Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Salvage therapy for prostate cancer after radical prostatectomy

Abstract

More than 40% of men with intermediate-risk or high-risk prostate cancer will experience a biochemical recurrence after radical prostatectomy. Clinical guidelines for the management of these patients largely focus on the use of salvage radiotherapy with or without systemic therapy. However, not all patients with biochemical recurrence will go on to develop metastases or die from their disease. The optimal pre-salvage therapy investigational workup for patients who experience biochemical recurrence should, therefore, include novel techniques such as PET imaging and genomic analysis of radical prostatectomy specimen tissue, as well as consideration of more traditional clinical variables such as PSA value, PSA kinetics, Gleason score and pathological stage of disease. In patients without metastatic disease, the only known curative intervention is salvage radiotherapy but, given the therapeutic burden of this treatment, importance must be placed on accurate timing of treatment, radiation dose, fractionation and field size. Systemic therapy also has a role in the salvage setting, both concurrently with radiotherapy and as salvage monotherapy.

Key points

  • Clinical markers of local versus distant relapse of prostate cancer following radical prostatectomy include PSA level and kinetics, pathological characteristics, genomic risk scores and imaging findings.

  • During consultation after prostatectomy, clinicians should evaluate the PSA level, the PSA doubling time, the interval to biochemical failure (PSA rises to >0.2 ng/ml), and patient comorbidities, urinary bother, continence, erectile function, changes in symptoms over time, medications and genomic risk (if possible). CT and bone scan imaging is inaccurate with PSA <5 ng/ml, and so should be avoided.

  • The ideal patients for observation are: elderly (for example, age >80), low Gleason score (for example, 6–7 (International Society of Urological Pathology grade group 1–2), long PSA doubling time (for example, >12–18 months), long interval to biochemical failure (for example, >5–10 years), low absolute PSA at time of recurrence (for example, <0.5 ng/ml), multiple medical comorbidities, high risk of death from competing causes, no distant metastases on imaging.

  • Patients with high-risk features might be good candidates for salvage radiotherapy. Androgen deprivation therapy (ADT) should be considered for those patients with PSA >0.5 ng/ml.

  • Patients with documented metastases should receive ADT alone, although patients with other high-risk features might also benefit from ADT as these features could suggest occult metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Considerations and treatment paradigm in the management of recurrent prostate cancer after prostatectomy.

Similar content being viewed by others

References

  1. Schaeffer, E. et al. NCCN guidelines insights: prostate cancer, version 1.2021. J. Natl Compr. Cancer Network 19, 134–143 (2021).

    Article  CAS  Google Scholar 

  2. Greenberger, B. A., Zaorsky, N. G. & Den, R. B. Comparison of radical prostatectomy versus radiation and androgen deprivation therapy strategies as primary treatment for high-risk localized prostate cancer: a systematic review and meta-analysis. Eur. Urol. Focus. 6, 404–418 (2020).

    Article  PubMed  Google Scholar 

  3. Kalbasi, A. et al. Low rates of adjuvant radiation in patients with nonmetastatic prostate cancer with high-risk pathologic features. Cancer 120, 3089–3096 (2014).

    Article  PubMed  Google Scholar 

  4. Sanmamed, N. et al. Use of combined androgen deprivation therapy with postoperative radiation treatment for prostate cancer: impact of randomized trials on clinical practice. Urol. Oncol. 38, 848 e841–848.e7 (2020).

    Article  CAS  Google Scholar 

  5. Spratt, D. E. et al. A systematic review and framework for the use of hormone therapy with salvage radiation therapy for recurrent prostate cancer. Eur. Urol. 73, 156–165 (2018).

    Article  PubMed  Google Scholar 

  6. Pisansky, T. M., Thompson, I. M., Valicenti, R. K., D’Amico, A. V. & Selvarajah, S. Adjuvant and salvage radiation therapy after prostatectomy: ASTRO/AUA guideline amendment, executive summary 2018. Pract. Radiat. Oncol. 9, 208–213 (2019).

    Article  PubMed  Google Scholar 

  7. Mottet, N. et al. EAU Guidelines — Prostate Cancer https://uroweb.org/guideline/prostate-cancer/ (2020).

  8. Xie, W. et al. Event-free survival, a prostate-specific antigen-based composite end point, is not a surrogate for overall survival in men with localized prostate cancer treated with radiation. J. Clin. Oncol. 38, 3032–3041 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Italiano, A. Prognostic or predictive? It’s time to get back to definitions! J. Clin. Oncol. 29, 4718 (2011).

    Article  PubMed  Google Scholar 

  10. Van den Broeck, T. et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur. Urol. 75, 967–987 (2019).

    Article  PubMed  Google Scholar 

  11. Suardi, N. et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. Cancer 112, 1254–1263 (2008).

    Article  PubMed  Google Scholar 

  12. Amling, C. L., Bergstralh, E. J., Blute, M. L., Slezak, J. M. & Zincke, H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J. Urol. 165, 1146–1151 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. Lu-Yao, G., Stukel, T. A. & Yao, S. L. Changing patterns in competing causes of death in men with prostate cancer: a population based study. J. Urol. 171, 2285–2290 (2004).

    Article  PubMed  Google Scholar 

  14. Brockman, J. A. et al. Nomogram predicting prostate cancer-specific mortality for men with biochemical recurrence after radical prostatectomy. Eur. Urol. 67, 1160–1167 (2015).

    Article  PubMed  Google Scholar 

  15. Stoltzfus, K. C. et al. Fatal heart disease among cancer patients. Nat. Commun. 11, 2011 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zaorsky, N. G. et al. Stroke among cancer patients. Nat. Commun. 10, 5172 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sturgeon, K. M. et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 40, 3889–3897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Freedland, S. J. et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. J. Am. Med. Assoc. 294, 433–439 (2005).

    Article  CAS  Google Scholar 

  20. Pompe, R. S. et al. Long-term cancer control outcomes in patients with biochemical recurrence and the impact of time from radical prostatectomy to biochemical recurrence. Prostate 78, 676–681 (2018).

    Article  PubMed  Google Scholar 

  21. Antonarakis, E. S. et al. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int. 109, 32–39 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Stamey, T. A. et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J. Urol. 141, 1076–1083 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. Ploussard, G. et al. Predictive factors of oncologic outcomes in patients who do not achieve undetectable prostate specific antigen after radical prostatectomy. J. Urol. 190, 1750–1756 (2013).

    Article  PubMed  Google Scholar 

  24. Wiegel, T. et al. Prostate-specific antigen persistence after radical prostatectomy as a predictive factor of clinical relapse-free survival and overall survival: 10-year data of the ARO 96-02 trial. Int. J. Radiat. Oncol. Biol. Phys. 91, 288–294 (2015).

    Article  PubMed  Google Scholar 

  25. Wiegel, T. et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome–results of a retrospective study. Int. J. Radiat. Oncol. Biol. Phys. 73, 1009–1016 (2009).

    Article  PubMed  Google Scholar 

  26. Preisser, F. et al. Persistent prostate-specific antigen after radical prostatectomy and its impact on oncologic outcomes. Eur. Urol. 76, 106–114 (2019).

    Article  PubMed  CAS  Google Scholar 

  27. Fossati, N. et al. Impact of early salvage radiation therapy in patients with persistently elevated or rising prostate-specific antigen after radical prostatectomy. Eur. Urol. 7, 436–444 (2017).

    Google Scholar 

  28. Moreira, D. M. et al. Natural history of persistently elevated prostate specific antigen after radical prostatectomy: results from the SEARCH database. J. Urol. 182, 2250–2255 (2009).

    Article  PubMed  Google Scholar 

  29. Calais, J. et al. (68)Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/ml: impact on salvage radiotherapy planning. J. Nucl. Med. 59, 230–237 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Ma, T. M. et al. Identifying the best candidates for prostate-specific membrane antigen positron emission tomography/computed tomography as the primary staging approach among men with high-risk prostate cancer and negative conventional imaging. Eur. Urol Oncol. https://doi.org/10.1016/j.euo.2021.01.006 (2021).

    Article  PubMed  Google Scholar 

  32. Tilki, D., Preisser, F., Graefen, M., Huland, H. & Pompe, R. S. External validation of the European Association of Urology biochemical recurrence risk groups to predict metastasis and mortality after radical prostatectomy in a European cohort. Eur. Urol. 75, 896–900 (2019).

    Article  PubMed  Google Scholar 

  33. Freedland, S. J. et al. Death in patients with recurrent prostate cancer after radical prostatectomy: prostate-specific antigen doubling time subgroups and their associated contributions to all-cause mortality. J. Clin. Oncol. 25, 1765–1771 (2007).

    Article  PubMed  Google Scholar 

  34. Freedland, S. J., Humphreys, E. B., Mangold, L. A., Eisenberger, M. & Partin, A. W. Time to prostate specific antigen recurrence after radical prostatectomy and risk of prostate cancer specific mortality. J. Urol. 176, 1404–1408 (2006).

    Article  PubMed  Google Scholar 

  35. Chang, S. L., Harshman, L. C. & Presti, J. C. Jr. Impact of common medications on serum total prostate-specific antigen levels: analysis of the National Health and Nutrition Examination Survey. J. Clin. Oncol. 28, 3951–3957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zaorsky, N. G., Buyyounouski, M. K., Li, T. & Horwitz, E. M. Aspirin and statin nonuse associated with early biochemical failure after prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 84, e13–17 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Murtola, T. J. et al. Prostate cancer and PSA among statin users in the Finnish prostate cancer screening trial. Int. J. Cancer 127, 1650–1659 (2010).

    Article  PubMed  CAS  Google Scholar 

  38. Algotar, A. M., Behnejad, R., Stratton, M. S. & Stratton, S. P. Chronic use of NSAIDs and/or statins does not affect PSA or PSA velocity in men at high risk for prostate cancer. Cancer Epidemiol. Biomarkers Prevent. 23, 2196–2198 (2014).

    Article  CAS  Google Scholar 

  39. Cher, M. L. et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J. Urol. 160, 1387–1391 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Kane, C. J. et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 61, 607–611 (2003).

    Article  PubMed  Google Scholar 

  41. Kramer, S. et al. Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. Br. J. Radiol. 70, 995–999 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. Calais, J., Cao, M. & Nickols, N. G. The utility of PET/CT in the planning of external radiation therapy for prostate cancer. J. Nucl. Med. 59, 557–567 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. De Visschere, P. J. L. et al. A systematic review on the role of imaging in early recurrent prostate cancer. Eur. Urol. Oncol. 2, 47–76 (2019).

    Article  PubMed  Google Scholar 

  44. Jilg, C. A. et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-Ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics 7, 1770–1780 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Clezardin, P. et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol. Rev. 101, 797–855 (2021).

    Article  PubMed  Google Scholar 

  46. Bernard, S., Walker, E. & Raghavan, M. An approach to the evaluation of incidentally identified bone lesions encountered on imaging studies. Am. J. Roentgenol. 208, 960–970 (2017).

    Article  Google Scholar 

  47. Yamaguchi, T. et al. Intertrabecular pattern of tumors metastatic to bone. Cancer 78, 1388–1394 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. Clarke, N. W., McClure, J. & George, N. J. Morphometric evidence for bone resorption and replacement in prostate cancer. Br. J. Urol. 68, 74–80 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. Ryan, C. et al. Epidemiology of bone metastases. Bone https://doi.org/10.1016/j.bone.2020.115783 (2020).

    Article  PubMed  Google Scholar 

  50. Zhang, X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 39, 76 (2019).

    Article  Google Scholar 

  51. Horn, S. R. et al. Epidemiology of liver metastases. Cancer Epidemiol. 67, 101760 (2020).

    Article  PubMed  Google Scholar 

  52. Ciriaco, P. et al. Safety and early oncologic outcomes of lung resection in patients with isolated pulmonary recurrent prostate cancer: a single-center experience. Eur. Urol. 75, 871–874 (2019).

    Article  PubMed  Google Scholar 

  53. Polverari, G. et al. Solitary mucinous prostate adenocarcinoma lung metastasis detected by 68Ga-PSMA-11 PET/CT. Clin. Genitourin. Cancer 17, e53–e55 (2019).

    Article  PubMed  Google Scholar 

  54. Pond, G. R. et al. The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur. Urol. 65, 3–6 (2014).

    Article  PubMed  Google Scholar 

  55. Vinjamoori, A. H. et al. Atypical metastases from prostate cancer: 10-year experience at a single institution. Am. J. Roentgenol. 199, 367–372 (2012).

    Article  Google Scholar 

  56. Johnstone, P. A. et al. Yield of imaging and scintigraphy assessing biochemical failure in prostate cancer patients. Urol. Oncol. 3, 108–112 (1997).

    Article  PubMed  CAS  Google Scholar 

  57. Jadvar, H. et al. Appropriate use criteria for imaging evaluation of biochemical recurrence of prostate cancer after definitive primary treatment. J. Nucl. Med. 61, 552–562 (2020).

    Article  PubMed  CAS  Google Scholar 

  58. Martino, P. et al. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J. Urol. 29, 595–605 (2011).

    Article  PubMed  Google Scholar 

  59. Love, C., Din, A. S., Tomas, M. B., Kalapparambath, T. P. & Palestro, C. J. Radionuclide bone imaging: an illustrative review. Radiographics 23, 341–358 (2003).

    Article  PubMed  Google Scholar 

  60. Wong, S. K. et al. Prostate cancer and bone metastases: the underlying mechanisms. Int. J. Mol. Sci. 20, 2587 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  61. Jin, J. K., Dayyani, F. & Gallick, G. E. Steps in prostate cancer progression that lead to bone metastasis. Int. J. Cancer 128, 2545–2561 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Adams, C. & Banks, K. P. Bone scan. In StatPearls [Internet] (StatPearls Publishing, Treasure Island, 2021).

  63. Zhou, J. et al. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Skeletal Radiol. 48, 1915–1924 (2019).

    Article  PubMed  Google Scholar 

  64. Lengana, T. et al. (68)Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli? Clin. Genitourin. Cancer 16, 392–401 (2018).

    Article  PubMed  Google Scholar 

  65. Dotan, Z. A. et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J. Clin. Oncol. 23, 1962–1968 (2005).

    Article  PubMed  Google Scholar 

  66. Pomykala, K. L. et al. Total-body (68)Ga-PSMA-11 PET/CT for bone metastasis detection in prostate cancer patients: potential impact on bone scan guidelines. J. Nucl. Med. 61, 405–411 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 59, 61–71 (2011).

    Article  PubMed  Google Scholar 

  68. NICE Guideline Updates Team (UK) Prostate cancer: diagnosis and management. BJU Int. 124, 9–26 (2019).

    Article  Google Scholar 

  69. Liauw, S. L. et al. Evaluation of the prostate bed for local recurrence after radical prostatectomy using endorectal magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 85, 378–384 (2013).

    Article  PubMed  Google Scholar 

  70. Robertson, N. L. et al. Combined whole body and multiparametric prostate magnetic resonance imaging as a 1-step approach to the simultaneous assessment of local recurrence and metastatic disease after radical prostatectomy. J. Urol. 198, 65–70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thoeny, H. C. et al. Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273, 125–135 (2014).

    Article  PubMed  Google Scholar 

  72. Caglic, I. & Barrett, T. Diffusion-weighted imaging (DWI) in lymph node staging for prostate cancer. Transl. Androl. Urol. 7, 814–823 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lecouvet, F. E. et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J. Clin. Oncol. 25, 3281–3287 (2007).

    Article  PubMed  Google Scholar 

  74. Woo, S., Suh, C. H., Kim, S. Y., Cho, J. Y. & Kim, S. H. Diagnostic performance of magnetic resonance imaging for the detection of bone metastasis in prostate cancer: a systematic review and meta-analysis. Eur. Urol. 73, 81–91 (2018).

    Article  PubMed  Google Scholar 

  75. Sharma, V. et al. Multiparametric magnetic resonance imaging is an independent predictor of salvage radiotherapy outcomes after radical prostatectomy. Eur. Urol. 73, 879–887 (2018).

    Article  PubMed  Google Scholar 

  76. Czernin, J., Satyamurthy, N. & Schiepers, C. Molecular mechanisms of bone 18F-NaF deposition. J. Nucl. Med. 51, 1826–1829 (2010).

    Article  PubMed  CAS  Google Scholar 

  77. Fonager, R. F. et al. Prospective comparative study of (18)F-sodium fluoride PET/CT and planar bone scintigraphy for treatment response assessment of bone metastases in patients with prostate cancer. Acta Oncol. 57, 1063–1069 (2018).

    Article  PubMed  CAS  Google Scholar 

  78. Jambor, I. et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 55, 59–67 (2016).

    Article  PubMed  Google Scholar 

  79. Langsteger, W., Rezaee, A., Pirich, C. & Beheshti, M. 18F-NaF-PET/CT and 99mTc-MDP bone scintigraphy in the detection of bone metastases in prostate cancer. Semin. Nucl. Med. 46, 491–501 (2016).

    Article  PubMed  Google Scholar 

  80. Wondergem, M. et al. 99mTc-HDP bone scintigraphy and 18F-sodiumfluoride PET/CT in primary staging of patients with prostate cancer. World J. Urol. 36, 27–34 (2018).

    Article  PubMed  Google Scholar 

  81. Zacho, H. D. et al. Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 1884–1897 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Dyrberg, E. et al. 68Ga-PSMA-PET/CT in comparison wh 18F-fluoride-PET/CT and whole-body MRI for the detection of bone metastases in patients with prostate cancer: a prospective diagnostic accuracy study. Eur. Radiol. 29, 1221–1230 (2019).

    Article  PubMed  Google Scholar 

  83. Hillner, B. E. et al. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the national oncologic PET registry. J. Nucl. Med. 56, 222–228 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Hillner, B. E. et al. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the national oncologic PET registry. J. Nucl. Med. 55, 574–581 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Jensen, T. S. Decision Memo for Positron Emission Tomography (NaF-18) to Identify Bone Metastasis of Cancer (CAG-00065R2), https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=279 (2021).

  86. Forrest, W. CMS again declines coverage for NaF-PET scans. https://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=120979 (2018).

  87. Perera, M. et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur. Urol. 77, 403–417 (2020).

    Article  PubMed  Google Scholar 

  88. Eiber, M. et al. Prostate-specific membrane antigen ligands for imaging and therapy. J. Nucl. Med. 58, 67S–76S (2017).

    Article  PubMed  CAS  Google Scholar 

  89. Eder, M. et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 23, 688–697 (2012).

    Article  PubMed  CAS  Google Scholar 

  90. FDA. Full prescribing information: Choline 11 C. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203155s000lbl.pdf (2021).

  91. Mapelli, P. et al. 11C- or 18F-choline PET/CT for imaging evaluation of biochemical recurrence of prostate cancer. J. Nucl. Med. 57, 43S–48S (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Duncan, K. Radiopharmaceuticals in PET imaging. J. Nucl. Med. Technol. 26, 228–234; quiz 242 (1998).

    PubMed  CAS  Google Scholar 

  93. Vargas, H. A. et al. Localizing sites of disease in patients with rising serum prostate-specific antigen up to 1ng/ml following prostatectomy: how much information can conventional imaging provide? Urol. Oncol. 34, 482 e485–482.e10 (2016).

    Article  Google Scholar 

  94. Yoon, J., Ballas, L., Desai, B. & Jadvar, H. Prostate-specific antigen and prostate-specific antigen kinetics in predicting 18F-sodium fluoride positron emission tomography-computed tomography positivity for first bone metastases in patients with biochemical recurrence after radical prostatectomy. World J. Nucl. Med. 16, 229–236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lavallee, E. et al. Increased prostate cancer glucose metabolism detected by 18F-fluorodeoxyglucose positron emission tomography/computed tomography in localised gleason 8–10 prostate cancers identifies very high-risk patients for early recurrence and resistance to castration. Eur. Urol. Focus 5, 998–1006 (2019).

    Article  PubMed  Google Scholar 

  96. Wibmer, A. G. et al. Quantification of metastatic prostate cancer whole-body tumor burden with fdg pet parameters and associations with overall survival after first line abiraterone or enzalutamide: a single-center retrospective cohort study. J. Nucl. Med. https://doi.org/10.2967/jnumed.120.256602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, B. et al. A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration. Clin. Cancer Res. 26, 4551–4558 (2020).

    Article  PubMed  CAS  Google Scholar 

  98. Fox, J. J. et al. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncol. 4, 217–224 (2018).

    Article  PubMed  Google Scholar 

  99. Calais, J. et al. Resection of a solitary pulmonary metastasis from prostatic Adenocarcinoma misdiagnosed as a bronchocele: usefulness of 18F-choline and 18F-FDG PET/CT. J. Thorac. Oncol. 9, 1826–1829 (2014).

    Article  PubMed  Google Scholar 

  100. Fanti, S. et al. PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur. J. Nucl. Med. Mol. Imaging 43, 55–69 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Nanni, C. et al. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur. J. Nucl. Med. Mol. Imaging 43, 1601–1610 (2016).

    Article  PubMed  CAS  Google Scholar 

  102. Fossati, N. et al. Underestimation of PET/CT scan in assessing tumour burden of men with nodal recurrence from prostate cancer: head-to-head comparison of 68Ga-PSMA and 11C-choline in a large, multi-institutional series of extended salvage lymph node dissections. J. Urol. 204, 296–302 (2020).

    Article  PubMed  Google Scholar 

  103. Emmett, L. et al. Prospective, multisite, international comparison of 18F-fluoromethylcholine PET/CT, multiparametric MRI, and 68Ga-HBED-CC PSMA-11 PET/CT in men with high-risk features and biochemical failure after radical prostatectomy: clinical performance and patient outcomes. J. Nucl. Med. 60, 794–800 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cantiello, F. et al. Comparison between 64Cu-PSMA-617 PET/CT and 18F-choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clin. Genitourin. Cancer 16, 385–391 (2018).

    Article  PubMed  Google Scholar 

  105. Soydal, C. et al. Comparison of bone scintigraphy and Ga-68 prostate-specific membrane antigen positron emission tomography/computed tomography in the detection of bone metastases of prostate carcinoma. Nucl. Med. Commun. 40, 1243–1249 (2019).

    Article  PubMed  CAS  Google Scholar 

  106. Witkowska-Patena, E. et al. Head-to-head comparison of 18F-prostate-specific membrane antigen-1007 and 18F-fluorocholine PET/CT in biochemically relapsed prostate cancer. Clin. Nucl. Med. 44, e629–e633 (2019).

    Article  PubMed  Google Scholar 

  107. Morigi, J. J. et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J. Nucl. Med. 56, 1185–1190 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Grassi, I. et al. The clinical use of PET with 11C-acetate. Am. J. Nucl. Med. Mol. Imaging 2, 33–47 (2012).

    PubMed  CAS  Google Scholar 

  109. Regula, N. et al. Comparison of 68Ga-PSMA-11 PET/CT with 11C-acetate PET/CT in re-staging of prostate cancer relapse. Sci. Rep. 10, 4993 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Schuster, D. M., Nanni, C. & Fanti, S. Evaluation of prostate cancer with radiolabeled amino acid analogs. J. Nucl. Med. 57, 61S–66S (2016).

    Article  PubMed  CAS  Google Scholar 

  111. Savir-Baruch, B. et al. ACR-ACNM practice parameter for the performance of fluorine-18 fluciclovine-PET/CT for recurrent prostate cancer. Clin. Nucl. Med. 43, 909–917 (2018).

    Article  PubMed  Google Scholar 

  112. Calais, J. et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 20, 1286–1294 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. England, J. R., Paluch, J., Ballas, L. K. & Jadvar, H. 18F-Fluciclovine PET/CT detection of recurrent prostate carcinoma in patients with serum PSA </= 1 ng/mL after definitive primary treatment. Clin. Nucl. Med. 44, e128–e132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jadvar, H. et al. Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J. Nucl. Med. 54, 1195–1201 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Schuster, D. M. et al. Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In–capromab pendetide SPECT/CT. Radiology 259, 852–861 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Calais, J. et al. What is the best PET target for early biochemical recurrence of prostate cancer? — Authors’ reply. Lancet Oncol. 20, e609–e610 (2019).

    Article  PubMed  Google Scholar 

  117. Jilg, C. A. et al. Detection rate of 18F-choline PET/CT and 68Ga-PSMA-HBED-CC PET/CT for prostate cancer lymph node metastases with direct link from PET to histopathology: dependence on the size of tumor deposits in lymph nodes. J. Nucl. Med. 60, 971–977 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bronsert, P., Reichel, K. & Ruf, J. Loss of PSMA expression in non-neuroendocrine dedifferentiated acinar prostate cancer. Clin. Nucl. Med. 43, 526–528 (2018).

    Article  PubMed  Google Scholar 

  119. Bakht, M. K. et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr. Relat. Cancer 26, 131–146 (2018).

    Article  PubMed  Google Scholar 

  120. Chu, C. E. et al. Prostate-specific membrane antigen and fluciclovine transporter genes are associated with variable clinical features and molecular subtypes of primary prostate cancer. Eur. Urol. 79, 717–721 (2021).

    Article  PubMed  CAS  Google Scholar 

  121. Rischpler, C. et al. 68Ga-PSMA-HBED-CC uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J. Nucl. Med. 59, 1406–1411 (2018).

    Article  PubMed  CAS  Google Scholar 

  122. Sheikhbahaei, S. et al. Prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer: an update on important pitfalls. Semin. Nucl. Med. 49, 255–270 (2019).

    Article  PubMed  Google Scholar 

  123. Rousseau, E. et al. A prospective study on 18F-DCFPyL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. J. Nucl. Med. 60, 1587–1593 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Treglia, G. et al. Detection rate of 18F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancers 11, 710 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  125. Wondergem, M. et al. Early lesion detection with 18F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 46, 1911–1918 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Giesel, F. L. et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med. 60, 362–368 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rowe, S. P. et al. Prospective evaluation of PSMA-targeted 18F-DCFPyL PET/CT in men with biochemical failure after radical prostatectomy for prostate cancer. J. Nucl. Med. 61, 58–61 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Giesel, F. L. et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 44, 678–688 (2017).

    Article  PubMed  CAS  Google Scholar 

  129. FDA. FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer. https://www.fda.gov/news-events/press-announcements/fda-approves-first-psma-targeted-pet-imaging-drug-men-prostate-cancer (2020).

  130. Lantheus. Lantheus Receives U.S. FDA Approval of PYLARIFY® (piflufolastat F 18) Injection, the First and Only Commercially Available PSMA PET Imaging Agent for Prostate Cancer. https://investor.lantheus.com/news-releases/news-release-details/lantheus-receives-us-fda-approval-pylarifyr-piflufolastat-f-18 (2021).

  131. Wiltshire, K. L. et al. Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 69, 1090–1099 (2007).

    Article  PubMed  Google Scholar 

  132. van Kalmthout, L. W. M. et al. Prospective validation of gallium-68 prostate specific membrane antigen-positron emission tomography/computerized tomography for primary staging of prostate cancer. J. Urol. 203, 537–545 (2020).

    Article  PubMed  Google Scholar 

  133. Calais, J., Czernin, J., Fendler, W. P., Elashoff, D. & Nickols, N. G. Randomized prospective phase III trial of 68Ga-PSMA-11 PET/CT molecular imaging for prostate cancer salvage radiotherapy planning [PSMA-SRT]. BMC Cancer 19, 18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zschaeck, S. et al. Intermediate-term outcome after PSMA-PET guided high-dose radiotherapy of recurrent high-risk prostate cancer patients. Radiat. Oncol. 12, 140 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Schmidt-Hegemann, N. S. et al. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy. Radiat. Oncol. 13, 37 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Fendler, W. P. et al. Assessment of 68Ga-PSMA-11 pet accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 5, 856–863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Emmett, L. et al. 3-year freedom from progression following 68GaPSMA PET CT triaged management in men with biochemical recurrence post radical prostatectomy. Results of a prospective multi-center trial. J. Nucl. Med. 203, 1063 (2019).

    Google Scholar 

  138. Hricak, H. et al. Medical imaging and nuclear medicine: a Lancet Oncology commission. Lancet Oncol. 22, e136–e172 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lehrer, E. J. et al. Safety and survival rates associated with ablative stereotactic radiotherapy for patients with oligometastatic cancer: a systematic review and meta-analysis. JAMA Oncol. 7, 92–106 (2021).

    Article  PubMed  Google Scholar 

  140. Zaorsky, N. G. et al. Impact of radiation therapy dose escalation on prostate cancer outcomes and toxicities. Am. J. Clin. Oncol. 41, 409–415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lehrer, E. J. et al. Ultrahypofractionated versus hypofractionated and conventionally fractionated radiation therapy for localized prostate cancer: a systematic review and meta-analysis of phase III randomized trials. Radiother. Oncol. 148, 235–242 (2020).

    Article  PubMed  Google Scholar 

  142. Levin-Epstein, R. G. et al. Dose-response with stereotactic body radiotherapy for prostate cancer: a multi-institutional analysis of prostate-specific antigen kinetics and biochemical control. Radiother. Oncol. 154, 207–213 (2021).

    Article  PubMed  CAS  Google Scholar 

  143. Parker, C. C. et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet 396, 1413–1421 (2020).

    Article  PubMed  CAS  Google Scholar 

  144. Sargos, P. et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol. 21, 1341–1352 (2020).

    Article  PubMed  CAS  Google Scholar 

  145. Kneebone, A. et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 21, 1331–1340 (2020).

    Article  PubMed  CAS  Google Scholar 

  146. Vale, C. L. et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet 396, 1422–1431 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Trock, B. J. et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 299, 2760–2769 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nehra, A. et al. Identification of recurrence sites following post-prostatectomy treatment for prostate cancer using 11C-choline positron emission tomography and multiparametric pelvic magnetic resonance imaging. J. Urol. 199, 726–733 (2018).

    Article  PubMed  Google Scholar 

  149. Hawken, S. R. et al. Utilization of salvage radiation therapy for biochemical recurrence after radical prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 104, 1030–1034 (2019).

    Article  PubMed  Google Scholar 

  150. Morgan, T. M. et al. Variation in the use of postoperative radiotherapy among high-risk patients following radical prostatectomy. Prostate Cancer Prostatic Dis. 19, 216–221 (2016).

    Article  PubMed  CAS  Google Scholar 

  151. Yokomizo, A. et al. Salvage radiotherapy versus hormone therapy for prostate-specific antigen failure after radical prostatectomy: a randomised, multicentre, open-label, phase 3 trial (JCOG0401). Eur. Urol. 77, 689–698 (2019).

    Article  PubMed  CAS  Google Scholar 

  152. Duchesne, G. M. et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01-03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol. 17, 727–737 (2016).

    Article  PubMed  CAS  Google Scholar 

  153. Carrie, C. et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 17, 747–756 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Carrie, C. et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol. 20, 1740–1749 (2019).

    Article  PubMed  CAS  Google Scholar 

  155. Shipley, W. U. et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N. Engl. J. Med. 376, 417–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pollack, A. et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiation therapy: the NRG Oncology/RTOG 0534 SPPORT trial. Int. J. Radiat. Oncol. Biol. Phys. 2, 1393–1610 (2018).

    Google Scholar 

  157. Michalski, J. M. et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 4, e180039 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rodda, S., Morris, W. J., Hamm, J. & Duncan, G. ASCENDE-RT: an analysis of health-related quality of life for a randomized trial comparing low-dose-rate brachytherapy boost with dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 98, 581–589 (2017).

    Article  PubMed  Google Scholar 

  159. Zaorsky, N. G. et al. What is the ideal radiotherapy dose to treat prostate cancer? A meta-analysis of biologically equivalent dose escalation. Radiother. Oncol. 115, 295–300 (2015).

    Article  PubMed  Google Scholar 

  160. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Widmark, A. et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 394, 385–395 (2019).

    Article  PubMed  Google Scholar 

  162. Catton, C. N. et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J. Clin. Oncol. 35, 1884–1890 (2017).

    Article  PubMed  CAS  Google Scholar 

  163. Roach, M. et al. Sequence of hormonal therapy and radiotherapy field size in unfavourable, localised prostate cancer (NRG/RTOG 9413): long-term results of a randomised, phase 3 trial. Lancet Oncol. 19, 1504–1515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Johnson, M. E. et al. Patient reported outcomes among treatment modalities for prostate cancer. Can. J. Urol. 23, 8535–8545 (2016).

    PubMed  Google Scholar 

  165. Donovan, J. L. et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med. 375, 1425–1437 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Bolla, M. et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360, 103–106 (2002).

    Article  PubMed  CAS  Google Scholar 

  167. Zaorsky, N. G., Spratt, D. E., Kishan, A. U., Culp, S. H. & Showalter, T. N. Editorial: optimizing local therapy for high-risk prostate cancer: evidence and emerging options. Front. Oncol. 10, 1616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zaorsky, N. G., Trabulsi, E. J., Lin, J. & Den, R. B. Multimodality therapy for patients with high-risk prostate cancer: current status and future directions. Semin. Oncol. 40, 308–321 (2013).

    Article  PubMed  Google Scholar 

  169. Tendulkar, R. D. et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J. Clin. Oncol. 34, 3648–3654 (2016).

    Article  PubMed  Google Scholar 

  170. Stephenson, A. J. et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J. Clin. Oncol. 25, 2035–2041 (2007).

    Article  PubMed  Google Scholar 

  171. Kishan, A. U. et al. Optimizing the timing of salvage postprostatectomy radiotherapy and the use of concurrent hormonal therapy for prostate cancer. Eur. Urol. Oncol. 1, 3–18 (2018).

    Article  PubMed  Google Scholar 

  172. Stish, B. J. et al. Improved Metastasis-free and survival outcomes with early salvage radiotherapy in men with detectable prostate-specific antigen after prostatectomy for prostate cancer. J. Clin. Oncol. 34, 3864–3871 (2016).

    Article  PubMed  Google Scholar 

  173. Dess, R. T. et al. Association of presalvage radiotherapy PSA levels after prostatectomy with outcomes of long-term antiandrogen therapy in men with prostate cancer. JAMA Oncol. 6, 735–743 (2020).

    Article  PubMed  Google Scholar 

  174. Cornford, P. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. part ii: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 71, 630–642 (2017).

    Article  PubMed  Google Scholar 

  175. Valicenti, R. K. et al. Adjuvant and salvage radiation therapy after prostatectomy: American Society for Radiation Oncology/American Urological Association guidelines. Int. J. Radiat. Oncol. Biol. Phys. 86, 822–828 (2013).

    Article  PubMed  Google Scholar 

  176. King, C. R. The timing of salvage radiotherapy after radical prostatectomy: a systematic review. Int. J. Radiat. Oncol. Biol. Phys. 84, 104–111 (2012).

    Article  PubMed  Google Scholar 

  177. Boorjian, S. A. et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur. Urol. 59, 893–899 (2011).

    Article  PubMed  Google Scholar 

  178. Jackson, W. C. et al. A prostate-specific antigen doubling time of <6 months is prognostic for metastasis and prostate cancer-specific death for patients receiving salvage radiation therapy post radical prostatectomy. Radiat. Oncol. 8, 170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. van Stam, M. A. et al. The effect of salvage radiotherapy and its timing on the health-related quality of life of prostate cancer patients. Eur. Urol. 70, 751–757 (2016).

    Article  PubMed  Google Scholar 

  180. Cozzarini, C. et al. Clinical factors predicting late severe urinary toxicity after postoperative radiotherapy for prostate carcinoma: a single-institute analysis of 742 patients. Int. J. Radiat. Oncol. Biol. Phys. 82, 191–199 (2016).

    Article  Google Scholar 

  181. Nyarangi-Dix, J. N. et al. Post-prostatectomy radiotherapy adversely affects urinary continence irrespective of radiotherapy regime. World J. Urol. 35, 1841–1847 (2016).

    Article  CAS  Google Scholar 

  182. De Meerleer, G. et al. Salvage intensity-modulated radiotherapy for rising PSA after radical prostatectomy. Radiother. Oncol. 89, 205–213 (2008).

    Article  PubMed  Google Scholar 

  183. Goenka, A. et al. Improved toxicity profile following high-dose postprostatectomy salvage radiation therapy with intensity-modulated radiation therapy. Eur. Urol. 60, 1142–1148 (2011).

    Article  PubMed  Google Scholar 

  184. Berlin, A. et al. Phase 2 trial of guideline-based postoperative image guided intensity modulated radiation therapy for prostate cancer: toxicity, biochemical, and patient-reported health-related quality-of-life outcomes. Practical Radiat. Oncol. 5, e473–482 (2015).

    Article  Google Scholar 

  185. Tendulkar, R. D. et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J. Clin. Oncol. 34, 3648–3654 (2015).

    Article  Google Scholar 

  186. Stish, B. J. et al. Improved metastasis-free and survival outcomes with early salvage radiotherapy in men with detectable prostate-specific antigen after prostatectomy for prostate cancer. J. Clin. Oncol. 34, 3864–3871 (2015).

    Article  Google Scholar 

  187. Fossati, N. et al. Impact of early salvage radiation therapy in patients with persistently elevated or rising prostate-specific antigen after radical prostatectomy. Eur. Urol. 73, 436–444 (2018).

    Article  PubMed  Google Scholar 

  188. Fossati, N. et al. Assessing the optimal timing for early salvage radiation therapy in patients with prostate-specific antigen rise after radical prostatectomy. Eur. Urol. 69, 728–733 (2016).

    Article  PubMed  Google Scholar 

  189. Abugharib, A. et al. Very early salvage radiotherapy improves distant metastasis-free survival. J. Urol. 197, 662–668 (2017).

    Article  PubMed  Google Scholar 

  190. Abugharib, A. et al. Very early salvage radiotherapy improves distant metastasis-free survival. J. Urol. 197, 662–668 (2017).

    Article  PubMed  Google Scholar 

  191. Seisen, T., Trinh, Q. D. & Abdollah, F. Could lead-time bias explain the apparent benefits of early salvage radiotherapy? Nat. Rev. Urol. 14, 193–194 (2017).

    Google Scholar 

  192. Pasalic, D. et al. Dose escalation for prostate adenocarcinoma: a long-term update on the outcomes of a phase 3, single institution randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 104, 790–797 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. King, C. R. & Kapp, D. S. Radiotherapy after prostatectomy: is the evidence for dose escalation out there? Int. J. Radiat. Oncol. Biol. Phys. 71, 346–350 (2008).

    Article  PubMed  Google Scholar 

  194. Alexidis, P. et al. Use of high and very high dose radiotherapy after radical prostatectomy for prostate cancer in the United States. Prostate Cancer Prostatic Dis. 21, 584–593 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Gharzai, L. A. et al. Intermediate clinical endpoints for surrogacy in localised prostate cancer: an aggregate meta-analysis. Lancet Oncol. 22, 402–410 (2021).

    Article  PubMed  Google Scholar 

  196. King, C. R. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis. Radiother. Oncol. 121, 199–203 (2016).

    Article  PubMed  Google Scholar 

  197. Pisansky, T. M. et al. Salvage radiation therapy dose response for biochemical failure of prostate cancer after prostatectomy-a multi-institutional observational study. Int. J. Radiat. Oncol. Biol. Phys. 96, 1046–1053 (2016).

    Article  PubMed  CAS  Google Scholar 

  198. Qi, X. et al. Toxicity and biochemical outcomes of dose-intensified postoperative radiation therapy for prostate cancer: results of a randomized phase III trial. Int. J. Radiat. Oncol. Biol. Phys. 106, 282–290 (2020).

    Article  PubMed  CAS  Google Scholar 

  199. Ghadjar, P. et al. Acute toxicity and quality of life after dose-intensified salvage radiation therapy for biochemically recurrent prostate cancer after prostatectomy: first results of the randomized trial SAKK 09/10. J. Clin. Oncol. 33, 4158–4166 (2015).

    Article  PubMed  CAS  Google Scholar 

  200. Ghadjar, P. et al. Impact of dose intensified salvage radiation therapy on urinary continence recovery after radical prostatectomy: results of the randomized trial SAKK 09/10. Radiother. Oncol. 126, 257–262 (2018).

    Article  PubMed  Google Scholar 

  201. van Andel, G. et al. An international field study of the EORTC QLQ-PR25: a questionnaire for assessing the health-related quality of life of patients with prostate cancer. Eur. J. Cancer 44, 2418–2424 (2008).

    Article  PubMed  Google Scholar 

  202. Zaorsky, N. G. et al. Evolution of advanced technologies in prostate cancer radiotherapy. Nat. Rev. Urol. 10, 565–579 (2013).

    Article  PubMed  Google Scholar 

  203. Ghadjar, P. et al. Impact of dose intensified salvage radiation therapy on urinary continence recovery after radical prostatectomy: results of the randomized trial SAKK 09/10. Radiother.Oncol. 126, 257–262 (2018).

    Article  PubMed  Google Scholar 

  204. Sandler, K. A. et al. Prostate-only versus whole-pelvis radiation with or without a brachytherapy boost for gleason grade group 5 prostate cancer: a retrospective analysis. Eur. Urol. 77, 3–10 (2020).

    Article  PubMed  Google Scholar 

  205. Pommier, P. et al. Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Update of the long-term survival results of the GETUG-01 randomized study. Int. J. Radiat. Oncol. Biol. Phys. 96, 759–769 (2016).

    Article  PubMed  Google Scholar 

  206. Nguyen, P. L. & D’Amico, A. V. Targeting pelvic lymph nodes in men with intermediate- and high-risk prostate cancer despite two negative randomized trials. J. Clin. Oncol. 26, 2055–2056 (2008).

    Article  PubMed  Google Scholar 

  207. Moghanaki, D., Urdaneta, A. I., Karlin, J. D., Koontz, B. F. & Anscher, M. S. Management of postprostatectomy biochemical relapse with salvage radiotherapy: results of an international survey. Am. J. Clin. Oncol. 39, 64–68 (2016).

    Article  PubMed  CAS  Google Scholar 

  208. Ramey, S. J. et al. Multi-institutional evaluation of elective nodal irradiation and/or androgen deprivation therapy with postprostatectomy salvage radiotherapy for prostate cancer. Eur. Urol. 74, 99–106 (2018).

    Article  PubMed  Google Scholar 

  209. Michalski, J. M. et al. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 76, 361–368 (2010).

    Article  PubMed  Google Scholar 

  210. Zaorsky, N. G. et al. Prostate cancer patients with unmanaged diabetes or receiving insulin experience inferior outcomes and toxicities after treatment with radiation therapy. Clin. Genitourin. Cancer 15, 326–335 e323 (2017).

    Article  PubMed  Google Scholar 

  211. Wang, L. S. et al. Impact of obesity on outcomes after definitive dose-escalated intensity-modulated radiotherapy for localized prostate cancer. Cancer 121, 3010–3017 (2015).

    Article  PubMed  CAS  Google Scholar 

  212. Hall, W. A. et al. NRG oncology updated international consensus atlas on pelvic lymph node volumes for intact and postoperative prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. (2020).

  213. Brenner, D. J. & Hall, E. J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 43, 1095–1101(1999).

    Article  PubMed  CAS  Google Scholar 

  214. Zaorsky, N. G. et al. Comparison of outcomes and toxicities among radiation therapy treatment options for prostate cancer. Cancer Treat. Rev. 48, 50–60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Morgan, S. C. et al. Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J. Clin. Oncol. 36, Jco1801097 (2018).

    Google Scholar 

  216. N. C. C. Network NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer, http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (2019).

  217. Martell, K. et al. 5-Year outcomes of a prospective phase 1/2 study of accelerated hypofractionated radiation therapy to the prostate bed. Practical Radiat. Oncol. 9, 354–361 (2019).

    Article  Google Scholar 

  218. Chin, S. et al. Ten-year outcomes of moderately hypofractionated salvage postprostatectomy radiation therapy and external validation of a contemporary multivariable nomogram for biochemical failure. Int. J. Radiat. Oncol. Biol. Phys. 107, 288–296 (2020).

    Article  PubMed  CAS  Google Scholar 

  219. Cozzarini, C. et al. Higher-than-expected severe (Grade 3–4) late urinary toxicity after postprostatectomy hypofractionated radiotherapy: a single-institution analysis of 1176 patients. Eur. Urol. 66, 1024–1030 (2014).

    Article  PubMed  Google Scholar 

  220. Wei, J. T., Dunn, R. L., Litwin, M. S., Sandler, H. M. & Sanda, M. G. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology 56, 899–905 (2000).

    Article  PubMed  CAS  Google Scholar 

  221. Koerber, S. A. et al. Prostate bed irradiation with alternative radio-oncological approaches (PAROS) — a prospective, multicenter and randomized phase III trial. Radiat. Oncol. 14, 122 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Kishan, A. U. et al. Long-term outcomes of stereotactic body radiotherapy for low-risk and intermediate-risk prostate cancer. JAMA Netw. Open 2, e188006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Brand, D. H. et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 20, 1531–1543 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ballas, L. K. et al. Phase 1 trial of SBRT to the prostate fossa after prostatectomy. Int. J. Radiat. Oncol. Biol. Phys. 104, 50–60 (2019).

    Article  PubMed  Google Scholar 

  225. Sampath, S. et al. Stereotactic body radiation therapy to the prostate bed: results of a phase 1 dose-escalation trial. Int. J. Radiat. Oncol. Biol. Phys. 106, 537–545 (2020).

    Article  PubMed  CAS  Google Scholar 

  226. Yoon, S. et al. Prostate bed and organ-at-risk deformation: prospective volumetric and dosimetric data from a phase II trial of stereotactic body radiotherapy after radical prostatectomy. Radiother. Oncol. 148, 44–50 (2020).

    Article  PubMed  CAS  Google Scholar 

  227. Zaorsky, N. G. et al. ACR appropriateness criteria for external beam radiation therapy treatment planning for clinically localized prostate cancer, part II of II. Adv. Radiat. Oncol. 2, 437–454 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Zaorsky, N. G. et al. ACR appropriateness criteria® external beam radiation therapy treatment planning for clinically localized prostate cancer, part I of II. Adv. Radiat. Oncol. 2, 62–84 (2017).

    Article  PubMed  Google Scholar 

  229. Yang, D. D. & Nguyen, P. L. Optimizing androgen deprivation therapy with radiation therapy for aggressive localized and locally advanced prostate cancer. Urol. Oncol. https://doi.org/10.1016/j.urolonc.2017.10.020 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Polkinghorn, W. R. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3, 1245–1253 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Goodwin, J. F. et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 3, 1254–1271 (2013).

    Article  PubMed  CAS  Google Scholar 

  232. Burnette, B. & Weichselbaum, R. R. Radiation as an immune modulator. Semin. Radiat. Oncol. 23, 273–280 (2013).

    Article  PubMed  Google Scholar 

  233. Andre, F. et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin. Cancer Res. 19, 28–33 (2013).

    Article  PubMed  CAS  Google Scholar 

  234. Kaur, P. & Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol. 2, 191 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Wang, H. H. et al. Mesenchymal stem cells generate pericytes to promote tumor recurrence via vasculogenesis after stereotactic body radiation therapy. Cancer Lett. 375, 349–359 (2016).

    Article  PubMed  CAS  Google Scholar 

  236. Spratt, D. E. et al. Androgen receptor upregulation mediates radioresistance after ionizing radiation. Cancer Res. 75, 4688–4696 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Nguyen, P. L. et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur. Urol. 67, 825–836 (2015).

    Article  PubMed  CAS  Google Scholar 

  238. Dinh, K. T. et al. Association between androgen deprivation therapy and anxiety among 78 000 patients with localized prostate cancer. Int. J. Urol. 24, 743–748 (2017).

    Article  PubMed  CAS  Google Scholar 

  239. Nead, K. T. et al. Androgen deprivation therapy and future Alzheimer’s disease risk. J. Clin. Oncol. 34, 566–571 (2016).

    Article  PubMed  CAS  Google Scholar 

  240. Lapi, F. et al. Androgen deprivation therapy and risk of acute kidney injury in patients with prostate cancer. JAMA 310, 289–296 (2013).

    Article  PubMed  CAS  Google Scholar 

  241. Carrie, C. et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol. 20, 1740–1749 (2013).

    Article  Google Scholar 

  242. Dess, R. T. et al. Association of presalvage radiotherapy PSA levels after prostatectomy with outcomes of long-term antiandrogen therapy in men with prostate cancer. JAMA Oncol. 6, 735–743 (2013).

    Article  Google Scholar 

  243. Chen, A. B. et al. Expectations about the effectiveness of radiation therapy among patients with incurable lung cancer. J. Clin. Oncol. 31, 2730–2735 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Zaorsky, N. G. et al. What are medical students in the united states learning about radiation oncology? Results of a multi-institutional survey. Int. J. Radiat. Oncol. Biol. Phys. 94, 235–242 (2016).

    Article  PubMed  Google Scholar 

  245. Mahal, B. A. et al. Travel distance and stereotactic body radiotherapy for localized prostate cancer. Cancer 124, 1141–1149 (2018).

    Article  PubMed  Google Scholar 

  246. Tsai, H. K., D’Amico, A. V., Sadetsky, N., Chen, M. H. & Carroll, P. R. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. J. Natl Cancer Inst. 99, 1516–1524 (2007).

    Article  PubMed  Google Scholar 

  247. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Nabid, A. et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur. Urol. 74, 432–441 (2018).

    Article  PubMed  CAS  Google Scholar 

  249. Spratt, D. E. et al. Development and validation of a novel integrated clinical-genomic risk group classification for localized prostate cancer. J. Clin. Oncol. 36, 581–590 (2018).

    Article  PubMed  Google Scholar 

  250. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    Article  CAS  Google Scholar 

  251. Armenia, J. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Spratt, D. E. Prostate cancer transcriptomic subtypes. Adv. Exp. Med. Biol. 1210, 111–120 (2019).

    Article  PubMed  CAS  Google Scholar 

  253. Jairath, N. K. et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur. Urol. 79, 374–383 (2021).

    Article  PubMed  CAS  Google Scholar 

  254. Spratt, D. E. et al. Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J. Clin. Oncol. 35, 1991–1998 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Spratt, D. E. et al. Performance of a prostate cancer genomic classifier in predicting metastasis in men with prostate-specific antigen persistence postprostatectomy. Eur. Urol. 74, 107–114 (2018).

    Article  PubMed  Google Scholar 

  256. Howard, L. E. et al. Validation of a genomic classifier for prediction of metastasis and prostate cancer-specific mortality in African-American men following radical prostatectomy in an equal access healthcare setting. Prostate Cancer Prostatic Dis. 23, 419–428 (2019).

    Article  PubMed  CAS  Google Scholar 

  257. Gore, J. L. et al. Clinical utility of a genomic classifier in men undergoing radical prostatectomy: the PRO-IMPACT trial. Pract. Radiat. Oncol. 10, e82–e90 (2020).

    Article  PubMed  Google Scholar 

  258. Marascio, J. et al. Prospective study to define the clinical utility and benefit of Decipher testing in men following prostatectomy. Prostate Cancer Prostatic Dis. 23, 295–302 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. FY, F. et al. Transcriptome profiling of NRG Oncology/RTOG 9601: validation of a prognostic genomic classifier in salvage radiotherapy prostate cancer patients from a prospective randomized trial. J. Clin. Oncol. https://doi.org/10.1200/JCO.2020.38.6_suppl.276 (2020).

    Article  Google Scholar 

  260. Zhao, S. G. et al. Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol. 17, 1612–1620 (2016).

    Article  PubMed  Google Scholar 

  261. Karnes, R. J. et al. Development and validation of a prostate cancer genomic signature that predicts early ADT treatment response following radical prostatectomy. Clin. Cancer Res. 24, 3908–3916 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Zhao, S. G. et al. Associations of luminal and basal subtyping of prostate cancer with prognosis and response to androgen deprivation therapy. JAMA Oncol. 3, 1663–1672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Spratt, D. E. et al. Transcriptomic heterogeneity of androgen receptor activity defines a de novo low AR-active subclass in treatment naive primary prostate cancer. Clin. Cancer Res. 25, 6721–6730 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Zaorsky, N. G. et al. Clinical trial accrual at initial course of therapy for cancer and its impact on survival. J. Natl Compr. Cancer Netw. 17, 1309–1316 (2019).

    Article  Google Scholar 

  265. Virgolini, I., Decristoforo, C., Haug, A., Fanti, S. & Uprimny, C. Current status of theranostics in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 471–495 (2018).

    Article  PubMed  Google Scholar 

  266. Chen, Z. et al. PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 6, 7752–7762 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Fanti, S. et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 19, e696–e708 (2018).

    Article  PubMed  Google Scholar 

  268. Singh, R. et al. Single fraction radiosurgery, fractionated radiosurgery, and conventional radiotherapy for spinal oligometastasis (SAFFRON): a systematic review and meta-analysis. Radiother. Oncol. 146, 76–89 (2020).

    Article  PubMed  Google Scholar 

  269. Beresford, M. J., Gillatt, D., Benson, R. J. & Ajithkumar, T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin. Oncol. 22, 46–55 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.G.Z. is supported by startup funding from Penn State Cancer Institute and Penn State College of Medicine, is supported by the National Institutes of Health Grant L radical prostatectomy 1 L30 CA231572-01, is supported by the American Cancer Society – Tri State CEOs Against Cancer Clinician Scientist Development Grant, CSDG-20-013-01-CCE and received remuneration from Springer Nature for his textbook, Absolute Clinical Radiation Oncology Review.

Author information

Authors and Affiliations

Authors

Contributions

N.G.Z., J.C., S.F., D.T., T.D., D.E.S. and A.U.K. researched data for the article, made a substantial contribution to the discussion of its content, wrote and reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Nicholas G. Zaorsky.

Ethics declarations

Competing interests

J.C. is supported by the Prostate Cancer Foundation (2020 Young Investigator Award 20YOUN05, 2019 Challenge Award 19CHAL02), the Society of Nuclear Medicine and Molecular imaging (2019 Molecular Imaging Research Grant for Junior Academic Faculty) and reports prior consulting activities outside of the submitted work for Advanced Accelerator Applications, Blue Earth Diagnostics, Curium Pharma, GE Healthcare, Janssen Pharmaceuticals, Progenics Pharmaceuticals, Radiomedix and Telix Pharmaceuticals. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thank L. Emmett, M. Emberton and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Androgen deprivation therapy

(ADT). Also known as hormone therapy, typically includes drugs such as LHRH agonists (e.g. leuprolide) and LHRH antagonists (e.g. degarelix). Androgen receptor inhibitors (e.g. enzalutamide) and anti-androgens (e.g. bicalutamide) technically do not decrease androgen production, and technically are not ADT, but they are commonly put in the same category. Short-term ADT implies use of ADT for 3–6 months, and long-term ADT implies use for 12–36 months.

Biochemical recurrence

After prostatectomy, biochemical recurrence is historically defined by two consecutive PSA values >0.2 ng/ml. After definitive radiation therapy (i.e. for men with an intact prostate), this is defined by the nadir +2 ng/ml PSA.

Salvage radiation therapy

Radiation therapy prescribed to the prostate bed, with or without the pelvic lymph nodes, in the setting of a rising PSA after prostatectomy. The historical definition for salvage radiotherapy is with PSA of ≥0.2 ng/ml with a second confirmatory value. ‘Early salvage’ refers to radiotherapy with PSA < 0.5 ng/ml. ‘Very early salvage’ refers to radiotherapy with PSA 0.01–0.2 ng/ml.

Prostate bed

The prostate bed has the following boundaries: the anterior: the posterior edge of the pubic bone, or the posterior 1–2 cm of the bladder wall (when above the superior edge of the pubic symphysis); the posterior: the anterior rectal wall, or the mesorectal fascia (when above the superior edge of the pubic symphysis); the lateral: levator ani muscles, obturator internal, sacrorectogenitopubic fascia; and the inferior: 8–12 mm below the vesicourethral anastomosis. Prior to surgery, the prostate bed is the volume occupied by the prostate and seminal vesicles. After surgery, it consists of the inferior portion of the bladder and proximal urethra, which are joined by the vesiculourethral anastomosis.

X-ray attenuation coefficients

A value that characterizes how easily a material can be penetrated by X-rays, in m2/kg. Soft tissue often has the same attenuation coefficient as a tumour, so the tumour cannot readily be seen on a CT scan (which uses X-rays), unless the tumour is large (> several cm) and/or contrast material is used.

Bone scintigraphy

Commonly called a bone scan, or radiolabelled diphosphonate Technetium-99m (99mTc) scan, which evaluates for bone metastases.

Adjuvant radiation therapy

Post-prostatectomy radiation therapy prescribed to the prostate bed, with or without the pelvic lymph nodes, for adverse pathological features, including positive margins, extracapsular extension (pT3a) or seminal vesicle invasion (pT3b), with an undetectable PSA (historically <0.2 ng/ml).

Surrogate end point

An indicator used in place of a more traditional ‘hard’ end point (such as survival), which might be more difficult, or take too long to reach to identify if a treatment works in the context of a clinical trial.

Hard end point

End points including death or quality of life.

Image-guided radiation therapy

An integral component of radiotherapy systems that obtains imaging coordinates of a target and/or healthy tissues before or during treatment, detects and corrects for random and systematic errors that occur in patient setup and organ motion, and increases accuracy and precision. Multiple types of image-guided radiation therapy systems exist. 2D and 3D systems detect movements interfractionally (that is between two radiotherapy sessions), novel 4D systems detect movements intrafractionally (that is during one radiotherapy session).

Intensity-modulated radiotherapy

(IMRT). An advanced form of high-precision radiation that conforms the treatment volume to the shape of the tumour. The dose distribution created by IMRT is characterized by a concavity or invagination of the edge of the high doses away from the rectum, rather than a straight edge through the rectum as seen with 3D-CRT.

Pelvic lymph node radiotherapy

Also called whole-pelvis radiotherapy, this is a treatment that additionally includes the following nodal regions: common iliacs, presacral (S1–3), external or internal iliacs, obturators, typically to a dose of 45–50 Gy in 2-Gy fractions. The volume generally starts at L5–S1 (although some start at L4–L5) and ends inferiorly at the femoral heads and top of the pubic symphysis.

Gross tumour volume

(GTV). This is the demonstrable extent and location of the malignant growth; it consists of the macroscopic primary tumour, which for prostate cancer has historically been defined as the entire gland as well as any visualized extension into surrounding normal tissues, the regional lymph nodes, or distant metastases based on clinical data. For post-prostatectomy radiotherapy, there is typically not a measurable GTV.

Clinical target volume

(CTV). This volume encompasses the gross tumour volume (GTV) as well as areas at risk of microscopic or subclinical cancer involvement. The CTV can include a margin around the prostate GTV and adjacent regions at risk of having subclinical disease. For post-prostatectomy radiotherapy, the two most common CTVs are the prostate bed ± the pelvic lymph nodes. For post-prostatectomy radiotherapy, the CTV typically does not include the GTV, as the disease is microscopic and cannot be seen on imaging.

Planning target volume

(PTV). This volume encompasses the CTV plus an additional margin to account for patient movement, setup error and organ movement. For post-prostatectomy radiotherapy, this margin is typically 3–10 mm.

α to β ratio

The α to β ratio describes the shape of the cell survival curve and the gradient of the two components of cell kill, α and β. The α to β ratio is used to describe the dose response of radiation on different tissues. Prostate cancer cells have a relatively low α to β ratio of 1.5, implying that those cells are more sensitive to doses delivered in larger fraction sizes. In the radiobiological linear quadratic equation, the α to β ratio is the dose at which cell killing as a result of the linear and quadratic components is equal.

2 Gy equivalent dose

(EQD2). Radiotherapy can be given with conventional fractionation (1.8–2.0 Gy per day up to ~60–70 Gy), with hypofractionation (2.1–3.0 Gy per day, up to ~50 Gy), or ultrahypofractionation/stereotactic body radiation therapy (~5–12 Gy per day, up to ~30–50 Gy). However, the overall, or isoeffective, dose is thought to be similar with all approaches, and the EQD2 helps to provide a rough estimate of this total dose if it had been delivered in 2-Gy fractions.

Partin table

A mathematical formula that predicts pathological stage using retrospective prostatectomy data.

Microscopic cell kill

Killing of cells that are not visible on imaging, including micrometastatic disease in the bloodstream.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaorsky, N.G., Calais, J., Fanti, S. et al. Salvage therapy for prostate cancer after radical prostatectomy. Nat Rev Urol 18, 643–668 (2021). https://doi.org/10.1038/s41585-021-00497-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-021-00497-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer