-fingerprinting: practical considerations and insights for acquisition schedule design and improved reconstruction. Magn. Reson. Med. 83, 462–478 (2020).

    Article  PubMed  Google Scholar 

  66. Cohen, O., Zhu, B. & Rosen, M. S. MR fingerprinting deep reconstruction network (DRONE). Magn. Reson. Med. 80, 885–894 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Balsiger, F. et al. Magnetic resonance fingerprinting reconstruction via spatiotemporal convolutional neural networks. In International Workshop on Machine Learning for Medical Image Reconstruction (Springer, 2018).

  68. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  69. Zur, R. M., Jiang, Y., Pesce, L. L. & Drukker, K. Noise injection for training artificial neural networks: a comparison with weight decay and early stopping. Med. Phys. 36, 4810–4818 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nakashima, H. et al. Toxicity and efficacy of a novel GADD34-expressing oncolytic HSV-1 for the treatment of experimental glioblastoma. Clin. Cancer Res. 24, 2574–2584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McMahon, M. T. et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): pH calibration for poly-l-lysine and a starburst dendrimer. Magn. Reson. Med. 55, 836–847 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Longo, D. L. et al. In vitro and in vivo assessment of non-ionic iodinated radiographic molecules as chemical exchange saturation transfer magnetic resonance imaging tumor perfusion agents. Invest. Radiol. 51, 155–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Goldenberg, J. M. & Pagel, M. D. Assessments of tumor metabolism with CEST MRI. NMR Biomed. 32, e3943 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Anemone, A., Consolino, L. & Longo, D. L. MRI-CEST assessment of tumour perfusion using x-ray iodinated agents: comparison with a conventional Gd-based agent. Eur. Radiol. 27, 2170–2179 (2017).

    Article  PubMed  Google Scholar 

  75. High, R. A. et al. In vivo assessment of extracellular pH of joint tissues using acidoCEST-UTE MRI. Quant. Imaging Med. Surg. 9, 1664 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kumari, N., Thakur, N., Cho, H. R. & Choi, S. H. Assessment of early therapeutic response to nitroxoline in temozolomide-resistant glioblastoma by amide proton transfer imaging: a preliminary comparative study with diffusion-weighted imaging. Sci. Rep. 9, 5585 (2019).

  78. Roeloffs, V., Meyer, C., Bachert, P. & Zaiss, M. Towards quantification of pulsed spinlock and CEST at clinical MR scanners: an analytical interleaved saturation–relaxation (ISAR) approach. NMR Biomed. 28, 40–53 (2015).

    Article  PubMed  Google Scholar 

  79. Layton, K. J. et al. Pulseq: a rapid and hardware-independent pulse sequence prototyping framework. Magn. Reson. Med. 77, 1544–1552 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Schuenke, P. et al. Simultaneous mapping of water shift and B1 (WASABI) – application to field – inhomogeneity correction of CEST MRI data. Magn. Reson. Med. 77, 571–580 (2017).

    Article  PubMed  Google Scholar 

  81. Liu, G., Gilad, A. A., Bulte, J. W., van Zijl, P. C. & McMahon, M. T. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol. Imaging 5, 162–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, L. Q. et al. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn. Reson. Med. 72, 1408–1417 (2014).

    Article  PubMed  Google Scholar 

  83. Stancanello, J. et al. Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media Mol. Imaging 3, 136–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, I. Y. et al. Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using image downsampling expedited adaptive least-squares (IDEAL) fitting. Sci. Rep. 7, 84 (2017).

  85. Banerjee, S., Mitra, S. & Shankar, B. U. Single seed delineation of brain tumor using multi-thresholding. Inf. Sci. 330, 88–103 (2016).

    Article  Google Scholar 

  86. Gordillo, N., Montseny, E. & Sobrevilla, P. State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31, 1426–1438 (2013).

    Article  PubMed  Google Scholar 

  87. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

    Article  Google Scholar 

  88. van der Walt, S. et al. scikit-image: image processing in python. PeerJ 2, e453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Herz, K. et al. Pulseq-CEST: towards multi-site multi-vendor compatibility and reproducibility of CEST experiments using an open-source sequence standard. Magn. Reson. Med. 86,1845–1858 (2021).

  90. Zaiß, M., Schmitt, B. & Bachert, P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of Z-spectra. J. Magn. Reson. 211, 149–155 (2011).

    Article  PubMed  CAS  Google Scholar 

  91. Geades, N. et al. Quantitative analysis of the Z-spectrum using a numerically simulated look-up table: application to the healthy human brain at 7T. Magn. Reson. Med. 78, 645–655 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, D. et al. Quantitative characterization of nuclear Overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla. Magn. Reson. Med. 70, 1070–1081 (2013).

    Article  PubMed  Google Scholar 

  93. Yarnykh, V. L. et al. Fast whole-brain three-dimensional macromolecular proton fraction mapping in multiple sclerosis. Radiology 274, 210–220 (2015).

    Article  PubMed  Google Scholar 

  94. Samsonov, A. et al. Quantitative MR imaging of two-pool magnetization transfer model parameters in myelin mutant shaking pup. Neuroimage 62, 1390–1398 (2012).

    Article  PubMed  Google Scholar 

  95. Heo, H.-Y. et al. Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. Neuroimage 189, 202–213 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the US National Institutes of Health Grants R01-CA203873 (C.T.F.), P41-RR14075 (Massachusetts General Hospital), S10-RR023401 (Massachusetts General Hospital), S10-RR019307 (Massachusetts General Hospital) and 1S10RR023043 (Massachusetts General Hospital), as well as by R01-NS110942 (H.N., E.A.C.) and P01-CA163205 (H.N., E.A.C.). The Brigham and Women’s Small Animal Imaging Laboratory (SAIL) was funded by a G20 Grant (G20-RR031051) as part of the American Recovery and Reinvestment Act as part of the construction of the Brigham and Women’s MRI Research Center (BWMRC). The 7T Bruker Small Bore Animal Magnet was partially funded by an S10 Grant (S10-OD010705) through the National Institutes of Health. K.H was supported by the German Research Foundation (DFG, grant ZA 814/2–1). This project also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 836752 (OncoViroMRI). This paper reflects only the authors’ view, and the Research Executive Agency of the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Contributions

O.P., O.C., M.S.R. and C.T.F. conceptualized the deep-learning reconstruction architecture. O.P., K.H., M.Z., O.C. and C.T.F. implemented and tested various aspects of the technical framework. H.I., H.N., E.A.C., O.P. and C.T.F. contributed to preclinical experiment design. H.I. performed tumour implantations and virus inoculations. O.P., C.T.F. and H.I. performed the preclinical imaging. N.S. performed the histology and immunohistochemistry studies. K.H., M.Z., O.P. and C.T.F. developed the clinical imaging scheme. K.H. and M.Z. performed the clinical imaging. O.P., H.I., K.H., N.S., H.N., M.Z., E.A.C., O.C., M.S.R. and C.T.F. wrote and/or substantially revised the manuscript.

Corresponding authors

Correspondence to Or Perlman or Christian T. Farrar.

Ethics declarations

Competing interests

The authors declare the following competing interests: C.T.F., M.S.R. and O.C. hold a patent for the CEST MR fingerprinting method (patent no. US10,605,877).

Additional information

Peer review information Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Source data for Fig. 1b.

Source Data Fig. 2

Source data for Fig. 2d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perlman, O., Ito, H., Herz, K. et al. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning. Nat. Biomed. Eng 6, 648–657 (2022). https://doi.org/10.1038/s41551-021-00809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00809-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer