Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of kidney stone disease

Abstract

Kidney stone disease (nephrolithiasis) is a common problem that can be associated with alterations in urinary solute composition including hypercalciuria. Studies suggest that the prevalence of monogenic kidney stone disorders, including renal tubular acidosis with deafness, Bartter syndrome, primary hyperoxaluria and cystinuria, in patients attending kidney stone clinics is 15%. However, for the majority of individuals, nephrolithiasis has a multifactorial aetiology involving genetic and environmental factors. Nonetheless, the genetic influence on stone formation in these idiopathic stone formers remains considerable and twin studies estimate a heritability of >45% for nephrolithiasis and >50% for hypercalciuria. The contribution of polygenic influences from multiple loci have been investigated by genome-wide association and candidate gene studies, which indicate that a number of genes and molecular pathways contribute to the risk of stone formation. Genetic approaches, studying both monogenic and polygenic factors in nephrolithiasis, have revealed that the following have important roles in the aetiology of kidney stones: transporters and channels; ions, protons and amino acids; the calcium-sensing receptor (a G protein-coupled receptor) signalling pathway; and the metabolic pathways for vitamin D, oxalate, cysteine, purines and uric acid. These advances, which have increased our understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of targeted therapies for precision medicine approaches in patients with nephrolithiasis.

Key points

  • Studies suggest that the prevalence of monogenic kidney stone disease in patients attending kidney stone clinics is 15%.

  • For patients without a monogenic cause of nephrolithiasis, the heritability of kidney stone disease and hypercalciuria is >45% and >50%, respectively.

  • Increased understanding of the genetic factors contributing to kidney stone disease helps to improve our understanding of the pathogenesis of this condition.

  • Identification of a monogenic cause of kidney stone disease facilitates optimal stone prevention management and identification of associated phenotypes.

  • Advances in our understanding of the polygenic factors contributing to risk of kidney stone disease might enable a precision medicine approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiographic appearance of kidney stone disease in three patients.
Fig. 2: Monogenic disorders of nephrolithiasis resulting in renal tubular dysfunction.
Fig. 3: Vitamin D metabolism.
Fig. 4: Schematic representation of purine metabolism.

Similar content being viewed by others

References

  1. Scales, C. D. et al. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Heers, H. & Turney, B. W. Trends in urological stone disease: a 5-year update of hospital episode statistics. BJU Int. 118, 785–789 (2016).

    PubMed  Google Scholar 

  3. Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    PubMed  Google Scholar 

  4. Pearle, M. S. et al. Medical management of kidney stones: AUA Guideline. J. Urol. 192, 316–324 (2014).

    PubMed  Google Scholar 

  5. Gambaro, G. et al. The risk of chronic kidney disease associated with urolithiasis and its urological treatments: a review. J. Urol. 198, 268–273 (2017).

    PubMed  Google Scholar 

  6. Goldfarb, D. S. A woman with recurrent calcium phosphate kidney stones. Clin. J. Am. Soc. Nephrol. 7, 1172–1178 (2012).

    CAS  PubMed  Google Scholar 

  7. Ma, Q. et al. Uric acid stones, clinical manifestations and therapeutic considerations. Postgrad. Med. J. 94, 458–462 (2018).

    PubMed  Google Scholar 

  8. Coe, F. L. Kidney stone disease. J. Clin. Invest. 115, 2598–2608 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas, K., Wong, K., Withington, J., Bultitude, M. & Doherty, A. Cystinuria—a urologist’s perspective. Nat. Rev. Urol. 11, 270–277 (2014).

    CAS  PubMed  Google Scholar 

  10. Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519–533 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daudon, M. et al. Composition of renal stones currently observed in non-industrialized countries. Prog. Urol. 14, 1151–1161 (2004).

    PubMed  Google Scholar 

  12. Frick, K. K. Molecular mechanisms of primary hypercalciuria. J. Am. Soc. Nephrol. 14, 1082–1095 (2003).

    PubMed  Google Scholar 

  13. Resnick, M., Pridgen, D. B. & Goodman, H. O. Genetic predisposition to formation of calcium oxalate renal calculi. N. Engl. J. Med. 278, 1313–1318 (1968).

    CAS  PubMed  Google Scholar 

  14. Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. Family history and risk of kidney stones. J. Am. Soc. Nephrol. 8, 1568–1573 (1997).

    CAS  PubMed  Google Scholar 

  15. Goldfarb, D. S., Avery, A. R., Beara-Lasic, L., Duncan, G. E. & Goldberg, J. A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int. Rep. 4, 535–540 (2019).

    PubMed  Google Scholar 

  16. Goldfarb, D. S., Fischer, M. E., Keich, Y. & Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int. 67, 1053–1061 (2005).

    PubMed  Google Scholar 

  17. Hunter, D. J. et al. Genetic contribution to renal function and electrolyte balance: a twin study. Clin. Sci. 103, 259–265 (2002).

    CAS  PubMed  Google Scholar 

  18. Hemminki, K. et al. Familial risks in urolithiasis in the population of Sweden. BJU Int. 121, 479–485 (2018).

    PubMed  Google Scholar 

  19. Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2015).

    CAS  PubMed  Google Scholar 

  20. Daga, A. et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int. 93, 204–213 (2018).

    CAS  PubMed  Google Scholar 

  21. Braun, D. A. et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 11, 664–672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Türk, C. et al. Guidelines on urolithiasis. Eur. Urol. https://uroweb.org/guideline/urolithiasis (2020).

  23. Pearle, M. S. et al. Medical management of kidney stones. AUA https://www.auanet.org/guidelines/kidney-stones-medical-mangement-guideline (2019).

  24. NICE Guideline. Renal and ureteric stones: assessment and management. BJU Int. 123, 220–232 (2019).

    Google Scholar 

  25. Borghi, L. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155, 839–843 (1996).

    CAS  PubMed  Google Scholar 

  26. Turney, B. W. et al. Diet and risk of kidney stones in the Oxford cohort of the European prospective investigation into cancer and nutrition (EPIC). Eur. J. Epidemiol. 29, 363–369 (2014).

    CAS  PubMed  Google Scholar 

  27. Siener, R., Ebert, D., Nicolay, C. & Hesse, A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int. 63, 1037–1043 (2003).

    PubMed  Google Scholar 

  28. Fink, H. A. et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur. Urol. 56, 72–80 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Ticinesi, A., Nouvenne, A., Maalouf, N. M., Borghi, L. & Meschi, T. Salt and nephrolithiasis. Nephrol. Dial. Transpl. 31, 39–45 (2016).

    CAS  Google Scholar 

  30. Bergsland, K. J., Worcester, E. M. & Coe, F. L. Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. Am. J. Physiol. Renal Physiol. 305, F592–F599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Curhan, G. C., Willett, W. C., Speizer, F. E. & Stampfer, M. J. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 59, 2290–2298 (2001).

    CAS  PubMed  Google Scholar 

  32. Reed, B. Y., Heller, H. J., Gitomer, W. L. & Pak, C. Y. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J. Clin. Endocrinol. Metab. 84, 3907–3913 (1999).

    CAS  PubMed  Google Scholar 

  33. Scott, P. et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J. Am. Soc. Nephrol. 10, 1007–1013 (1999).

    CAS  PubMed  Google Scholar 

  34. Reed, B. Y. et al. Identification and characterization of a gene with base substitutions associated with the absorptive hypercalciuria phenotype and low spinal bone density. J. Clin. Endocrinol. Metab. 87, 1476–1485 (2002).

    CAS  PubMed  Google Scholar 

  35. Wolf, M. T. F. et al. Mapping a new suggestive gene locus for autosomal dominant nephrolithiasis to chromosome 9q33.2–q34.2 by total genome search for linkage. Nephrol. Dial. Transpl. 20, 909–914 (2005).

    CAS  Google Scholar 

  36. Pearce, S. H. et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N. Engl. J. Med. 335, 1115–1122 (1996).

    CAS  PubMed  Google Scholar 

  37. Nesbit, M. A. et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 368, 2476–2486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gorvin, C. M. et al. Calcium-sensing receptor residues with loss- and gain-of-function mutations are located in regions of conformational change and cause signalling bias. Hum. Mol. Genet. 27, 3720–3733 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gorvin, C. M. et al. Gα11 mutation in mice causes hypocalcemia rectifiable by calcilytic therapy. JCI Insight 2, e91103 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Hannan, F. M., Babinsky, V. N. & Thakker, R. V. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol. 57, R127–R142 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamamoto, M., Akatsu, T., Nagase, T. & Ogata, E. Comparison of hypocalcemic hypercalciuria between patients with idiopathic hypoparathyroidism and those with gain-of-function mutations in the calcium-sensing receptor: is it possible to differentiate the two disorders? J. Clin. Endocrinol. Metab. 85, 4583–4591 (2000).

    CAS  PubMed  Google Scholar 

  42. Vargas-Poussou, R. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J. Am. Soc. Nephrol. 13, 2259–2266 (2002).

    CAS  PubMed  Google Scholar 

  43. Watanabe, S. et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet 360, 692–694 (2002).

    CAS  PubMed  Google Scholar 

  44. BogdanoviĆ, R. et al. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency. Pediatr. Nephrol. 25, 2363–2368 (2010).

    PubMed  Google Scholar 

  45. Janssen, A. G. H. et al. Disease-causing dysfunctions of Barttin in Bartter syndrome type IV. J. Am. Soc. Nephrol. 20, 145–153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Seyberth, H. W. & Schlingmann, K. P. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr. Nephrol. 26, 1789–1802 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996).

    CAS  PubMed  Google Scholar 

  48. Hoopes, R. R. Jr et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 76, 260–267 (2005).

    CAS  PubMed  Google Scholar 

  49. Edvardsson, V. O. et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr. Nephrol. 28, 1923–1942 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Devuyst, O. & Thakker, R. V. Dent’s disease. Orphanet J. Rare Dis. 5, 28 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Wrong, O. M., Norden, A. G. & Feest, T. G. Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87, 473–493 (1994).

    CAS  PubMed  Google Scholar 

  52. Gorvin, C. M. et al. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients. Proc. Natl Acad. Sci. USA 110, 7014–7019 (2013).

    CAS  PubMed  Google Scholar 

  53. Mehta, Z. B., Pietka, G. & Lowe, M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic 15, 471–487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lowe, C. U., Terrey, M. & MacLachlan, E. A. Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. AMA Am. J. Dis. Child. 83, 164–184 (1952).

    CAS  PubMed  Google Scholar 

  55. Bockenhauer, D. et al. Renal phenotype in Lowe syndrome: a selective proximal tubular dysfunction. Clin. J. Am. Soc. Nephrol. 3, 1430–1436 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. Hichri, H. et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum. Mutat. 32, 379–388 (2011).

    CAS  PubMed  Google Scholar 

  57. Leahey, A. M., Charnas, L. R. & Nussbaum, R. L. Nonsense mutations in the OCRL-1 gene in patients with the oculocerebrorenal syndrome of Lowe. Hum. Mol. Genet. 2, 461–463 (1993).

    CAS  PubMed  Google Scholar 

  58. Blanchard, A. et al. Effect of hydrochlorothiazide on urinary calcium excretion in Dent disease: an uncontrolled trial. Am. J. Kidney Dis. 52, 1084–1095 (2008).

    CAS  PubMed  Google Scholar 

  59. Alonso-Varela, M. et al. Distal renal tubular acidosis. Clinical manifestations in patients with different underlying gene mutations. Pediatr. Nephrol. 33, 1–7 (2018).

    Google Scholar 

  60. Fuster, D. G. & Moe, O. W. Incomplete distal renal tubular acidosis and kidney stones. Adv. Chronic Kidney Dis. 25, 366–374 (2018).

    PubMed  Google Scholar 

  61. Domrongkitchaiporn, S. et al. Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis. Kidney Int. 62, 2160–2166 (2002).

    CAS  PubMed  Google Scholar 

  62. Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 94, 409–418 (2018).

    CAS  PubMed  Google Scholar 

  63. Enerbäck, S. et al. Acidosis and deafness in patients with recessive mutations in FOXI1. J. Am. Soc. Nephrol. 29, 1041–1048 (2018).

    PubMed  Google Scholar 

  64. Agroyannis, B., Koutsikos, D., Tzanatos-Exarchou, H. & Yatzidis, H. Erythrocytosis in type I renal tubular acidosis with nephrocalcinosis. Nephrol. Dial. Transpl. 7, 365–366 (1992).

    CAS  Google Scholar 

  65. Wrong, O., Bruce, L. J., Unwin, R. J., Toye, A. M. & Tanner, M. J. A. Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int. 62, 10–19 (2002).

    CAS  PubMed  Google Scholar 

  66. Vasuvattakul, S. et al. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int. 56, 1674–1682 (1999).

    CAS  PubMed  Google Scholar 

  67. Tanphaichitr, V. S. et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J. Clin. Invest. 102, 2173–2179 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).

    CAS  PubMed  Google Scholar 

  69. Karet, F. E. et al. Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am. J. Hum. Genet. 65, 1656–1665 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dhayat, N. A. et al. The vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J. Am. Soc. Nephrol. 27, 1544–1554 (2016).

    CAS  PubMed  Google Scholar 

  71. Sayer, J. A. Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol. 28, 748–759 (2017).

    CAS  PubMed  Google Scholar 

  72. Canales, B. K. et al. Polymorphisms in renal ammonia metabolism genes correlate with 24-hour urine pH. Kidney Int. Rep. 2, 1111–1121 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Vargas-Poussou, R. et al. Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J. Am. Soc. Nephrol. 17, 1437–1443 (2006).

    CAS  PubMed  Google Scholar 

  74. Besouw, M. T. P. et al. Clinical and molecular aspects of distal renal tubular acidosis in children. Pediatr. Nephrol. 32, 1–10 (2017).

    Google Scholar 

  75. Palazzo, V. et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney Int. 91, 1243–1255 (2017).

    CAS  PubMed  Google Scholar 

  76. Tieder, M. et al. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312, 611–617 (1985).

    CAS  PubMed  Google Scholar 

  77. Chi, Y. et al. A compound heterozygous mutation in SLC34A3 causes hereditary hypophosphatemic rickets with hypercalciuria in a Chinese patient. Bone 59, 114–121 (2014).

    CAS  PubMed  Google Scholar 

  78. Dasgupta, D. et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 25, 2366–2375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Acar, S. et al. Clinical and genetic characteristics of 15 families with hereditary hypophosphatemia: novel Mutations in PHEX and SLC34A3. PLoS One 13, e0193388 17 (2018).

    Google Scholar 

  80. Braithwaite, V., Pettifor, J. M. & Prentice, A. Novel SLC34A3 mutation causing hereditary hypophosphataemic rickets with hypercalciuria in a Gambian family. Bone 53, 216–220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prié, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).

    PubMed  Google Scholar 

  82. Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).

    CAS  PubMed  Google Scholar 

  83. Schlingmann, K. P. et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2 A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 27, 604–614 (2016).

    CAS  PubMed  Google Scholar 

  84. Oddsson, A. et al. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6, 7975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Urabe, Y. et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible loci at 5q35.3, 7p14.3, and 13q14.1. PLoS Genet. 8, e1002541 7 (2012).

    Google Scholar 

  86. Karim, Z. et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N. Engl. J. Med. 359, 1128–1135 (2008).

    CAS  PubMed  Google Scholar 

  87. Gisler, S. M. et al. Interaction of the type IIa Na/Pi cotransporter with PDZ proteins. J. Biol. Chem. 276, 9206–9213 (2001).

    CAS  PubMed  Google Scholar 

  88. Shenolikar, S., Voltz, J. W., Minkoff, C. M., Wade, J. B. & Weinman, E. J. Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc. Natl Acad. Sci. USA 99, 11470–11475 (2002).

    CAS  PubMed  Google Scholar 

  89. Bergwitz, C. et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78, 179–192 (2005).

    PubMed  PubMed Central  Google Scholar 

  90. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+resorption. Science 285, 103–106 (1999).

    CAS  PubMed  Google Scholar 

  91. Weber, S. et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J. Am. Soc. Nephrol. 12, 1872–1881 (2001).

    CAS  PubMed  Google Scholar 

  92. Claverie-Martin, F. Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis: clinical and molecular characteristics. Clin. Kidney J. 8, 656–664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yamaguti, P. M. et al. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J. Med. Genet. 54, 26–37 (2017).

    CAS  PubMed  Google Scholar 

  94. Müller, D. et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am. J. Hum. Genet. 73, 1293–1301 (2003).

    PubMed  PubMed Central  Google Scholar 

  95. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    CAS  Google Scholar 

  96. Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

    CAS  PubMed  Google Scholar 

  97. Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 1–11 (2008).

    Google Scholar 

  98. Peng, S., Gan, G., Rao, V. S., Adelman, R. A. & Rizzolo, L. J. Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 53, 5016–5028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schlingmann, K. P. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 365, 410–421 (2011).

    CAS  PubMed  Google Scholar 

  100. Molin, A. et al. CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait. J. Clin. Endocrinol. Metab. 100, E1343–E1352 (2015).

    CAS  PubMed  Google Scholar 

  101. Sayers, J. et al. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin. Kidney J. 8, 453–455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Peiris, E. D. & Wusirika, R. A case report of compound heterozygous CYP24A1 mutations leading to nephrolithiasis successfully treated with ketoconazole. Case Rep. Nephrol. Dial. 7, 167–171 (2018).

    Google Scholar 

  103. Hureaux, M. et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr. Nephrol. 33, 1–7 (2018).

    Google Scholar 

  104. Hopp, K. et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J. Am. Soc. Nephrol. 26, 2559–2570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lorenz, E. C., Michet, C. J., Milliner, D. S. & Lieske, J. C. Update on oxalate crystal disease. Curr. Rheumatol. Rep. 15, 1264–1269 (2013).

    Google Scholar 

  106. Pey, A. L., Salido, E. & Sanchez-Ruiz, J. M. Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids 41, 1233–1245 (2010).

    PubMed  Google Scholar 

  107. Dhondup, T., Lorenz, E. C., Milliner, D. S. & Lieske, J. C. Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am. J. Transplant. 18, 253–257 (2018).

    CAS  PubMed  Google Scholar 

  108. Cramer, S. D., Ferree, P. M., Lin, K., Milliner, D. S. & Holmes, R. P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 8, 2063–2069 (1999).

    CAS  PubMed  Google Scholar 

  109. Lam, C. W. et al. Novel mutation in the GRHPR gene in a Chinese patient with primary hyperoxaluria type 2 requiring renal transplantation from a living related donor. Am. J. Kidney Dis. 38, 1307–1310 (2001).

    CAS  PubMed  Google Scholar 

  110. Riedel, T. J. et al. Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 6, e26021 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Monico, C. G. et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin. J. Am. Soc. Nephrol. 6, 2289–2295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gee, H. Y. et al. Mutations in SLC26A1 cause nephrolithiasis. Am. J. Hum. Genet. 98, 1228–1234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dawson, P. A. et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J. Clin. Invest. 120, 706–712 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cochat, P. et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transpl. 27, 1729–1736 (2012).

    CAS  Google Scholar 

  115. Biyani, C. S. & Cartledge, J. J. Cystinuria — diagnosis and management. EAU-EBU Update Ser. 4, 175–183 (2006).

    Google Scholar 

  116. Strologo, L. D. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J. Am. Soc. Nephrol. 13, 2547–2553 (2002).

    Google Scholar 

  117. Font-Llitjos, M. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 42, 58–68 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Torres, R. J. & Puig, J. G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis. 2, 48 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. Nyhan, W. L., James, J. A., Teberg, A. J., Sweetman, L. & Nelson, L. G. A new disorder of purine metabolism with behavioral manifestations. J. Pediatrics 74, 20–27 (1969).

    CAS  Google Scholar 

  120. Simmonds, H. A., Webster, D. R., Wilson, J. & Lingham, S. An X-linked syndrome characterised by hyperuricaemia, deafness, and neurodevelopmental abnormalities. Lancet 320, 68–70 (1982).

    Google Scholar 

  121. Zoref-Shani, E., Feinstein, S., Frishberg, Y., Bromberg, Y. & Sperling, O. Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations. Biochim. Biophys. Acta 1500, 197–203 (2000).

    CAS  PubMed  Google Scholar 

  122. Zoref, E., Vries, A. D. & Sperling, O. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. J. Clin. Invest. 56, 1093–1099 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Roessler, B. J. et al. Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene. J. Biol. Chem. 268, 26476–26481 (1993).

    CAS  PubMed  Google Scholar 

  124. Becker, M. A., Raivio, K. O., Bakay, B., Adams, W. B. & Nyhan, W. L. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions. J. Clin. Invest. 65, 109–120 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsuo, H. et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 83, 744–751 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ichida, K. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15, 164–173 (2004).

    PubMed  Google Scholar 

  127. Tasic, V. et al. Clinical and functional characterization of URAT1 variants. PLoS One 6, e28641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dinour, D. et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 21, 64–72 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ng, N., Kaur, A. & Shenoy, M. Recurrent kidney stones in a child with Lesch-Nyhan syndrome: answers. Pediatr. Nephrol. 34, 425–427 (2019).

    PubMed  Google Scholar 

  130. Bhasin, B. et al. Hereditary renal hypouricemia: a new role for allopurinol? Am. J. Med. 127, e3–e4 (2014).

    PubMed  Google Scholar 

  131. Ichida, K. et al. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Invest. 99, 2391–2397 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ichida, K., Matsumura, T., Sakuma, R., Hosoya, T. & Nishino, T. Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem. Biophys. Res. Commun. 282, 1194–1200 (2001).

    CAS  PubMed  Google Scholar 

  133. Nagae, A. et al. Asymptomatic hereditary xanthinuria: a case report. Jpn. J. Med. 29, 287–291 (1990).

    CAS  PubMed  Google Scholar 

  134. Fildes, R. D. Hereditary xanthinuria with severe urolithiasis occurring in infancy as renal tubular acidosis and hypercalciuria. J. Pediatrics 115, 277–280 (1989).

    CAS  Google Scholar 

  135. Reiss, J. & Hahnewald, R. Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum. Mutat. 32, 10–18 (2010).

    Google Scholar 

  136. Zaki, M. S. et al. Molybdenum cofactor and isolated sulphite oxidase deficiencies: clinical and molecular spectrum among Egyptian patients. Eur. J. Paediatr. Neuro. 20, 714–722 (2016).

    Google Scholar 

  137. Runolfsdottir, H. L., Palsson, R., Agustsdottir, I. M., Indridason, O. S. & Edvardsson, V. O. Kidney disease in adenine phosphoribosyltransferase deficiency. Am. J. Kidney Dis. 67, 431–438 (2016).

    CAS  PubMed  Google Scholar 

  138. Bollée, G. et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J. Am. Soc. Nephrol. 21, 679–688 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Kamatani, N., Terai, C., Kuroshima, S., Nishioka, K. & Mikanagi, K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum. Genet. 75, 163–168 (1987).

    CAS  PubMed  Google Scholar 

  140. Edvardsson, V. O. et al. Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with adenine phosphoribosyltransferase deficiency (APRTd): a clinical trial. Eur. J. Intern. Med. 48, 75–79 (2018).

    CAS  PubMed  Google Scholar 

  141. Jaffer, A., Joyce, A., Koenig, P. & Biyani, C. S. Adenine phosphoribosyltransferase deficiency: a rare cause of recurrent urolithiasis. J. Endourol. Case Rep. 3, 49–51 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Thorleifsson, G. et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat. Genet. 41, 926–930 (2009).

    CAS  PubMed  Google Scholar 

  143. Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Tanikawa, C. et al. Novel risk loci identified in a genome-wide association study of urolithiasis in a Japanese population. J. Am. Soc. Nephrol. 30, 855–864 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones — role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Benonisdottir, S. et al. Sequence variants associating with urinary biomarkers. Hum. Mol. Genet. 28, 1199–1211 (2019).

    CAS  PubMed  Google Scholar 

  147. Toka, H. R., Genovese, G., Mount, D. B., Pollak, M. R. & Curhan, G. C. Frequency of rare allelic variation in candidate genes among individuals with low and high urinary calcium excretion. PLoS One 8, e71885–e71888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ure, M. E. et al. A variant in a cis-regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones. Hum. Mutat. 38, 649–657 (2017).

    CAS  PubMed  Google Scholar 

  149. Dimke, H. et al. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion. Am. J. Physiol. Renal Physiol. 304, F761–F769 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Vezzoli, G. et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 71, 1155–1162 (2007).

    CAS  PubMed  Google Scholar 

  151. Vezzoli, G. Influence of calcium-sensing receptor gene on urinary calcium excretion in stone-forming patients. J. Am. Soc. Nephrol. 13, 2517–2523 (2002).

    CAS  PubMed  Google Scholar 

  152. Liu, K. et al. The G allele of CaSR R990G polymorphism increases susceptibility to urolithiasis and hypercalciuria: evidences from a comprehensive meta-analysis. Biomed. Res. Int. 2015, 958207–958212 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Petrucci, M. et al. Evaluation of the calcium-sensing receptor gene in idiopathic hypercalciuria and calcium nephrolithiasis. Kidney Int. 58, 38–42 (2000).

    CAS  PubMed  Google Scholar 

  154. Li, X. et al. Common variants in ALPL gene contribute to the risk of kidney stones in the Han Chinese population. Genet. Test. Mol. Biomarkers 22, 187–192 (2018).

    CAS  PubMed  Google Scholar 

  155. Whyte, M. P. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 12, 233–246 (2016).

    CAS  PubMed  Google Scholar 

  156. Hoenderop, J. G. J. et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 112, 1906–1914 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Loh, N. Y. et al. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5. PLoS One 8, e55412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, L., Holmes, R. P. & Peng, J.-B. The L530R variation associated with recurrent kidney stones impairs the structure and function of TRPV5. Biochem. Biophys. Res. Commun. 492, 362–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Renkema, K. Y. et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol. Dial. Transpl. 24, 1919–1924 (2009).

    CAS  Google Scholar 

  160. Khaleel, A. et al. A single nucleotide polymorphism (rs4236480) in TRPV5 calcium channel gene is associated with stone multiplicity in calcium nephrolithiasis patients. Mediators Inflamm. 2015, 375427 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Lu, X. et al. Urolithiasis/endourology in silico screening and molecular dynamic study of nonsynonymous single nucleotide polymorphisms associated with kidney stones in the SLC26A6 gene. J. Urol. 196, 118–123 (2016).

    CAS  PubMed  Google Scholar 

  162. Suzuki, Y. et al. Gain-of-function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation. Hum. Mol. Genet. 17, 1613–1618 (2008).

    CAS  PubMed  Google Scholar 

  163. Jiang, Z. et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat. Genet. 38, 474–478 (2006).

    CAS  PubMed  Google Scholar 

  164. Jiang, H. et al. High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ 6, e5192 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Liu, C.-C. et al. Association of vitamin D receptor (Fok-I) polymorphism with the clinical presentation of calcium urolithiasis. BJU Int. 99, 1534–1538 (2007).

    CAS  PubMed  Google Scholar 

  166. Chen, W. C., Chen, H. Y., Hsu, C. D., Wu, J. Y. & Tsai, F. J. No association of vitamin D receptor gene BsmI polymorphisms with calcium oxalate stone formation. Mol. Urol. 5, 7–10 (2001).

    CAS  PubMed  Google Scholar 

  167. Gunes, S. et al. Vitamin D receptor gene polymorphisms in patients with urolithiasis. Urol. Res. 34, 47–52 (2006).

    CAS  PubMed  Google Scholar 

  168. Moyano, M. J. et al. Alterations in bone mineral metabolism in patients with calcium kidney stone disease and polymorphism of vitamin D receptor. Preliminary results. Nefrologia 27, 694–703 (2007).

    CAS  PubMed  Google Scholar 

  169. Bid, H. K., Chaudhary, H. & Mittal, R. D. Association of vitamin-D and calcitonin receptor gene polymorphism in paediatric nephrolithiasis. Pediatr. Nephrol. 20, 773–776 (2005).

    PubMed  Google Scholar 

  170. Jackman, S. V. et al. Familial calcium stone disease: TaqI polymorphism and the vitamin D receptor. J. Endourol. 13, 313–316 (1999).

    CAS  PubMed  Google Scholar 

  171. Ruggiero, M., Pacini, S., Amato, M., Aterini, S. & Chiarugi, V. Association between vitamin D receptor gene polymorphism and nephrolithiasis. Miner. Electrolyte Metab. 25, 185–190 (1999).

    CAS  PubMed  Google Scholar 

  172. Liu, W. et al. Vitamin D receptor gene (VDR) polymorphisms and the urolithiasis risk: an updated meta-analysis based on 20 case–control studies. Urolithiasis 42, 45–52 (2013).

    CAS  PubMed  Google Scholar 

  173. Zhang, P., Nie, W. & Jiang, H. Effects of vitamin D receptor polymorphisms on urolithiasis risk: a meta-analysis. BMC Med. Genet. 14, 104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lin, H. et al. HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were associated with kidney stone disease in Chinese males not females. Gene 653, 51–56 (2018).

    CAS  PubMed  Google Scholar 

  175. Liu, C.-C. et al. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin. Chim. Acta 411, 739–743 (2010).

    CAS  PubMed  Google Scholar 

  176. Safarinejad, M. R., Shafiei, N. & Safarinejad, S. Association between polymorphisms in osteopontin gene (SPP1) and first episode calcium oxalate urolithiasis. Urolithiasis 41, 303–313 (2013).

    CAS  PubMed  Google Scholar 

  177. Gao, B. et al. A polymorphism of matrix Gla protein gene is associated with kidney stones. J. Urol. 177, 2361–2365 (2007).

    CAS  PubMed  Google Scholar 

  178. Lu, X. et al. A polymorphism of matrix Gla protein gene is associated with kidney stone in the Chinese Han population. Gene 511, 127–130 (2012).

    CAS  PubMed  Google Scholar 

  179. Goiko, M. et al. Peptides of matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. PLoS One 8, e80344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, D. et al. Meta-analysis of the urokinase gene 3′-UTR T/C polymorphism and susceptibility to urolithiasis. Biomed. Rep. 1, 369–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Langman, C. B. A rational approach to the use of sophisticated genetic analyses of pediatric stone disease. Kidney Int. 93, 15–18 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by National Institute for Health Research (NIHR) Academic Clinical Lectureship (S.A.H.); Kidney Research UK project grant (RP_030_20180306; S.A.H.); Wellcome Trust Investigator Award (R.V.T.); NIHR Oxford Biomedical Research Centre Programme (R.V.T.); and NIHR Senior Investigator Award (R.V.T.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rajesh V. Thakker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks G. Gambaro, T. Yasui and J. Sayer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

gnomAD browser: https://gnomad.broadinstitute.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howles, S.A., Thakker, R.V. Genetics of kidney stone disease. Nat Rev Urol 17, 407–421 (2020). https://doi.org/10.1038/s41585-020-0332-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0332-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing