Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic interventions in the immune response to cancer

Abstract

At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic requirements for anticancer immunity.
Fig. 2: The TME supports the metabolism of tumour-facilitating cells.
Fig. 3: Attractive metabolic targets for combination therapies.
Fig. 4: Metabolically tuning chimeric antigen receptor T cell therapy.

Similar content being viewed by others

References

  1. Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166, 555–566 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aras, S. & Zaidi, M. R. TAMeless traitors: macrophages in cancer progression and metastasis. Br. J. Cancer 117, 1583–1591 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  6. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    Article  PubMed  Google Scholar 

  7. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Neill, L. A. J. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Assmann, N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18, 1197–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Badur, M. G. & Metallo, C. M. Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metab. Eng. 45, 95–108 (2018).This review highlights different approaches to understand metabolic fluxes in the context of cancer while also covering the fundamentals of cancer metabolism.

    Article  CAS  PubMed  Google Scholar 

  12. Andrejeva, G. & Rathmell, J. C. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26, 49–70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Grzes, K. M. et al. Control of amino acid transport coordinates metabolic reprogramming in T cell malignancy. Leukemia 31, 2771–2779 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Palm, W., Araki, J., King, B., DeMatteo, R. G. & Thompson, C. B. Critical role for PI3-kinase in regulating the use of proteins as an amino acid source. Proc. Natl Acad. Sci. USA 114, E8628–E8636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reznik, E. et al. A landscape of metabolic variation across tumor types. Cell Syst. 6, 301–313 (2018).This study integrates diverse metabolic data sets of clinical relevance and does a thorough analysis of the common and distinct metabolic features of human cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).This paper explores the metabolic profiles of human lung tumours, highlighting the differences encountered between tumours across patients but also within the same individual.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Porporato, P. E., Filigheddu, N., Pedro, J. M. B.-S., Kroemer, G. & Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res. 28, 265–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pavlova, N. N. et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 27, 428–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuo, C.-Y. & Ann, D. K. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun. 38, 47 (2018).

    Article  Google Scholar 

  25. Qu, Q., Zeng, F., Liu, X., Wang, Q. J. & Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 7, e2226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).This study describes the way in which breast cancer cells utilize ammonia to replenish their amino acid pools via glutamate dehydrogenase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corbet, C. et al. Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects. Nat. Commun. 9, 1208 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017). This paper describes the way in which human lung cancer tumours can utilize lactate in vivo as an alternative source of carbon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatto, F., Nookaew, I. & Nielsen, J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc. Natl Acad. Sci. USA 111, E866–E875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, J. et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat. Biotechnol. 31, 522–529 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Buescher, J. M. & Driggers, E. M. Integration of omics: more than the sum of its parts. Cancer Metab. 4, 4 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018). This paper describes the way in which human lung cancer tumours can utilize lactate in vivo as an alternative source of carbon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ho, P.-C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keating, S. E. et al. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Cong, J. et al. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 28, 243–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Song, M. et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 562, 423–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia, H. et al. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity. Sci. Immunol. 2, eaan4631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLOS Biol. 13, e1002202 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Araujo, L., Khim, P., Mkhikian, H., Mortales, C.-L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, 1239 (2017).

    Article  Google Scholar 

  51. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 482 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swamy, M. et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17, 712–720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ren, W. et al. Amino-acid transporters in T cell activation and differentiation. Cell Death Dis. 8, e2655 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malinarich, F. et al. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. J. Immunol. 194, 5174–5186 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Goffaux, G., Hammami, I. & Jolicoeur, M. A. Dynamic metabolic flux analysis of myeloid-derived suppressor cells confirms immunosuppression-related metabolic plasticity. Sci. Rep. 7, 9850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).This paper explores the metabolism of endothelial cells in the context of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, X. et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat. Commun. 9, 249 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Li, L. et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for cancer immunotherapy. Cell Metab. 29, 103–123 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Ladanyi, A. et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 37, 2285–2301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rozovski, U. et al. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells. Oncotarget 9, 21268–21280 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Huang, S. C.-C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, N. H. et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun. 8, 14374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frossi, B., De Carli, M., Piemonte, M. & Pucillo, C. Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Mol. Immunol. 45, 58–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Mills, E. L. & O’Neill, L. A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2016).

    Article  CAS  Google Scholar 

  70. Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23, 898–914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cormerais, Y. et al. The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5). J. Biol. Chem. 293, 2877–2887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, B., Li, J., Jang, C. & Arany, Z. Glutamine fuels proliferation but not migration of endothelial cells. EMBO J. 36, 2321–2333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eelen, G. et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature 561, 63–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, L. et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24, 685–700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Palmieri, E. M. et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 20, 1654–1666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, P.-S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).This study establishes the impact of changing the relative amounts of α-ketoglutarate in macrophages with regard to the phenotype of these cells.

    Article  CAS  PubMed  Google Scholar 

  82. Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katagiri, R. et al. Increased levels of branched-chain amino acid associated with increased risk of pancreatic cancer in a prospective case-control study of a large cohort. Gastroenterology 155, 1474–1482 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Albaugh, V. L., Pinzon-Guzman, C. & Barbul, A. Arginine-dual roles as an onconutrient and immunonutrient. J. Surg. Oncol. 115, 273–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Fletcher, M. et al. L-arginine depletion blunts antitumor T cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 101 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Munn, D. H. & Mellor, A. L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Mondanelli, G. et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 46, 233–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chuang, S.-C. et al. Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 23, 461–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Mullard, A. IDO takes a blow. Nat. Rev. Drug Discov. 17, 307–307 (2018).

    PubMed  Google Scholar 

  92. Sarrouilhe, D. & Mesnil, M. Serotonin and human cancer: a critical view. Biochimie. https://doi.org/10.1016/j.biochi.2018.06.016 (2018).

    Article  PubMed  Google Scholar 

  93. Wu, H., Denna, T. H., Storkersen, J. N. & Gerriets, V. A. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol. Res. 140, 100–114 (2018).

    Article  PubMed  CAS  Google Scholar 

  94. Wang, Q. et al. 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci. Rep. 6, 37336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, D.-X., Manchester, L. C., Qin, L. & Reiter, R. J. Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 17, 2124 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  96. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 13, 5 (2018).

    Google Scholar 

  97. Kumar, V. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654–668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gao, A., Sun, Y. & Peng, G. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim. Biophys. Acta Rev. Cancer 1869, 278–285 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Lyons, Y. A. et al. Macrophage depletion through colony stimulating factor 1 receptor pathway blockade overcomes adaptive resistance to anti-VEGF therapy. Oncotarget 8, 96496–96505 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hartmann, J., Schüßler-Lenz, M., Bondanza, A. & Buchholz, C. J. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 9, 1183–1197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vyas, M., Müller, R. & Pogge von Strandmann, E. Antigen loss variants: catching hold of escaping foes. Front. Immunol. 8, 991 (2017).

    Article  CAS  Google Scholar 

  106. Leslie, M. New cancer-fighting cells enter trials. Science 361, 1056–1057 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).This paper correlates the clinical outcome of CAR T cell therapy with the prevalence of a memory precursor phenotype at the time of leukapheresis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, eaat6753 (2018).This paper characterizes the phosphoproteome of CAR T cells with different co-stimulatory signalling domains.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 545, 423 (2018).

    Google Scholar 

  112. Hickman, T. et al. Adaptability of antibody-coupled T cell receptor (ACTR) engineered autologous T cells in combination with daratumumab over CAR-based approaches. Blood 130, 3189 (2017).

    Google Scholar 

  113. Raj, D. et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut. https://doi.org/10.1136/gutjnl-2018-316595 (2018).This study demonstrates the potential of using an antibody-based switch to control and target CAR T cells.

    Article  PubMed  Google Scholar 

  114. Yoon, D. H., Osborn, M. J., Tolar, J. & Kim, C. J. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int. J. Mol. Sci. 19, 340 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  115. Sengupta, S., Katz, S. C., Sengupta, S. & Sampath, P. Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett. 433, 131–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).This paper highlights a novel approach for drug delivery.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Krenciute, G. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 5, 571–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prestipino, A. et al. Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci. Transl Med. 10, eaam7729 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zhang, Y. et al. Enhancing CD8+T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patsoukis, N. et al. PD-1 alters T cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 269 (2015).

    Article  CAS  Google Scholar 

  121. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Geltink, R. I. K. et al. Mitochondrial priming by CD28. Cell 171, 385–390 (2017).

    Article  CAS  Google Scholar 

  128. Afzal, M. Z., Mercado, R. R. & Shirai, K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. J. Immunother. Cancer 6, 64 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Eikawa, S. et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl Acad. Sci. USA 112, 1809–1814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, X., Romero, I. L., Litchfield, L. M., Lengyel, E. & Locasale, J. W. Metformin targets central carbon metabolism and reveals mitochondrial requirements in human cancers. Cell Metab. 24, 728–739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Cha, J.-H. et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).The results presented in studies 134, 135 and 136 highlight the impact that the commensal microbiota has on the clinical outcomes of ICB therapy.

    Article  CAS  PubMed  Google Scholar 

  137. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Rodriguez, J., Hiel, S. & Delzenne, N. M. Metformin: old friend, new ways of action-implication of the gut microbiome? Curr. Opin. Clin. Nutr. Metab. Care 21, 294–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Zheng, X. et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J. Clin. Invest. 128, 2104–2115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. O’Sullivan, D. & Pearce, E. L. Targeting T cell metabolism for therapy. Trends Immunol. 36, 71–80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).This paper demonstrates how a strong T cell response can impact systemic metabolite levels.

    Article  CAS  PubMed  Google Scholar 

  143. He, X., Lin, H., Yuan, L. & Li, B. Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther. 18, 94–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Berger, S. L. & Sassone-Corsi, P. Metabolic signaling to chromatin. Cold Spring Harb. Perspect. Biol. 8, a019463 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weber, D. D., Aminazdeh-Gohari, S. & Kofler, B. Ketogenic diet in cancer therapy. Aging 10, 164–165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Malvi, P. et al. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance. Cancer Metab. 4, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. O’Flanagan, C. H., Smith, L. A., McDonell, S. B. & Hursting, S. D. When less may be more: calorie restriction and response to cancer therapy. BMC Med. 15, 106 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Raffaghello, L. et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl Acad. Sci. USA 105, 8215–8220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Farazi, M. et al. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging. Cancer Immunol. Immunother. 63, 615–626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rubio-Patiño, C. et al. Low-protein diet induces IRE1α-dependent anticancer immunosurveillance. Cell Metab. 27, 828–842 (2018).

    Article  PubMed  CAS  Google Scholar 

  154. Baek, A. E. et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun. 8, 864 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 372, 2521 (2018).

    Google Scholar 

  156. Fabbiano, S. et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 24, 434–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Messaoudi, I. et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl Acad. Sci. USA 103, 19448–19453 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sukumar, M., Kishton, R. J. & Restifo, N. P. Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 46, 14–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lawless, S. J. et al. Glucose represses dendritic cell-induced T cell responses. Nat. Commun. 8, 15620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Thwe, P. M. & Amiel, E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett. 412, 236–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Balmer, M. L. et al. Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, 95103 (2017).

    Article  PubMed  Google Scholar 

  167. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ecker, C. et al. Differential reliance on lipid metabolism as a salvage pathway underlies functional differences of T cell subsets in poor nutrient environments. Cell Rep. 23, 741–755 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. D. Buck and members of the Pearce laboratories for discussion and critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (NIH) (AI110481 to E.J.P.; AI091965 and CA158823 to E.L.P.) and the Max Planck Society.

Reviewer information

Nature Reviews Immunology thanks M. Haigis and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the discussion of content and to the writing, review and editing of the manuscript. D.O. and D.E.S. were involved in researching data for the article.

Corresponding authors

Correspondence to Edward J. Pearce or Erika L. Pearce.

Ethics declarations

Competing interests

E.L.P. is a scientific advisory board member of Immunomet and a founder of Rheos Medicines. E.J.P. is a founder of Rheos Medicines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Warburg metabolism

Diversion of glucose metabolism towards lactate production in the presence of oxygen.

Oxidative phosphorylation

(OXPHOS). An electron transport chain-mediated process in which the energy resulting from the oxidation of carbon compounds is used to produce ATP.

Electron transport chain

Protein complexes spanning the inner mitochondrial membrane, which couple redox reactions to the establishment of a proton gradient used to generate ATP.

Pentose phosphate pathway

A metabolic pathway that generates NADPH and intermediates for nucleotide synthesis.

Leukapheresis

A laboratory procedure to extract the cellular component from blood.

Phosphoproteome

A subset of the proteins in a cell that either contain a phosphate group or can be phosphorylated.

Metformin

A type of biguanide that can induce AMPK activity and can disrupt the electron transport chain by reducing the activity of complex I.

Biguanides

A class of compounds that are used for the treatment of type 2 diabetes, as they regulate glucose metabolism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Sullivan, D., Sanin, D.E., Pearce, E.J. et al. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 19, 324–335 (2019). https://doi.org/10.1038/s41577-019-0140-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0140-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer