Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mosaicism in health and disease — clones picking up speed

Key Points

  • An adult human body is likely to contain as many versions of the genome as the number of somatic cells. This is a result of the fact that every cell division is coupled with risk for new mutations. The implications of this variation are still largely unexplored, but physiological and pathological consequences should be considered.

  • Somatic mosaicism is often defined as the presence of a genotypic variant in some but not all cells of an individual that are derived from the same zygote. It can occur through many types of mutations in somatic cells during or after the first mitotic division of the zygote and is called post-zygotic variation.

  • A related common phenomenon, akin to mosaicism, is called microchimerism and refers to the persistent presence of a small number of cells stemming from another person; for instance, cells migrating through the placenta from a mother into the soma of a child, and vice versa.

  • Recent studies have shown that aberrant clonal expansions (ACEs) of apparently normal cells in blood and other organs are common in the ageing population. ACE is defined as a clone of non-cancerous cells carrying an acquired aberration (or aberrations) that provide them with a mild proliferative advantage. ACEs can have a dynamic nature, involving expansions followed by contractions of the number of aberrant cells.

  • Post-zygotic variation and microchimerism represent promising avenues for future research and might be important confounders in current medical genetic testing. To fully explore their potential implications, expanded analyses of sorted cells and single cells from multiple tissue types will be required.

Abstract

Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sum of genetic variation in the human body.
Figure 2: The possible effects of somatic mutations and their relation to fitness of the affected cells.
Figure 3: The origins of genetic variation in the human soma.

Similar content being viewed by others

References

  1. Abuelo, D. Clinical significance of chimerism. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 148–151 (2009).

    Article  PubMed  Google Scholar 

  2. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Acuna-Hidalgo, R. et al. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am. J. Hum. Genet. 97, 67–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dumanski, J. P. & Piotrowski, A. in Genomic Structural Variants: Methods and Protocols (ed. Feuk, L.) 249–272 (Humana Press, 2012).

    Book  Google Scholar 

  6. Frank, S. A. Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1725–1730 (2010). This is a pioneering theoretical paper predicting a high level of somatic mosaicism in humans and its consequences for cancer in the ageing population.

    Article  CAS  PubMed  Google Scholar 

  7. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forsberg, L. A., Absher, D. & Dumanski, J. P. Non-heritable genetics of human disease: spotlight on post-zygotic genetic variation acquired during lifetime. J. Med. Genet. 50, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).

    Article  PubMed  Google Scholar 

  11. Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011). This whole-genome sequencing study of two parent–offspring trios provides one of the first indications that somatic variation is far more common than germline variation at the fine-scale DNA sequence level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itsara, A. et al. De novo rates and selection of large copy number variation. Genome Res. 20, 1469–1481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kloosterman, W. P. et al. Characteristics of de novo structural changes in the human genome. Genome Res. 25, 792–801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strachan, T. & Read, A. Human Molecular Genetics 3 (Garland Publishing, 2004).

    Google Scholar 

  16. Baird, D. M. et al. Telomere instability in the male germline. Hum. Mol. Genet. 15, 45–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Gadi, V. K. & Nelson, J. L. Fetal microchimerism in women with breast cancer. Cancer Res. 67, 9035–9038 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Gadi, V. K., Malone, K. E., Guthrie, K. A., Porter, P. L. & Nelson, J. L. Case–control study of fetal microchimerism and breast cancer. PLoS ONE 3, e1706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boddy, A. M., Fortunato, A., Wilson Sayres, M. & Aktipis, A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. Bioessays 37, 1106–1118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Muller, A. C. et al. Microchimerism of male origin in a cohort of Danish girls. Chimerism http://dx.doi.org/10.1080/19381956.2016.1218583 (2016).

    Google Scholar 

  21. Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583 (2009). This study is the first to show that human embryos exhibit a surprisingly high frequency of structural genetic variation.

    Article  CAS  PubMed  Google Scholar 

  22. Asahina, K. et al. Multiplicative mononuclear small hepatocytes in adult rat liver: their isolation as a homogeneous population and localization to periportal zone. Biochem. Biophys. Res. Commun. 342, 1160–1167 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Gandillet, A. et al. Hepatocyte ploidy in regenerating livers after partial hepatectomy, drug-induced necrosis, and cirrhosis. Eur. Surg. Res. 35, 148–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Valind, A. et al. The fetal thymus has a unique genomic copy number profile resulting from physiological T cell receptor gene rearrangement. Sci. Rep. 6, 23500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duncan, A. W. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin. Cell Dev. Biol. 24, 347–356 (2013).

    Article  PubMed  Google Scholar 

  26. Overturf, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am. J. Pathol. 155, 2135–2143 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weglarz, T. C., Degen, J. L. & Sandgren, E. P. Hepatocyte transplantation into diseased mouse liver: kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am. J. Pathol. 157, 1963–1974 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

    Article  PubMed  Google Scholar 

  29. Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014). This paper estimates the rate of whole-chromosome-number variation in human tissues using single-cell sequencing.

    Article  CAS  PubMed  Google Scholar 

  30. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baillie, J. K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011). The authors show that retrotransposons cause genetic mosaicism and affect gene expression in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lupski, J. R. Genome mosaicism — one human, multiple genomes. Science 341, 358–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, P. C. et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164, 644–655 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor, T. H. et al. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Update 20, 571–581 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zilina, O. et al. Somatic mosaicism for copy-neutral loss of heterozygosity and DNA copy number variations in the human genome. BMC Genomics 16, 703 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Huallachain, M., Karczewski, K. J., Weissman, S. M., Urban, A. E. & Snyder, M. P. Extensive genetic variation in somatic human tissues. Proc. Natl Acad. Sci. USA 109, 18018–18023 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Piotrowski, A. et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum. Mutat. 29, 1118–1124 (2008). This is one of the first papers substantiating that human organs may differ substantially in their genetic composition by means of structural variation.

    Article  PubMed  Google Scholar 

  40. Holstege, H. et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res. 24, 733–742 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forsberg, L. A. et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet. 90, 217–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44, 642–650 (2012). References 41–43 together show how somatic mosaicism in the form of structural variation becomes more common with age and how it correlates with morbidity from cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014). This paper shows that the specific role of mosaic LOY is coupled to cancer risk and shortened lifespan in men.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dumanski, J. P. et al. Smoking is associated with mosaic loss of chromosome Y. Science 347, 81–83 (2015). This paper shows evidence that mosaic LOY is associated with smoking.

    Article  CAS  PubMed  Google Scholar 

  46. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). References 46 and 47 show that somatic variation at the DNA sequence level is linked to neoplasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Score, J. et al. Detection of leukemia-associated mutations in peripheral blood DNA of hematologically normal elderly individuals. Leukemia 29, 1600–1602 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Chase, A. et al. Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus. Leukemia 29, 2069–2074 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Machiela, M. J. et al. Characterization of large structural genetic mosaicism in human autosomes. Am. J. Hum. Genet. 96, 487–497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vattathil, S. & Scheet, P. Extensive hidden genomic mosaicism revealed in normal tissue. Am. J. Hum. Genet. 98, 571–578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Machiela, M. J. et al. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat. Commun. 7, 11843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shih, A. H., Abdel-Wahab, O., Patel, J. P. & Levine, R. L. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12, 599–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Bonnefond, A. et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 45, 1040–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Dumanski, J. P. et al. Mosaic loss of chromosome Y in blood is associated with Alzheimer disease. Am. J. Hum. Genet. 98, 1208–1219 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015). In this paper, the staggering amount of somatic variation in human skin tissue is characterized in depth and is shown to involve pathways related to skin cancer.

    Article  CAS  Google Scholar 

  58. Cooper, C. S. et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat. Genet. 47, 367–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Forsberg, L. A. et al. Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer. Genome Res. 25, 1521–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ronowicz, A. et al. Concurrent DNA copy-number alterations and mutations in genes related to maintenance of genome stability in uninvolved mammary glandular tissue from breast cancer patients. Hum. Mutat. 36, 1088–1099 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nat. Immunol. 5, 133–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Naylor, K. et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Gibson, K. L. et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8, 18–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Jacobs, P. A., Brunton, M., Court Brown, W. M., Doll, R. & Goldstein, H. Change of human chromosome count distribution with age: evidence for a sex differences. Nature 197, 1080–1081 (1963).

    Article  CAS  PubMed  Google Scholar 

  68. Pierre, R. V. & Hoagland, H. C. Age-associated aneuploidy: loss of Y chromosome from human bone marrow cells with aging. Cancer 30, 889–894 (1972).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, W. et al. Mosaic loss of chromosome Y is associated with common variation near TCL1A. Nat. Genet. 48, 563–568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, L. J., Shin, E. S., Yu, Z. X. & Li, S. B. Molecular genetic evidence of Y chromosome loss in male patients with hematological disorders. Chin. Med. J. (Engl.) 120, 2002–2005 (2007).

    Article  CAS  Google Scholar 

  71. Bianchi, N. O. Y chromosome structural and functional changes in human malignant diseases. Mutat. Res. 682, 21–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Veiga, L. C. S., Bergamo, N. A., Reis, P. P., Kowalski, L. P. & Rogatto, S. R. Loss of Y-chromosome does not correlate with age at onset of head and neck carcinoma: a case–control study. Braz. J. Med. Biol. Res. 45, 172–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Duijf, P. H., Schultz, N. & Benezra, R. Cancer cells preferentially lose small chromosomes. Int. J. Cancer 132, 2316–2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Nowinski, G. P. et al. The frequency of aneuploidy in cultured lymphocytes is correlated with age and gender but not with reproductive history. Am. J. Hum. Genet. 46, 1101–1111 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. [No authors listed.] Loss of the Y chromosome from normal and neoplastic bone marrows. United Kingdom Cancer Cytogenetics Group (UKCCG). Genes Chromosomes Cancer 5, 83–88 (1992).

  76. Wiktor, A. et al. Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer 27, 11–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Wong, A. K. et al. Loss of the Y chromosome: an age-related or clonal phenomenon in acute myelogenous leukemia/myelodysplastic syndrome? Arch. Pathol. Lab. Med. 132, 1329–1332 (2008).

    PubMed  Google Scholar 

  78. Wiktor, A. E., Van Dyke, D. L., Hodnefield, J. M., Eckel-Passow, J. & Hanson, C. A. The significance of isolated Y chromosome loss in bone marrow metaphase cells from males over age 50 years. Leuk. Res. 35, 1297–1300 (2011).

    Article  PubMed  Google Scholar 

  79. Jacobs, P. A. et al. Male breast cancer, age and sex chromosome aneuploidy. Br. J. Cancer 108, 959–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noveski, P. et al. Loss of Y chromosome in peripheral blood of colorectal and prostate cancer patients. PLoS ONE 11, e0146264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ganster, C. et al. New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. Genes Chromosomes Cancer 54, 717–724 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Persani, L. et al. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J. Autoimmun. 38, J193–J196 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Lleo, A. et al. Y chromosome loss in male patients with primary biliary cirrhosis. J. Autoimmun. 41, 87–91 (2013).

    Article  PubMed  Google Scholar 

  84. Blatt Kalben, B. Why men die younger. N. Am. Actuar. J. 4, 83–111 (2000).

    Article  Google Scholar 

  85. Central Intelligence Agency. The World Factbook 2013–2014 (Central Intelligence Agency, 2013).

  86. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 8, 1280–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evrony, G. D. et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85, 49–59 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Orru, V. et al. Genetic variants regulating immune cell levels in health and disease. Cell 155, 242–256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choate, K. A. et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 330, 94–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pasmooij, A. M., Pas, H. H., Bolling, M. C. & Jonkman, M. F. Revertant mosaicism in junctional epidermolysis bullosa due to multiple correcting second-site mutations in LAMB3. J. Clin. Invest. 117, 1240–1248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat. Genet. 13, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. La Marche, P. H., Heisler, A. B. & Kronemer, N. S. Disappearing mosaicism. Suggested mechanism is growth advantage of normal over abnormal cell population. R. I. Med. J. 50, 184–189 (1967).

    CAS  PubMed  Google Scholar 

  97. Taylor, A. I. Cell selection in vivo in normal-G trisomic mosaics. Nature 219, 1028–1030 (1968).

    Article  CAS  PubMed  Google Scholar 

  98. Green, M. M. Non-homologous pairing and crossing over in Drosophila melanogaster. Genetics 44, 1243–1256 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jonkman, M. F. Revertant mosaicism in human genetic disorders. Am. J. Med. Genet. 85, 361–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Ogawa, Y. et al. Revertant mutation releases confined lethal mutation, opening Pandora's box: a novel genetic pathogenesis. PLoS Genet. 10, e1004276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McDermott, D. H. et al. Chromothriptic cure of WHIM syndrome. Cell 160, 686–699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Durrbaum, M. et al. Unique features of the transcriptional response to model aneuploidy in human cells. BMC Genomics 15, 139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709 (2008). This paper serves as a model of how aneuploid cells can be gradually removed from somatic tissues through lower fitness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ruangvutilert, P. et al. FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryos. Prenat. Diagn. 20, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).

    Article  PubMed  Google Scholar 

  106. Fragouli, E., Alfarawati, S., Spath, K. & Wells, D. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol. Hum. Reprod. 20, 117–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Warburton, D., Yu, C. Y., Kline, J. & Stein, Z. Mosaic autosomal trisomy in cultures from spontaneous abortions. Am. J. Hum. Genet. 30, 609–617 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kalousek, D. K., Barrett, I. J. & Gartner, A. B. Spontaneous abortion and confined chromosomal mosaicism. Hum. Genet. 88, 642–646 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Robinson, W. P. et al. Meiotic origin of trisomy in confined placental mosaicism is correlated with presence of fetal uniparental disomy, high levels of trisomy in trophoblast, and increased risk of fetal intrauterine growth restriction. Am. J. Hum. Genet. 60, 917–927 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Baffero, G. M. et al. Confined placental mosaicism at chorionic villous sampling: risk factors and pregnancy outcome. Prenat. Diagn. 32, 1102–1108 (2012).

    Article  PubMed  Google Scholar 

  111. Carey, L. et al. Prenatal diagnosis of chromosomal mosaicism in over 1600 cases using array comparative genomic hybridization as a first line test. Prenat. Diagn. 34, 478–486 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Hook, E. B. & Warburton, D. The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum. Genet. 64, 24–27 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Uematsu, A. et al. Parental origin of normal X chromosomes in Turner syndrome patients with various karyotypes: implications for the mechanism leading to generation of a 45,X karyotype. Am. J. Med. Genet. 111, 134–139 (2002).

    Article  PubMed  Google Scholar 

  114. Hook, E. B. & Warburton, D. Turner syndrome revisited: review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum. Genet. 133, 417–424 (2014). This paper summarizes data indicating that pure Turner syndrome 45,X is embryologically lethal.

    Article  CAS  PubMed  Google Scholar 

  115. Schoemaker, M. J. et al. Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. Lancet Oncol. 9, 239–246 (2008).

    Article  PubMed  Google Scholar 

  116. Freriks, K. et al. Buccal cell FISH and blood PCR-Y detect high rates of X chromosomal mosaicism and Y chromosomal derivatives in patients with Turner syndrome. Eur. J. Med. Genet. 56, 497–501 (2013).

    Article  PubMed  Google Scholar 

  117. Sallai, A. et al. Y-chromosome markers in Turner syndrome: screening of 130 patients. J. Endocrinol. Invest. 33, 222–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Denes, A. M., Landin-Wilhelmsen, K., Wettergren, Y., Bryman, I. & Hanson, C. The proportion of diploid 46,XX cells increases with time in women with Turner syndrome — a 10-year follow-up study. Genet. Test. Mol. Biomarkers 19, 82–87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ford, C. E., Jones, K. W., Polani, P. E., De Almeida, J. C. & Briggs, J. H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet 1, 711–713 (1959).

    Article  CAS  PubMed  Google Scholar 

  120. Nilsson, K. & Ponten, J. Classification and biological nature of established human hematopoietic cell lines. Int. J. Cancer 15, 321–341 (1975).

    Article  CAS  PubMed  Google Scholar 

  121. Giovanella, B. et al. Growth of diploid, Epstein–Barr virus-carrying human lymphoblastoid cell lines heterotransplanted into nude mice under immunologically privileged conditions. Int. J. Cancer 24, 103–113 (1979).

    Article  CAS  PubMed  Google Scholar 

  122. Londin, E. R. et al. Whole-exome sequencing of DNA from peripheral blood mononuclear cells (PBMC) and EBV-transformed lymphocytes from the same donor. BMC Genomics 12, 464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Johansson, B., Heim, S., Mandahl, N., Mertens, F. & Mitelman, F. Trisomy 7 in nonneoplastic cells. Genes Chromosomes Cancer 6, 199–205 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Kinder, J. M. et al. Cross-generational reproductive fitness enforced by microchimeric maternal cells. Cell 162, 505–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khosrotehrani, K. & Bianchi, D. W. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J. Cell Sci. 118, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Seppanen, E. et al. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS ONE 8, e62662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fugazzola, L., Cirello, V. & Beck-Peccoz, P. Fetal microchimerism as an explanation of disease. Nat. Rev. Endocrinol. 7, 89–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Artlett, C. M., Smith, J. B. & Jimenez, S. A. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N. Engl. J. Med. 338, 1186–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, K., Chmait, R. H., Vanderbilt, D., Wu, S. & Randolph, L. Chimerism in monochorionic dizygotic twins: case study and review. Am. J. Med. Genet. A 161A, 1817–1824 (2013).

    Article  PubMed  Google Scholar 

  130. Mezey, E. et al. Transplanted bone marrow generates new neurons in human brains. Proc. Natl Acad. Sci. USA 100, 1364–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Bruder, C. et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet. 82, 763–771 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ford, C. E. Mosaics and chimaeras. Br. Med. Bull. 25, 104–109 (1969).

    Article  CAS  PubMed  Google Scholar 

  133. Conlin, L. K. et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by SNP array analysis. Hum. Mol. Genet. 19, 1263–1275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Razzaghian, H. R. et al. Somatic mosaicism for chromosome X and Y aneuploidies in monozygotic twins heterozygous for sickle cell disease mutation. Am. J. Med. Genet. A 152A, 2595–2598 (2010).

    Article  PubMed  Google Scholar 

  135. Pretto, D., Maar, D., Yrigollen, C. M., Regan, J. & Tassone, F. Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR. Clin. Chem. 61, 182–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. De, S. Somatic mosaicism in healthy human tissues. Trends Genet. 27, 217–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. van den Hurk, J. A. et al. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16, 1587–1592 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Macia, A. et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol. Cell. Biol. 31, 300–316 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kurnosov, A. A. et al. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS ONE 10, e0117854 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gonitel, R. et al. DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA 105, 3467–3472 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Razzaghian, H. R. et al. Post-zygotic and inter-individual structural genetic variation in a presumptive enhancer element of the locus between the IL10R β and IFNAR1 genes. PLoS ONE 8, e67752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lieber, M. R., Gu, J., Lu, H., Shimazaki, N. & Tsai, A. G. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell. Biochem. 50, 279–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gisselsson, D. et al. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc. Natl Acad. Sci. USA 107, 20489–20493 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Ioannou, D. et al. Twenty-four chromosome FISH in human IVF embryos reveals patterns of post-zygotic chromosome segregation and nuclear organisation. Chromosome Res. 20, 447–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA 98, 12683–12688 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36, 1159–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Cimini, D., Fioravanti, D., Salmon, E. D. & Degrassi, F. Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J. Cell Sci. 115, 507–515 (2002).

    CAS  PubMed  Google Scholar 

  151. Leach, N. T., Rehder, C., Jensen, K., Holt, S. & Jackson-Cook, C. Human chromosomes with shorter telomeres and large heterochromatin regions have a higher frequency of acquired somatic cell aneuploidy. Mech. Ageing Dev. 125, 563–573 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Feuk and C. Rasi for critical evaluation of the manuscript. The study was sponsored by funding from the Olle Enqvist Byggmästare Foundation and Young Investigator Award from the European Research Council to L.A.F. and by the Swedish Cancer Society, the Swedish Research Council, the Swedish Heart-Lung Foundation, Torsten Söderberg's Foundation and Sci-Life-Lab-Uppsala and Uppsala University to J.P.D. D.G. is supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Swedish Childhood Cancer Society, the Gunnar Nilsson Cancer Foundation, the Crafoord Foundation and the Strategic Cancer Research Program BioCARE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars A. Forsberg, David Gisselsson or Jan P. Dumanski.

Ethics declarations

Competing interests

Grants or support for research (J.P.D., D.G. and L.A.F.). Owning stock in or directorship of companies (J.P.D. and L.A.F.). Patents — holders and applicants (J.P.D. and L.A.F.). J.P.D. and L.A.F. are co-founders and shareholders in Cray Innovation AB.

PowerPoint slides

Glossary

Soma

The community of cells outside the germ line that makes up a multicellular organism. Because monozygotic twins are derived from the same zygote, they can be regarded as a single soma from a genetic point of view.

Zygote

A diploid cell resulting from the fusion of two haploid germ cells. Most multicellular organisms are derived from a single founder zygote. Organisms that are made of cells from more than one zygote are chimaeras. Distinct individuals derived from the same zygote are monozygotic twins.

Microchimerism

The persistent presence in an individual of a small number of cells stemming from another person; for instance, cells originating from a mother in the soma of a child, and vice versa.

Bulk DNA

DNA isolated from a tissue sample that contains a mixture of different cell types and usually a very large number (many thousands or millions) of cells.

Post-zygotic variation

The presence of a genotypic variant in some but not all cells of an individual that are derived from the same zygote. It occurs through post-zygotic mutations (mosaicism) during or after the first mitotic division of the zygote. If mosaicism is confined to non-germ cells (somatic mosaicism), it represents variation that ceases to exist with the death of the host. If the variant is present in lineages that form germ cells (gonadal mosaicism), the variant can be inherited by the next generation.

Macrochimerism

This very rare phenomenon is synonymous with classical chimerism and refers to the blending of cellular lineages from different zygotes during early embryogenesis of a single individual.

De novo variation

A broad and sometimes not well-defined term, usually referring to a change in DNA that emerges in a family tree for the first time. In typical usage, it comprises germline-transmissible genetic variants caused by a mutation in gonadal cell lineages of the parent, or in the zygote before the first cell division.

Gonadal mosaicism

Genetic variation emerging in cells that develop into gonads (ovaries and testicles), leading to variation in a pool of different germ cells of an individual; it is one cause of de novo variation in the next generation. Gonadal mosaicism is closely related to gonosomal mosaicism, which refers to mosaic variants that are present in both somatic and germline lineages.

Mitochondrial heteroplasmy

The presence of more than one mitochondrial genome in a cell or individual.

Structural variants

Chromosomal changes affecting regions of at least 1 kb. Structural variation can include balanced alterations (in which copy number remains unchanged), such as translocations, inversions or copy-number-neutral loss-of-heterozygosity (CNNLOH; also called uniparental isodisomy). In addition, structural variation includes unbalanced changes, such as deletions and duplications, which are collectively referred to as copy-number variants (CNVs).

Polyploidy

An increase in chromosome number in steps of one or several complete haploid sets. Normal human germ cells are haploid (23 chromosomes), whereas somatic cells are diploid (46 chromosomes). Examples of human polyploidy are triploidy (69 chromosomes) and tetraploidy (92 chromosomes).

Aneuploidy

Any change in chromosome number that does not occur in steps of one or several complete haploid sets.

Merotelic

The situation when one kinetochore of a chromosome is attached to microtubules emanating from two spindle poles.

Mitotic checkpoint slippage

When a cell exits mitosis even if its chromosomes are not properly oriented and the spindle assembly control machinery is still active.

Cryptic mosaicism

Mosaicism occurring at a level so low that it will not be detected by genetic screening of bulk DNA by current routine methods. Because the sensitivity of screening techniques is ever increasing, the level below which variation is considered cryptic versus detectable must remain flexible and depends on the methodological context.

Aberrant clonal expansions

(ACEs). Clones of non-cancerous cells (which can occur in any tissue) harbouring acquired post-zygotic mutations or chromosomal aberrations that provide the affected cells with a mild proliferative advantage, relative to unaffected cells. This phenomenon is also referred to as 'detectable clonal mosaicism' or 'clonal haematopoiesis'.

Exome

The part of the genome that is transcribed and retained in the mature RNA after splicing: that is, the exons. The exome constitutes about 1% of the human genome and includes all DNA sequences that are transcribed into mature RNA in all cells in the soma, in contrast to the transcriptome, which is the RNA transcribed in a specific cell type.

Proband

The first individual to be investigated in the genetic study of a family.

Uniparental disomy

When two copies of a chromosome or chromosomal region in a diploid genome come from the same parent, instead of one copy originating from the mother and the other from the father. When the disomy consists of two different homologues from the same parent, it is referred to as uniparental heterodisomy. When it consists of a duplicate of a single copy, it is called uniparental isodisomy.

Turner syndrome

A physical condition of a female lacking one sex chromosome or parts of a sex chromosome, most often having the blood karyotype 45,X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forsberg, L., Gisselsson, D. & Dumanski, J. Mosaicism in health and disease — clones picking up speed. Nat Rev Genet 18, 128–142 (2017). https://doi.org/10.1038/nrg.2016.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing