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Abstract

Recent years have seen a profusion of new spatial datasets mapping
global socioeconomic data at �ne spatial scales. The Global Gridded
Electricity (GGE) dataset is the �rst such dataset to map global demand
for electricity. This new resource will assist with research studying the
critical role that geography plays in debates on development, urbaniza-
tion, electri�cation, renewables integration and climate change. The in-
put electricity consumption data was collected from a diverse range of
national and subnational sources. The predictive layers used in the anal-
ysis include satellite data (nightlights, land cover and elevation), weather
station data (temperature and degree days), volunteered geographic data
(electricity infrastructure) and socioeconomic data (population, electricity
access, economic output and employment). These two are combined using
a �Random Forest� regression approach to create a set of 30-arc-second
global grids that map electricity consumption at scales of approximately
one square kilometer. Data for 2000, 2005, 2010 and 2015 can now be
downloaded from the GGE data repository. The dataset and the method-
ology used to create it are described here.

Background & Summary

Electricity consumption varies dramatically across the globe, from dense urban
centers to remote rural regions. In 2015 an average square kilometer of Washing-
ton DC required 130 times more electricity than an average square kilometer of
Washington state [1]. Economic growth and electri�cation are also responsible
for continued rapid growth in electricity demand around the world, particularly
in developing countries. The twenty years between 1995 and 2015 saw world
electricity demand grow by 68%, driven in large part by a 184% increase in India
and a 363% increase in China [2]. The geography of where this electricity de-
mand is located plays a central role in a number of critical academic and policy



debates spanning issues as diverse as development, energy access, urbanization,
renewables integration, distributed generation and climate change.

Despite the important role that geography plays in the modern economy and
the power grid that supports it, detailed spatial data on electricity consumption
is limited. National data on electricity consumption is relatively comprehensive
for recent decades, but has poor spatial resolution. Detailed subnational data
for electricity consumption is increasingly available and the spatial resolution
for these data can sometimes be very good, with countries like the UK publish-
ing electricity consumption statistics for over four hundred subnational regions.
However, there are currently only a few developed countries providing this kind
of information. The patchwork of available data means there is a real gap in our
capacity to analyze the geographic distribution of electricity consumption. This
makes conducting analysis at the scale of towns or cities challenging, particularly
in a developing country context.

The GGE dataset aims to remedy the limited nature of available data on
electricity demand. The dataset comprises a time series of global electricity
consumption data with a 30-arc-second spatial resolution (approximately one
square kilometer). It was created by �rst compiling all available national and
subnational data on electricity consumption. Additional data was then collected
on potential predictor variables that are correlated with electricity consumption
and also available at �ner spatial resolution. The predictor variables used in-
cluded satellite data (nightlights, land cover and elevation), weather station
data (temperature and degree days), volunteered geographic data (power grid
infrastructure) and socioeconomic data (population, electricity access, sectoral
economic output and employment). The dataset was produced using a dasym-
metric redistribution approach based on the methods developed by Stevens et.
al. (2015) and recently employed in the WorldPop dataset [49, 51]. In each
year for which the dataset was produced, a cross-sectional training dataset was
created, with log electricity consumption as the dependent variable and the set
of predictor covariates as the independent variables. A �exible non-parametric
predictive model was then estimated using �Random Forests� regression. This
model was used to predict electricity consumption at a spatial resolution of
approximately one square kilometer using the predictor variables. Some �nal
proportional adjustments were made to these predictions to ensure the original
�known� national totals could be recovered from the �nal dataset. Out-of-sample
prediction performance was then used to validate the quality of the dataset. This
�rst release of the dataset includes a set of GeoTIFF layers for 2000, 2005, 2010
and 2015.



Figure 1: Dataset Production Diagram

Methods

Data collection and processing

Electricity consumption data

Data on national annual electricity consumption was collected for all countries
for the period 2000 to 2015. The primary source of national-level data was
the United Nations Energy Statistics Database [3]. This was supplemented by
additional national data from the International Energy Agency's Energy Balance
Database [4].

Equivalent data was then collected from individual country institutions for
as many subnational regions as possibles, such as states, counties, provinces
etc. This subnational data came from a range of institutions, including national
statistics o�ces, government ministries and departments, regulatory agencies,
power grid companies and power system operators. Subnational data was col-
lected for Australia, Argentina, Austria, Brazil, Canada, Chile, China, France,
Germany, India, Italy, Mexico, the Netherlands, Norway, Poland, Spain, South
Africa, South Korea, Sweden, the United Kingdom and the United States [5�27].

These data were collated together and converted to kilowatt-hours (kwh) for
consistency. Often there were small discrepencies between the national values



reported by the UN and the summed values from the subnational data reported
by various national institutions. These were reconciled by treating the national
data from the UN as the �true� value and then re-scaling any subnational values
such that they correctly summed to the UN national totals. The magnitude
of any adjustments made during this process were small. It should also be
noted that in principle the national electricity data used here should capture all
consumption of electricity, irrespective of its source [52]. In practice collecting all
data relating to consumption of o�-grid, self-generated or distributed electricity
is challenging, and the guidance for the subnational data is less comprehensive.
Even so, where there are omissions it is likely that these are a very small share
of total electricity use.

This data collection exercise resulted in observations of electricity consump-
tion for 591 distinct regions of the globe in 2000, 882 in 2005, 906 in 2010 and
925 in 2015. These observations ranged from entire countries (e.g. Bolivia) to
small subnational regions (e.g. Livorno Province in Tuscany, Italy).

Economic data

Data on the following economic variables was collected: total population, gross
domestic product (GDP), total employment and the proportion of the popula-
tion with access to electricity. For GDP and employment additional information
was collected on how these were divided amongst three broad sectors: agricul-
ture, industry and services. As with the electricity consumption data, the data
collection process for these various economic statistics involved starting with
national data. This was then combined with as much spatially disaggregated
subnational data as possible. The same procedure of rescaling to match the
national totals was employed here. For almost all countries subnational data
was available at an equivalent or more disaggregated level for these indicators
than was the case for electricity consumption.

The World Bank Development Indicators were the key source of national
data [28]. These were supplemented by additional national data collected di-
rectly from the United Nations, particularly on population and GDP where
the UN statistics included additonal coverage for a number of smaller coun-
tries [29, 30]. Subnational data for European Union countries was taken from
Eurostat's Regional Statistics Database [31]. Subnational data for US states and
counties was taken from the Bureau of Economic Analysis (BEA) [32]. Subna-
tional data for other major economies was taken from the Regional Databases of
the Organisation for Economic Cooperation and Development (OECD) [33,34].
Whilst the OECD database already includes observations for subnational regions
in European countries and the US, the data available directly from Eurostat and
the BEA was more comprehensive and covered a �ner disaggregation of subna-
tional regions (e.g. US counties). Where data on GDP was unavailable, data
on gross value added (GVA) or earnings was collected instead and re-scaled to
match the GDP series. The GVA and earnings data were particularly valuable
for calculating the sectoral shares of GDP because statistics on economic output
by industry are usually reported as GVA rather than GDP. Once they had been



collected all series were converted to consistent units. For total GDP this was
nominal US dollars. For total population or total employment this was numbers
of people or employees. For the sectoral breakdowns of GDP and employment
and the population with electricity access, these were calculated as percentage
shares.

An important part of the construction of the economic data was the need
to impute missing values in order to have a consistent set of data that could be
exported in raster format. Without this, the predictive model would produce a
missing value for any cell that did not have complete data. Imputation of missing
values in the economic data was primarily achieved through a combination of 1)
linearly interpolating across time within a given series, 2) using the data from
the more complete series (e.g. population) to extrapolate the less complete
series (e.g. employment) across time and 3) using data from the more complete
aggregated administrative regions (e.g. states) to extrapolate to less aggregated
administrative regions (e.g. counties). Any missing data after these steps were
taken generally covered a very small portion of the data on sectoral shares for
a number of small island nations (e.g. the Falkland Islands). To remedy this
the remaining missing data was �lled in with a simple global average value.
This was done using the population-weighted average of the national values
for each series using the non-missing data. Importantly, the data imputation
described here (particularly this last step imputing with a global average value)
is unlikely to signi�cantly bias the production of the �nal dataset due to the
dasymmetric approach that is employed. Full details on the approach taken
can be found in the accompanying code. For 2015 this harmonization and
imputation exercise resulted in a cross-section of just over 5500 distinct regions
of the globe with observations of population, GDP, employment, sectoral shares
of GDP and employment, and share of the population with access to electricity.
Again these ranged from entire countries to small subnational regions.

Finally, in order to conduct the prediction process all the predictor data
needed to be converted into a consistent 30 arc-second raster format. To do this
for these economic predictors, the data for a given region was converted to per
capita values and then assigned to the cells that fell within their corresponding
administrative boundary polygon (see description of administrative boundaries
below). These regional tiles of cells were then combined together (i.e. �mo-
saiced�) to form a complete per capita global 30-arc-second raster image for
each of the economic predictor variables. This approach was preferred to ras-
terizing the polygons directly as it proved to be computationally more e�cient
and did not fail in the event of overlaps from slightly mismatched polygons. In
cases where there were overlapping cells, these were reconciled by taking the
mean. The resulting per capita rasters were then multiplied by a corresponding
population density raster image (described below) to get the desired �nal set of
economic density rasters. For example, the density of economic output for each
30-arc-second cell, i, was calculated as:(
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This approach of combining per capita values with a population density raster
is consistent with the methodology used to create the economic raster data in
the GEcon dataset [49]. E�ectively it amounts to allocating the economic data
(in this case GDP) within a given region in proportion to population.

Population data

Population data was taken from the Gridded Population of the World (GPW)
dataset published by the Socioeconomic Data and Applications Center (SEDAC),
which produces the GPW dataset in collaboration with the US National Aero-
nautics and Space Administration (NASA) [35]. This dataset provides �ve-
yearly global 30 arc-second raster �les for population that are based on national
censuses. Data for 2000, 2005, 2010 and 2015 were taken from GPW v4. The
native format of these data are annual 30-arc-second GeoTIFF images.

Nightlights data

The nighttime lights data were taken from the US National Oceanic and Atmo-
spheric Administration (NOAA). Satellite data on nighttime lights has already
been used widely in research as a predictor of economic activity, including elec-
tricity consumption. The link to electricity consumption is both direct (e.g.
street lights powered by electricity are a key source of nighttime lights) and
indirect (e.g. sources of light at night are generally concentrated in urban areas
where electricity consumption is high).

The data series used for 2000, 2005 and 2010 is the DMSP nightlights data
which provides annual global 30-arc-second GeoTIFFs for 1992 to 2013 [36]. A
well-known drawback of the DMSP data is that the upper level of its brightness
scale is topcoded, creating saturation in urban centers. This paper deals with
this by using the radiance calibrated version of these data which corrects for
the saturation e�ect.

For 2015 the more recent VIIRS nightlights data was used [37]. The native
format of these data are annual 15-arc-second GeoTIFF images, and so these
were resampled to the desired 30-arc-second resolution.

Finally the extent of the nighttime lights data does not go above a latitude of
75◦N, whilst the output dataset is created up to a latitude of 85◦N. As such the
nighttime lights data is assumed to have values of zero brightness in this region
of missing data. This seems reasonable given the sparseness of any settlements
at these high latitudes.

Land Cover data

The land cover data were taken from the Climate Change Initiative (CCI) at
the European Space Agency (ESA) [38]. Land cover data has been used in
previous research as predictors of population distributions. The rationale is
that people tend to live in urban areas or near cropland rather than in remote
regions covered by desert, ice or dense forest. The CCI land cover dataset



classi�es land cover into thirty detailed categories. These were summarized into
eight broad categories in line with other research using these data [47]. These
were urban, cropland, wetland, shrubland, grassland, forest, bare/desert and
water/snow/ice. The native format of these data is a multi-band 10-arc-second
GeoTIFF image, with cells being categorical. Annual data was extracted from
the relevant band and resampled to a 30-arc-second resolution. Processing these
data resulted in eight distinct images where each cell value was the proportion
of that cell covered by a given classi�cation type. Finally the water/ice/snow
layers were also used to create a separate water mask layer for each analysis
year. The mask was de�ned by cells with 100% water coverage.

Elevation data

The elevation data are from the Global 30 Arc-Second Elevation (GTOPO30)
dataset created by the US Geological Survey (USGS) [39]. Elevation data have
been used in previous research as predictors of population distributions. The
rationale is that people tend to live in low-lying areas rather than in mountainous
regions. The native format of these data is a 30-arc-second GeoTIFF image.
The same elevation �le was used for all years and values refer to meters of
elevation above or below sea level.

Temperature data

The temperature data are the Monthly Land + Ocean Average Temperature
global grid data from Berkeley Earth [40]. Temperature data has been used in
countless studies to explain variation in electricity consumption. The relation-
ship between temperature measures and electricity consumption is again both
direct (e.g. hot temperatures increasing demand for air conditioning and cold
temperatures increasing demand for electric heating) and indirect (e.g. parts
of the world with extreme high or low temperatures tend to be more sparsely
inhabited and less developed). To capture within-year variation in the data
around the annual average, cooling degree days (CDDs) and heating degree
days (HDDs) were calculated. Degree days were calculated relative to a �bliss
point� temperature of 18◦C. Because these are monthly data, degree days were
calculated by assuming the deviation between average monthly temperatures
and 18◦C was constant on all days of the month.

Usually degree days are calculated using daily data, and so there is a risk
in using monthly averages that degree days would be incorrectly estimated. To
check this an equivalent exercise was conducted using the experimental daily
dataset recently published by Berkeley Earth. The agreement was good with
no obvious signs of systematic bias and so the monthly data appears suitable
for the present application. The daily dataset is not used here because it is
still classed as experimental and because it only provides data for land areas.
The relatively coarse resolution of the data means having land-only observations
creates challenges extracting values for small coastal or island regions.

The native format of these data is a 1-degree NetCDF �le. Whilst this is a



lower resolution than the other spatial datasets used, changes in temperature
across space are relatively gradual at these spatial scales. Annual data was
extracted from the relevant band and resampled to a 30-arc-second resolution.

Grid Infrastructure data

The grid infrastructure data are from Open Street Map (OSM) [41]. Clearly
an important predictor of electricity consumption in a given area will be the
presence of the necessary power grid infrastructure. OSM contains spatial in-
formation on a wide range of power grid infrastructure, including substations,
power lines and generation stations. Here the choice was made to focus on
substations. This was done for two reasons. First, substations tend to capture
points where voltages are being transformed, usually for the purpose of local
distribution to end consumers. Being near to a substation is likely to be a
powerful indicator of whether areas are connected to the grid, and so can help
di�erentiate between on- and o�-grid areas, particularly in rural settings. This
is potentially less true for other types of grid infrastructure such as power sta-
tions or high voltage transmission lines, which are further from end consumers
in the electricity supply chain. Second, the coverage of the OSM data on sub-
stations appears to be much more comprehensive than the data on power lines,
particularly lower voltage distribution lines.

To download the data any objects tagged as substations were identi�ed and
saved as geoJSON �les. These were then read in as points and polygons. The
vast majority were polygons, but in reality these polygons merely showed the
footprint of the actual substation (i.e. the boundary created by the walls or
fences surrounding the electrical equipment). The polygons were therefore con-
verted to points for consistency by using the coordinates of the polygon centroid.
This gave a dataset of latitude and longitude coordinates for just over 254,000
substations. These points were then converted to a global 30 arc-second raster
such that the value in each cell was the distance in kilometers to the nearest sub-
station. Because of computational constraints the distances were calculated for
a 15-arc-minute raster and then resampled to a 30-arc-second resolution. Whilst
this does mean a loss of precision, visual inspection of the resulting dataset in-
dicates that the resulting image still performs well at identifying regions that
are signi�cant distances (>25km) from grid infrastructure.

The choice was made to use the distance to the nearest substation because
it is particularly robust to the variable coverage of the OSM data. Because the
data are created by volunteer contributors some regions appear to have much
more complete coverage of power grid infrastructure. This issue is even more
pronounced for the power lines data, particularly with regards to lower voltage
distribution lines. Focusing on the distance to the nearest reported substation
increases the likelihood of consistently producing reliable estimates, even in
areas where there is apparent underreporting. This is because there is often
substantial clustering of substations, and so only a small subset of the universe
of grid substations needs to be reported before the nearest distance approaches
the �true� value.



Finally, it was not possible to create a time series of these rasters for each
of the analysis years. This is because OSM was only started in 2004 and user
contributions are continually being updated as coverage improves. As such the
same 2017 snapshot of observations of grid infrastructure had to be used as
a predictor in all versions of the dataset. Whilst this is not ideal, it is not
unreasonable to think that today's grid infrastructure can still provide valuable
information on the past. This is particularly true in more developed areas where
access to electricity has already reached saturation.

Administrative Boundaries

Shape�les of administrative boundaries were taken from the Global Administri-
tive Areas database (GADM) [42]. These were supplemented by additional
shape�les of European regional areas from Eurostat, UK local authorities from
the O�ce of National Statistics, Canadian Census Divisions from Statistics
Canada, Australian Statistical Areas from the Australian Bureau of Statistics
and French regions from France's Etalab [43�47]. In using these data the choice
was made to convert each polygon in each shape�le into an eqivalent raster
object of 30-arc-second cells. This allowed for signi�cant improvements in pro-
cessing times.

Predictive model estimation

In order to estimate a predictive model a training dataset had to be created. To
do this the electricity consumption data was combined with the corresponding
data for the predictor variables. To do this the administrative boundaries of
each region were used to identify the cells in a global 30-arc-second grid that
fell within that region. The values in the identi�ed cells were then extracted
and averaged to get average values for each region. When averaging for a given
region, the values of each cell had to be weighted by the area of the cells. This
is because the curvature of the Earth means that rasters projected in degree
space have high or low latitude cells that represent smaller km2 areas than mid
latitude cells. This weighting by area was done by assuming a spherical globe
such that the area of a given cell was the area of a cell at the equator multiplied
by the cosine of the cell's latitude (in degrees), where a 30-arc-second cell at the
equator was assumed to be 0.928km by 0.921km. This approach was validated
by comparing the values extracted from the population and economic variable
rasters with the data that was originally collected from the World Bank, UN,
Eurostat, BEA and OECD. These checks indicated the extraction approach had
negligible impacts on accuracy whilst substantially improving processing times.
In 2015 the result was a cross-sectional training dataset with 925 observations,
where each observation was a region where electricity consumption was observed
matched with its respective values for each of the predictors.

A Random Forest regression model was estimated using the cross-sectional
training dataset for years 2000, 2005, 2010 and 2015 [49]. The dependent vari-
able was the log of electricity consumption per square kilometer. The log was



Table 1: Description of Predictors

Predictor Name Abbreviation Units Source

Agricultural GDP GDPAGR USD$/km2 [28�35,42�47]
Industrial GDP GDPIND USD$/km2 [28�35,42�47]
Services GDP GDPSRV USD$/km2 [28�35,42�47]
Agricultural employment EMPAGR employees/km2 [28�35,42�47]
Industrial employment EMPIND employees/km2 [28�35,42�47]
Services employment EMPSRV employees/km2 [28�35,42�47]
Electricity access ELEACC % [28,42]
Population POP people/km2 [35]
Nighttime brightness NIGHT unitless [36, 37]
Urban area URBAN % [38]
Cropland area CROP % [38]
Wetland area WETLAND % [38]
Shrubland area SHRUB % [38]
Grassland area GRASS % [38]
Forest area FOREST % [38]
Bare/desert area BARE % [38]
Water/ice/snow area WATER % [38]
Elevation ELEV m [39]
Average temperature TAVG ◦C [40]
Cooling degree days CDD ◦C-days [40]
Heating degree days HDD ◦C-days [40]
Distance to substation GRID km [41]

used as this provided a better �t and is consistent with the approach taken
by Lloyd et. al. (2017) [51]. The independent variables were the 21 predictor
variables shown in Table 1. Figure 2 shows some key model summary statistics.
Figure 2a plots two measures of the importance of each of the predictor variables.
As might be expected, the most important variables include economic activity
associated with industrial and service sectors as well as the variables for urban
land cover and night-time lights. Figure 2b illustrates how the model's Out-Of-
Bag error declines and converges rapidly as the number of trees increases.

Dataset production

To produce the dataset the complete set of predictor rasters for each year were
stacked and the model predictions were generated for each 30-arc-second cell.
The Random Forest model generates an ensemble of prediction values for each
cell and so various approaches were tested when summarizing the outputs of
the model to a single estimate for each cell (e.g. mean, median etc.). The
median was found to perform the best when predictions were compared against
the �known� values in the original training dataset (see Figure 4). Furthermore,
because the log of electricity consumption was used as the dependent variable
the �nal values needed to be transformed back to get the desired unlogged value.
Fortunately another desirable property of opting for the median is that this got



Figure 2: Model Summary Statistics

(a) Predictor Importance (2015) (b) Error Convergence (2015)

rid of an issue encountered by Lloyd et. al. (2017) regarding whether to do the
backtransformation before or after summarizing the ensemble of predictions [51].
Finally, to get some insight into the uncertainty in the �nal predictions a pseudo-
standard deviation was calculated from the prediction ensemble. An alternative
quantile regression model was also estimated to generate percentile bounds.

The predictions in their current format performed reasonably well, as can be
seen in Figure 4. Nevertheless there is obviously still some variance such that
the predictions for certain countries or regions are poor. As such a dasymmetric
allocation approach was employed whereby the 30-arc-second prediction layer
was used as a weighting scheme to conduct within region allocation, rather
than as the �nal data product. This was achieved by proportionally increasing
or decreasing the predicted values of the cells in a given region such that they
allow for the accurate recovery of the original �known� electricity consumption
values that were used in the training dataset. This has the added bene�t of
making the �nal dataset consistent with the UN national database that formed
the basis for the entire analysis. The �nal dataset can be seen in Figure 3.

Code availability

All coding was completed in R version 3.4.0 [53]. Code is contained in a single
�le that is available from the online data repository. The code is internally
documented throughout. All input data used is publicly available. The dataset
was created using a computer running Microsoft Windows 7, 64 bit operating
system. Some �gures were produced using QGIS version 2.16.1 [54].



Figure 3: Global Gridded Electricity dataset in kwh per sq. km (2015)

Data Records

The GGE data are freely available to download from the GGE data repository.
A separate GeoTIFF �le is provided for each year. Additional input raster data
that was used in the analysis, such as the economic raster data, is available on
request.

Technical Validation

The most common approach to validation in this context is to withhold known
data from the estimation procedure and then examine the ability of the �nal
dataset to predict out-of-sample. The use of a Random Forest estimation ap-
proach means this kind of procedure was essentially built into the creation of the
dataset. As such the Out-Of-Bag (OOB) error of the estimated Random Forest
regression already provides a robust indication of the quality of the dataset.
The OOB error itself is di�cult to directly interpret in terms of the expected
error for the �nal predictions, both because of the change of spatial scale and
the dasymmetric weighting. Nevertheless, the results for 2015 appear to indi-
cate that the preferred Random Forest regression speci�cation performs well,
explaining 96.5% of the variance in the training dataset. The ability of the
model to predict the original training dataset values can be seen in Figure 4a.

Because the predictions of the Random Forest model were used for dasym-
metric weighting at a �ner spatial scale than the initial training set there is
likely still value to conducting additional out-of-sample validation checks. At
the very least these can give a more transparent insight into the predictive
quality of the �nal dataset. To do this one source of particularly high spatial
resolution data was used that was not incorporated into the model estimation



process: the local authority level electricity consumption data for the UK (ap-
proximately 400 subnational units). The results of the validation against these
data is shown in Figure 4b and indicates the dataset performs well, particularly
after the dasymmetric adjustments.

Figure 4: Dataset Validation

(a) Raw Model Prediction Error (b) Out-of-sample Validation (2015)
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