Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular endless (74) knot

Abstract

Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(ii) or Fe(ii) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal–ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of interwoven 3 × 3 grids [Zn916](BF4)18 and [Fe916](BF4)18, macrocycle 3, Solomon link 4 and 74 knot 2.
Fig. 2: 1H NMR spectra (600 MHz (except (f)), 298 K (except (f))) of building block 1, metal-coordinated intermediate [Zn916](BF4)18 and ring-closed products 2–4.
Fig. 3: Structure of 74 knot coordination complex [Fe92](BF4)18, based on the X-ray crystal structure of [Fe916](BF4)18 for the 3 × 3 grid region with cyclized end groups modelled using Merck molecular force field.
Fig. 4: Mechanism of the formation of unknot macrocycle 3, Solomon link 4 and 74 knot 2 by connecting strand ends within a 3 × 3 interwoven grid, [M916](BF4)18 (M = Zn(ii), Fe(ii)).

Similar content being viewed by others

Data availability

Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) under CCDC number 2022144. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the paper and its Supplementary Information, or are available from the Mendeley data repository at https://doi.org/10.17632/g5b854f68w.1.

References

  1. Ashley, C. The Ashley Book of Knots (Doubleday, 1994).

  2. Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    Article  CAS  Google Scholar 

  3. Frank-Kamenetskii, M. D., Lukashin, A. V. & Vologodskii, A. V. Statistical mechanics and topology of polymer chains. Nature 258, 398–402 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Lim, N. C. H. & Jackson, S. E. Molecular knots in biology and chemistry. J. Phys. Condens. Matter 27, 354101 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Saitta, A. M., Soper, P. D., Wasserman, E. & Klein, M. L. Influence of a knot on the strength of a polymer strand. Nature 399, 46–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Katsonis, N. et al. Knotting a molecular strand can invert macroscopic effects of chirality. Nat. Chem. 12, 939–944 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Benyettou, F. et al. Potent and selective in vitro and in vivo antiproliferative effects of metal–organic trefoil knots. Chem. Sci. 10, 5884–5892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayme, J.-F. et al. Strong and selective anion binding within the central cavity of molecular knots and links. J. Am. Chem. Soc. 137, 9812–9815 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Bilbeisi, R. A. et al. [C–H···anion] interactions mediate the templation and anion binding properties of topologically non-trivial metal–organic structures in aqueous solutions. Chem. Sci. 7, 2524–2532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marcos, V. et al. Allosteric initiation and regulation of catalysis with a molecular knot. Science 352, 1555–1559 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Gil-Ramírez, G. et al. Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding pseudo-D3-symmetric trefoil knot. J. Am. Chem. Soc. 138, 13159–13162 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192 (1989).

    Article  Google Scholar 

  13. Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2, 218–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Barran, P. E. et al. Active metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. 50, 12280–12284 (2011).

    Article  CAS  Google Scholar 

  15. Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).

    Article  CAS  Google Scholar 

  16. Ayme, J.-F. et al. Lanthanide template synthesis of a molecular trefoil knot. J. Am. Chem. Soc. 136, 13142–13145 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, L. et al. A molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc. 140, 4982–4985 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Safarowsky, O., Nieger, M., Fröhlich, R. & Vögtle, F. A molecular knot with twelve amide groups—one-step synthesis, crystal structure, chirality. Angew. Chem. Int. Ed. 39, 1616–1618 (2000).

    Article  CAS  Google Scholar 

  23. Feigel, M., Ladberg, R., Engels, S., Herbst-Irmer, R. & Fröhlich, R. A trefoil knot made of amino acids and steroids. Angew. Chem. Int. Ed. 45, 5698–5702 (2006).

    Article  CAS  Google Scholar 

  24. Kim, D. H. et al. Coordination-driven self-assembly of a molecular knot comprising sixteen crossings. Angew. Chem. Int. Ed. 57, 5669–5673 (2018).

    Article  CAS  Google Scholar 

  25. Leigh, D. A., Lemonnier, J.-F. & Woltering, S. L. Comment on “Coordination-driven self-assembly of a molecular knot comprising sixteen crossings”. Angew. Chem. Int. Ed. 57, 12212–12214 (2018).

    Article  CAS  Google Scholar 

  26. Inomata, Y., Sawada, T. & Fujita, M. Metal–peptide torus knots from flexible short peptides. Chem 6, 294–303 (2020).

    Article  CAS  Google Scholar 

  27. Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Pantoş, G. D. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Ponnuswamy, N., Cougnon, F. B. L., Pantoş, G. D. & Sanders, J. K. M. Homochiral and meso figure eight knots and a Solomon link. J. Am. Chem. Soc. 136, 8243–8251 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Cougnon, F. B. L., Caprice, K., Pupier, M., Bauza, A. & Frontera, A. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 140, 12442–12450 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ayme, J.-F., Beves, J. E., Campbell, C. J. & Leigh, D. A. Template synthesis of molecular knots. Chem. Soc. Rev. 42, 1700–1712 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Sauvage, J.-P. From chemical topology to molecular machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).

    Article  CAS  Google Scholar 

  33. Marenda, M., Orlandini, E. & Micheletti, C. Discovering privileged topologies of molecular knots with self-assembling models. Nat. Commun. 9, 3051 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Alexander, J. W. & Briggs, G. B. On types of knotted curves. Ann. Math. 28, 562–586 (1926).

    Article  Google Scholar 

  35. Bucka, A. & Stasiak, A. Construction and electrophoretic migration of single-stranded DNA knots and catenanes. Nucleic Acids Res. 30, e24 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ruben, M., Rojo, J., Romero‐Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. Grid‐type metal ion architectures: functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 43, 3644–3662 (2004).

    Article  CAS  Google Scholar 

  37. Dawe, L. N., Abedin, T. S. M. & Thompson, L. K. Ligand directed self-assembly of polymetallic [n × n] grids: rational routes to large functional molecular subunits? Dalton Trans. 2008, 1661–1675 (2008).

    Article  Google Scholar 

  38. Beves, J. E., Danon, J. J., Leigh, D. A., Lemonnier, J.-F. & Vitorica-Yrezabal, I. J. A Solomon link through an interwoven molecular grid. Angew. Chem. Int. Ed 54, 7555–7559 (2015).

    Article  CAS  Google Scholar 

  39. Danon, J. J., Leigh, D. A., Pisano, S., Valero, A. & Vitorica-Yrezabal, I. J. A six-crossing doubly interlocked [2]catenane with twisted rings, and a molecular granny knot. Angew. Chem. Int. Ed. 57, 13833–13837 (2018).

    Article  CAS  Google Scholar 

  40. Bianchi, A., Bowman-James, K. & Garcia, E. Supramolecular Chemistry of Anions (Wiley-VCH, 1997).

  41. August, D. P. et al. Self-assembly of a layered 2D molecularly woven fabric. Nature https://doi.org/10.1038/s41586-020-3019-9 (2020).

  42. Garber, S. B., Kingsbury, J. S., Gray, B. L. & Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 122, 8168–8179 (2000).

    Article  CAS  Google Scholar 

  43. De Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–571 (1971).

    Article  Google Scholar 

  44. Kidd, T. J., Leigh, D. A. & Wilson, A. J. Organic ‘magic rings’—the hydrogen bond-directed assembly of catenanes under thermodynamic control. J. Am. Chem. Soc. 121, 1599–1600 (1999).

    Article  CAS  Google Scholar 

  45. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A Star of David catenane. Nat. Chem. 6, 978–982 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200202, 5–52 (2000).

    Article  Google Scholar 

  48. Cockriel, D. L. et al. The design and synthesis of pyrazine amide ligands suitable for the ‘tiles’ approach to molecular weaving with octahedral metal ions. Inorg. Chem. Commun. 11, 1–4 (2008).

    Article  CAS  Google Scholar 

  49. Wadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. Metal-templated synthesis of intertwined, functionalized strands as precursors to molecularly woven materials. RSC Adv. 6, 11430–11440 (2016).

    Article  CAS  Google Scholar 

  50. Wang, Z. et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewandowska, U. et al. A triaxial supramolecular weave. Nat. Chem. 9, 1068–1072 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. E. Beves and J.-F. Ayme (now University of New South Wales and BASF SE, respectively) for early ligand designs for this target topology; the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1), the European Research Council (ERC; Advanced Grant no. 786630), and East China Normal University for funding; the EPSRC National Mass Spectrometry Service Centre for high-resolution mass spectrometry; the Diamond Light Source for synchrotron beam time on I19 (XR029); networking contributions from the COST Action CA17139, EUTOPIA and Alberto Valero for the video of the rotating 74 knot structure. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

J.J.D., S.D.P.F., J.-F.L. and S.L.W. carried out the synthesis and characterization studies. G.F.S.W. solved the crystal structure. D.A.L. directed the research. All the authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures and characterization data. Supplementary discussion, Figs. 1–40, Tables 1–3, spectra 1–21 and references 1–21.

Supplementary Video 1

Movie of endless 74 knot based on the X-ray crystal structure of the 3 × 3 grid with Merck Mechanics Force Field (MMFF)-modelled cyclized end groups.

Supplementary Data

3 × 3 grid crystallographic data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leigh, D.A., Danon, J.J., Fielden, S.D.P. et al. A molecular endless (74) knot. Nat. Chem. 13, 117–122 (2021). https://doi.org/10.1038/s41557-020-00594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00594-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing