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ABSTRACT

One of the core algorithmic forces driving the development of modern foundation
models is the use of contrastive language alignment to facilitate more robust visual
representation learning. The clear benefits conferred by CLIP-style multimodal
objective functions in computer vision have generated a frenzy of interest in the
application of these models to a long-debated question in cognitive neuroscience:
to what extent does language shape perceptual representation in the human mind?
In this work, we explore this question in two distinct domains: the prediction of
brain activity in the human ventral visual system (as measured by high-resolution
fMRI), and the prediction of visually evoked affect in human image assessment
(as measured by self-report). In both of these cases, we leverage popular open-
source foundation models (e.g. OpenAI’s CLIP) in conjunction with empirically
controlled alternatives (e.g. Meta AI’s SLIP models) to better isolate the effects of
language alignment while holding architecture and dataset constant. These con-
trolled experiments offer mixed evidence regarding the influence of language on
perceptual representation: specifically, when architecture and dataset are held con-
stant, we find no evidence that language-alignment improves the brain predictivity
of vision models, but we do find strong evidence that it increases predictivity of
behavioral image assessments. We offer these examples as a case study in the ur-
gency of injecting greater empirical control into the development and evaluation
of foundation models, whose emergent properties may be attributable to a variety
of sources that only systematic model comparison can fully disentangle.

1 INTRODUCTION

To what extent does human language shape visual representation and function? Some theories pro-
pose that high-level visual cortical representations can be explicitly shaped by linguistic and seman-
tic concepts (13; 22; 6; 35; 31; 21). The top-down influence of language on vision is especially clear
during category learning in development (30; 43). Alternate theories place heavier emphasis on the
structure of natural image statistics as representational constraints, and relatively less weight on the
role of top-down factors (3; 19; 28; 24; 29). Indeed, recent work suggests that object category infor-
mation can be learned through purely domain-general learning of the covariance structure of natural
images, and that these representations can explain substantial variance in neural datasets (23).

The advent of foundation models now offers a valuable opportunity to gain further traction on this
theoretical debate. Prominent successes in accounting for neural responses in high-level visual cor-
tex have occurred using models trained almost exclusively on unimodal visual datasets, such as
ImageNet (see 25; 40 for review). Foundation models trained on massive multimodal datasets now
offer a direct avenue to compare how sensory and linguistic constraints affect representation learning
at scale, and to assess their relative importance in accounting for rich profiles of brain and behav-
ioral responses. A recent study of the popular OpenAI Contrastive Language-Image Pre-training
(CLIP) model revealed that it explained a greater degree of unique variance in large-scale fMRI
recordings than did a canonical vision-only model (ImageNet-trained ResNet-50, 42). However, it
remains unclear whether CLIP’s superior predictive capacity arises from the semantic information
contained in its training image captions, or alternatively, from the sheer magnitude or quality of its
training dataset relative to ImageNet. Given that training dataset size and diversity may indeed be
the primary factors underlying models’ neural and behavioral predictivity (9; 11), the goal of the
present study is to further understand the specific impacts of language-alignment on both brain and

∗Corresponding author: conwell@g.harvard.edu

1



Published at the Workshop on Understanding Foundation Models at ICLR 2023

behavioral prediction, while showcasing model comparison methods that more tightly control the
many other kinds of inductive biases that may impact these kinds of predictions more generally,
including model architecture and training dataset.

2 METHODS

Brain and Behavioral Predictions

The brain data we use in this analysis consists of a subset of the large-scale 7T fMRI Natural Scenes
Dataset (NSD) (2): specifically, activity from 44806 voxels in the ventral visual stream of 4 subjects
responding to 1000 natural images from the COCO image set. We focus our analysis on three
anatomical sectors of interest: early visual cortex (defined as voxels falling within dorsal and ventral
V1, V2, V3, and hV4 masks); occipitotemporal cortex (defined as voxels that cover the ventral and
lateral object-responsive cortex, including category-selective regions); and, the visual word-form
area (VWFA), a specific subset of OTC that shows highly selective responses to written characters.
(For details, see Figure 2A and Appendix A.2).

The behavioral data we use are ratings of visually evoked affect (arousal, valence, and beauty) from
the OASIS dataset (26; 7): a set of 900 images rated on a scale of 1 to 7 for each of the 3 affect
ratings. Each image is rated by 100-110 human raters, responding to prompts such as: ”How positive
or negative does this image make you feel?” We take the group-average ratings per image per affect
as the main target of our analysis.

To predict the brain and behavioral data using our candidate deep neural network models, we
use cross-validated reguralized linear regressions computed across dimensionality-reduced feature
spaces extracted from each layer of each model (10; 11). We use the cross-validated max predictions
across layers as the overall score for each model in a given dataset. (For details, see Appendix A.4).

Candidate Neural Network Models

In predicting both the brain and behavioral data, we test a large battery of deep neural network
models (N = 145) from a variety of sources. These models were largely hand-selected to vary mean-
ingfully across three core dimensions: input (training data), computational architecture, and learning
objective. The main model contrast we assess in this dataset is the contrast between unimodal (purely
visual) models, and multimodal (language-aligned vision) models. (We take unimodal models to
mean models trained purely with visual self-supervision; we do not include category-supervised
models trained with language-adjacent one-hot encoding vectors for category labels).

The majority of the contrasts between the unimodal (vision-only) and multimodal (language-aligned
vision) models in our model set are uncontrolled, in that they vary across more than one dimension
(training data, architecture, or learning objective) at a time. Our main controlled empirical contrasts
are between the models of the SLIP-family, which include a purely visual self-supervised model
(SLIP-SimCLR) that shares an architecture (ViT-[S,B,L]) and training set (YFCC15M) with two
multimodal variants (SLIP-CLIP, and SLIP-Combo, the latter of which combines visual contrastive
learning with language alignment). The SLIP models are crucial to this analysis in that they allow
us to isolate the effects of language alignment, holding architecture and dataset constant. (See
Appendix A.3 for details).

Crucially, we note that because both of our target human datasets in this work are image-based (in
that they consist solely of images, and a matrix of human brain or behavioral responses evoked by
each image), we extract representations only from the visual backbones of those models that contain
multimodal components (e.g. CLIP, which has both a visual and textual backbone). In other words,
our probe stimuli are not themselves multimodal; the multimodality in this analysis comes only in
the form of learned representations in our candidate, pretrained models.

After computing feature regression scores for all our models on both of our target datasets, we use
rank statistics and direct model-to-model comparisons to probe for the influence of language across
unimodal (vision-only) and multimodal (language-aligned vision) model candidates.

Brain and Behavioral Modeling: Experimental Logic

Worth emphasizing in more detail here is the overarching logic of our experiments. To assess the
extent to which language shapes visual representation in humans, we seek machine vision models
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that learn similar representations with or without objectives that involve language – ideally in such
a way that the only difference between these models is precisely the influence of language. (This
is what we mean by unimodal, vision-only models versus multimodal, language-aligned vision-
models, and by ‘controlled’ comparisons that ensure the only difference between these models is,
in fact, some form of language-alignment). Our unimodal (vision-only) models (e.g. SimCLR,
SwaV, BarlowTwins) tend to be contrastive-learning models whose visual representations are shaped
exclusively by the learning of visual selectivity and invariance across augmentations of individual
image instances. No language is involved in this learning. Our multimodal (language-aligned) vision
models, on the other hand, are models that learn by simultaneously embedding both visual and
textual inputs, and aligning the embedded representations of both. Language, in this case, is usually
the primary shaper of the visual representations these models eventually learn. Our interpretation,
then, as to whether a given target of prediction (i.e. brain or behavioral) is influenced by language,
comes from the differential predictivity scores of the models that learn with or without it.

3 RESULTS

These analyses address two primary questions: (1) In uncontrolled comparisons of unimodal (vision-
only) and multimodal (language-aligned vision) models, which may differ along multiple dimen-
sions (architecture, dataset, and task), what models best predict human brain and behavioral data?
(2) Controlling for architecture and dataset, does multimodality in the form of language-alignment
affect the model’s ability to predict our target brain and behavioral data? The key data points we
leverage to answer these questions are: (1) the performance of the top-ranked unimodal model rela-
tive to the top-ranked multimodal model (whatever their underlying architectures and training data);
and (2) the performance of the unimodal (SimCLR) SLIP variant relative to its multimodal counter-
parts (CLIP and Combo). Unless otherwise noted, we use the following convention in the reporting
of scores: arithmetic mean [lower, upper 95% bootstrapped confidence interval] across subjects.

Figure 1: A summary of our main results: In the top panels of both these plots, you can see the
relative ranking of our target models (colored points) with respect to the full set of models (black
points) we surveyed. In the bottom panel, we zoom in on the scores of our target models. The
translucent gray bars in both plots are the noise ceilings we calculate for each dataset (NCSNR (2)
for the fMRI data, and Spearman-Brown splithalf reliability for the image ratings). The error bars
are bootstrapped confidence intervals over subjects. A In the visual system, the differences between
the top-ranking unimodal model and the top-ranking multimodal model (yellow and salmon bars
to the left), as well as the differences across the 3 architecture-and-dataset-controlled SLIP variants
(pink, purple, and blue to the right) are negligible in all cortical areas we assess. B In ratings of
visually evoked affect, the top-ranked multimodal model far outperforms the top-ranked unimodal
model. The statistically significant superiority of the multimodal SLIP variants SLIP-CLIP and
SLIP-Combo confirms this difference is very likely attribute to the language alignment inherent to
their learning objectives.
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Predicting Neural Responses in the Human Visual System (Brain)

We first turn to our brain data, where we find that even our uncontrolled model comparisons show no
evidence of language-aligned models outperforming unimodal (vision-only) models in predictions
of human visual cortical responses. In occipitotemporal cortex, the highest ranked model (out of our
target 145 models) was a category-supervised ResMLP architecture trained on Imagenet21k, with a
mean accuracy of rPearson = 0.398 [0.369, 0.428]. The 2nd highest ranked model was the ResNet50
variant of OpenAI’s CLIP model, with a mean voxelwise-encoding accuracy of rPearson = 0.395
[0.365, 0.425]. Ranked 5th out of 145 models in its prediction of OTC voxel activity is a RegNet-
64Gf variant of FaceBook’s SEER algorithm (17) – a large-scale, purely-visual, contrastive learning
model, with mean voxelwise-encoding accuracy of 0.389 [0.361, 0.418]. Though the difference
between the two models here (∆rPearson = -0.0058 [-0.0092, -0.003]) is technically significant in
that it replicates across all subjects, the effect is so miniscule as to make the difference meaningless.

The controlled comparison between the highest performing unimodal and multimodal SLIP (ViT-B)
variants makes it even more apparent that language alignment confers no advantage in predicting
ventral stream responses. Consider the difference between SLIP-SiMCLR and SLIP-Combo (the
sole difference in this case being the addition of the language alignment objective, since both use
visual augmentations as part of their learning): Though the ranks of these models are relatively low
(at rank 84 and 87, respectively), the scores of each model are decent (SLIP-SimCLR rPearson =
0.363 [0.330, 0.397]; SLIP-Combo rPearson = 0.361 [0.325, 0.398], and the difference between
(δrPearson = 0.000115 [-0.00842, 0.00736]) them is insignificant (bootstrapped p = .39).

What these comparisons make clear is that multimodality in the form language alignment DOES
NOT seem to confer meaningful benefits when predicting activity in high-level visual cortex. This
story is much the same in early visual cortex (where even the most predictive OpenAI-CLIP model
ranks 31st / 154 models), but also, perhaps more surprisingly, in the visual word form area (a region
of cortex that preferentially responds to written characters, and that only develops this selectiv-
ity after we learn to read.) Though OpenAI’s ResNet50-CLIP is the highest ranked model in this
region of cortex (mean voxelwise-encoding accuracy of rPearson = 0.378 [0.344, 0.398]), RegNet-
64Gf-SEER is again only minimally behind (rPearson = 0.367 [0.324, 0.391]), and the controlled
comparison of SLIP-SimCLR in this region is almost numerically identical to SLIP-Combo: 0.346
[0.321, 0.362] vs. 0.346 [0.315, 0.363].

In short, the representational structure of human visual cortex (as measured by the NSD) is captured
equally well by unimodal (vision-only) and multimodal (language-aligned vision) models. (See
Figure 1A for details).

Predicting Human Visually Evoked Affect (Behavior)

This equivalence disappears as soon as we move from the characterization of visual representation
in the brain to the outputs of visual representation at the level of behavior – at least, to the outputs of
visual representation combined with whatever conceptual, linguistic, or contextual variables dictate
our affective responses to visual stimuli.

In the uncontrolled comparisons across the 145 models we test in this analysis (varying along mul-
tiple characteristics), OpenAI’s CLIP-ViT-L/14 is by a large margin the most predictive model of
all 3 affect ratings available to us in the OASIS dataset, ranking 1st in predictions of beauty and
valence, and 2nd in predictions of arousal (in 1st place for arousal is OpenAI’s CLIP-ViT-B/16 vari-
ant). Averaging across the 3 measures of affect, in this case, CLIP-ViT-L/14 scores a remarkable
average of rPearson = 0.907 [0.917, 0.912]. The highest ranking unimodal model in predictions
of affect is again RegNet-64Gf-SEER, which ranks 20th / 154, and scores a far lower average of
rPearson = 0.785 [0.763, 0.794]. This difference (∆rPearson = 0.108 [0.0732, 0.145]) is significant
at p < 0.0001 (proportion of 10000 bootstrapped resamples in which the difference is greater than
0, Holm-corrected for multiple comparisons), and constitutes an effect that corresponds to approxi-
mately 20% of the explainable variance in this data.

In controlled comparisons between SLIP models, the highest-ranking architecture-matched SLIP
models across all 3 predictions of affect are the ViT-B variants. Looking again at the difference in
accuracy between the SLIP-SimCLR and SLIP-Combo model (which vary only in their language
alignment), we see that the SLIP-SimCLR model (on average) predicts human ratings with an accu-
racy of rPearson = 0.782 [0.773, 0.790]. The SLIP-Combo model, on the other hand, predicts those
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same ratings with an accuracy of rPearson = 0.817 [0.810, 0.824]. These findings suggest that there
is a small, but reliable advantage for language-aligned models when predicting human affect ratings.

In short, the controlled comparisons across the SLIP models do show an advantage for language-
alignment. (See Figure 1B for details). Taken together with the vastly superior OpenAI’s CLIP-ViT-
L/14 performance, these findings suggest the intriguing possibility that the benefits of language for
predicting human visually affect may accumulate with scale. (Only with further comparisons across
larger, controlled foundation model sets can we confirm, however, that this is indeed the case.)

4 DISCUSSION

Given these results, it is tempting to offer a number of direct interpretations about the impact of
language on perceptual representation. That language alignment doesn’t seem to matter for predict-
ing activity in the ventral visual stream could, for example, suggest that the formation of high-level
visual representations is encapsulated from the higher-order cognitive processes of reasoning and
inference that language (at least in humans) most significantly dictates (14; 15). That it does seem
to matter for predicting visually evoked affect is in some sense an easy extension of this same point:
By the time otherwise encapsulated, feedforward visual representations are reinterpreted through
the lens of ‘feeling’, and all the physiological change and cognitive abstraction that feeling almost
always entails, the involvement of language seems almost a given (4). (Participants in affect labeling
experiments (41) such as these are, after all, prompted with written instructions.)

Beyond any one specific interpretation, however, these results underscore the importance of compar-
ing models (like the SLIP models) with controlled variation – especially when those comparisons
involve large-scale foundation models whose ‘emergent properties’ may ultimately factor into any
number of downstream applications (8; 5), including the kinds of brain and behavioral modeling
we’ve done here. More fully characterizing those properties by empirically disentangling the al-
gorithmic pressures that produce them (architecture, data quality and scale, learning objective) is a
necessary step on the road to building foundation models that are more robust, more interpretable,
and more intelligent. Only once we’ve built such models can we more fully leverage them to under-
stand the various aspects of human perception and language we hope they’ll one day mimic.
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A APPENDIX

A.1 OVERVIEW OF METHODS

Figure 2: A1 provides a summary of our target brain data: activity measured in 44806 voxels across
the ventral visual cortices of 4 subjects viewing 1000 natural images from the COCO image set. A2

provides a summary of our target behavioral data: 900 images ranked by 100 to 110 human raters
tasked with evaluating each image in terms of its evoked arousal, valence, or beauty. B shows a
schematic of our pipeline for predicting voxel activity or image ratings from our candidate deep
neural network models: extraction of features from each distinct layer, dimensionality reduction of
these features using sparse random projection, deployment of these dimensionality-reduced features
in a cross-validated regularized regression with the target brain or behavioral data as output. C
shows a schematic of the SLIP models – our main empirical model contrast. In these models, the
sole and unique difference between SimCLR (a unimodal visual contrastive learning model) and
SLIP (a combined vision-language contrastive learning model) is language alignment: Architecture
(ViT) and dataset (YFCC15M) are held constant.

A.2 DETAILS ON THE BRAIN DATASET

The Natural Scenes Dataset (2) contains measurements of 73,000 unique stimuli from the Microsoft
Common Objects in Context (COCO) dataset (Lin et al., 2014) at high resolution (7T field strength,
1.33s TR, 1.8mm3 voxel size). In this analysis, we focus on the brain responses to 1000 COCO
stimuli that overlapped between subjects, and limit analyses to the 4 subjects (subjects 01, 02, 05, 07)
for whom all 3 image repetitions are available for the overlapping images. The 3 image repetitions
were averaged to yield the final voxel-level response values in response to each stimulus.

Voxel Selection Procedure

Between the 4 NSD subjects analyzed here, there were 44806 total voxels that entered into the neu-
ral encoding procedure. For all analyses using NSD data, we analyzed voxels with a noise-ceiling
signal-to-noise ratio (NCSNR) > 0.2. For the character-selective ROI, we additionally applied a
selectivity threshold, only including voxels with a localizer t-value > 1 (as assessed using indepen-
dent data). A visualization of these ROIs from a representative subject is shown in Figure 2A, with
voxelwise NCSNR values plotted on the cortical surface.
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A.3 DETAILS ON MODEL SELECTION + SOURCES

Across both our behavioral and brain datasets, we survey a combined total of 173 distinct models
(224 when including randomly-initialized variants of key architectures). In this analysis, we focus
on a subset of these models (N = 145) that have been tested on both the behavioral and brain dataset.

These models are sourced from multiple different repositories, including the Torchvision (PyTorch)
model zoo (33); the pytorch-image-models (timm) library (44); the VISSL (self-supervised) model
zoo (16); the CLIP collection (36); the Taskonomy (visualpriors) project (46; 38; 39); and the De-
tectron2 model zoo (45). The first two of these repositories offer pretrained versions of a large
number of object recognition models with varying architectures: including (classic and modern)
convolutional networks, vision transformers, and MLP-mixers. For each of these ’ImageNet’ (ob-
ject recognition) models, we include one trained and one randomly initialized variant (using what-
ever initialization scheme the model authors recommend) so as to assess the impact of ImageNet
training on brain prediction, and as a sanity check. The self-supervised models are mainly variants
on a popular convolutional architecture (ResNet-50), though do include some transformers (e.g. the
DINO ViT and XCiT models). The Taskonomy models consist of a core encoder-decoder archi-
tecture trained on 24 different common computer vision tasks, ranging from autoencoding to edge
detection. These models are engineered in such a way that only the architecture of the decoder varies
across task, allowing us to assess (after detaching the encoder) what effect different kinds of training
has on brain predictivity, independent of model design.

Our primary goal in this analysis was to contrast unimodal (purely visual) models, and models that
learn from vision and language simultaneously. Our unimodal model candidates consisted almost
entirely of self-supervised algorithms from the VISSL model zoo (16), including Jigsaw, RotNet,
NPID+, PIRL, SimCLR, SwaV, Dino and SEER. Importantly, none of these models are trained using
linguistic targets, even in the form of the one-hot encoding vectors used to train object recognition
models. Our primary multimodal model candidates consist of the 7 ResNet + ViT visual backbones
from OpenAI’s CLIP repository.

Importantly, almost all of these unimodal and multimodal in this uncontrolled set differ along more
than one of our 3 axes (training data, architecture, and learning objective). CLIP, in particular, is
trained on a heretofore proprietary dataset of 400 million image-text pairs that none of the uni-
modal models are trained on. Attributing differences between CLIP and other models to language
alignment alone, then, is empirically dubious.

To address this, we use Meta AI’s SLIP models (32) – a series of Vision Transformers (Small [ViT-
S], Base [ViT-B], & Large [ViT-L]), all trained on the YFCC15M dataset (15 million image-text
pairs), but on only 1 of 3 tasks: pure SimCLR-style self-supervision; pure CLIP-style language
alignment; or the eponymous SLIP – a combination of self-supervision and language alignment.

A.4 FEATURE REGRESSION PROCEDURE

In this appendix, we provide further detail on the methods we use to predict brain and behavioral
data from the feature spaces of our candidate deep neural network models.

A.4.1 REGRESSING VOXEL-WISE ACTIVATIONS (BRAIN DATA)

Feature Extraction We aim to understand which models represent the voxel responses to images
explicitly. To do this, we fit linear regressions from features in the latent layers of neural networks
to voxel responses. Let X = {xi}1000i=1 denote the 1000 COCO images, and Y = {yi}1000i=1 the
corresponding scalar responses of a given voxel. For a given model, we first extract feature vectors
for each of its latent layers. For layers that return a tensor per input of more than one dimension, such
as convolutional layers, we flatten the tensor into a vector. We treat the application of an activation
function as a distinct layer with its own feature vector. In the case of transformers, we consider the
key - query - value feature vectors independently as well. Let’s denote the array of feature vectors
a given layer returns in response to n images as H ∈ Rn×m, where m is the dimensions of each
feature vector.

Sparse Random Projections For some deep-net layers m is very large, and as such performing
ridge regression directly on H is prohibitively expensive, with at best linear complexity with m,
O(n2m) (18). This is especially problematic considering we are regressing to many voxels from
many latent layers across many models. Fortunately it follows from the Johnson-Lindenstrauss
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lemma (20; 12) that H can be projected down to a low-dimensional embedding P ∈ Rn×p that
preserves pair-wise distances of points in H with errors bounded by a factor ϵ. If u and v are any
two feature vectors from H, and up and vp are the low-dimensional projected vectors, then;

(1− ϵ)||u− v||2 < ||up − vp||2 < (1 + ϵ)||u− v||2 (1)

1 holds provided that p ≥ 4 ln(n)
ϵ2/2−ϵ3/3 (1). With n = 1000 for our training dataset, to preserve

distances with a distortion factor of ϵ = .1 requires ≥ 5920 dimensions. Thus we chose to project
H to P ∈ Rn×5920 in instances where m >> 5920. Otherwise, P = H and p = m. To find the
mapping from H to P in the high dimensional case we used sparse random projections following
Li et al. (27). The authors show a P satisfying 1 can be found by P = HR, where R is a sparse,
n× p matrix, with i.i.d elements

rji =



√√
m

p
with prob.

1

2
√
m

0 with prob. 1− 1√
m

−

√√
m

p
with prob.

1

2
√
m

(2)

LOOCV Ridge Regression Next, We used regularized (ridge) regression to predict voxel responses
to images, Y, from their associated (dimensionality-reduced) deep net features, P. We first grouped
our data into training and testing sets using a 50/50 split, such that Ptrain ∈ R500×p and Ytrain ∈
R500. In an abuse of notation, we’ll refer to Ptrain and Ytrain simply as P and Y when explaining
the regression procedure. We aim to find a vector of coefficients, β ∈ Rp, that minimize ||Pβ −
Y||22+λ||β||22. λ is a hyper-parameter that constrains the norm of β, which helps prevent overfitting
in high-dimensional cases like ours, where p > n. To identify an optimal λ, we utilized a leave-one-
out cross-validation procedure. We first standardized Y and the columns of P to have a mean of 0
and standard deviation of 1. Then for every image in our training set (∀i ∈ {1 . . . 500}), Let P−i

and Y−i denote P and Y with row i missing. One vector of coefficients per left-out image, βi, is
calculated by;

βi =
(
P′

−iP−i + λIp
)−1

P′
−iY−i (3)

Each βi is then used to predict the voxel response of each left out image;

ŷi = Piβi, Ŷ = {ŷi}500i=1 (4)

Ŷ was computed over a logarithmic range of λ values, {10j}7j=1, and the optimal λ was determined
to be that with maximum pearson correlation between Y and Ŷ. We denote this maximum pearson
correlation score for a given layer-to-voxel regression rvl , as it will be utilized latter in the analysis.
The optimal λ was then used to calculate a general β following equation 3, using the full training set.
We used the RidgeCV function from (34) to implement this cross-validated ridge regression, as its
matrix algebraic implementation identifies each βi in parallel, resulting in significant speedups (37).
This procedure produced an individual vector of coefficients for each layer-to-voxel regression, βv

l .

Finally, we were interested in identifying model layers capable of encoding the voxel responses in
entire ROI’s in the brain. For each ROI (EVC, OTC, VWFA-1) we computed the average correlation
score (avg(rvl )) for voxels in the ROI. We computed this average for each of a model’s layers
independently, and selected the layer, l, with the highest average score for each ROI. For each
voxel in the ROI, we then used the previously computed βv

l to predict its responses to the test set
data, Ytest = {yi}1000i=501, as in equation 4. The correlation between the resultant Ŷtest and Ytest

corresponds to each models’ ROI score as shown in Figure 1A.
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A.4.2 REGRESSING IMAGE RATINGS (BEHAVIORAL DATA)

Our regression procedure for the behavioral data mostly follows that for the voxel data (see Ap-
pendix A.4.1 with some simplifications. Firstly rather than compute an optimal λ parameter for
each model/layer/affect, we set λ = 1e4, a value that yielded the highest average LOOCV corre-
lation score for layers in an AlexNet model that we subsequently exclude from the main analysis.
Second, rather than split the data into train and test sets, we use all 900 images in the data set to de-
fine Ŷ ∈ R900 with the LOOCV procedure described in equations 3 and 4. The model-wise scores
reported in Figure 1B are each model’s top r(Y, Ŷ) across all its layers.
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