Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cells and the skin: from protective immunity to inflammatory skin disorders

Abstract

Skin is our primary interface with the environment, and T cells are crucial for orchestrating host immune responses against pathogenic microorganisms at this site. Effective skin immune responses require the generation of antigen-specific effector T cells, which home to cutaneous sites of injury or infection. Long-lasting immunity against future immune challenges is mediated by memory T cells. Among the memory T cells found in skin are both recirculating cells that transit between skin and blood and tissue-resident memory T (TRM) cells, which remain in skin for long periods of time and mediate durable protective immunity. These TRM cells also appear to drive many inflammatory diseases of skin. Here, we consider how a better understanding of cutaneous T cell responses can aid in the development of effective new therapies for immune-mediated cutaneous diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of the skin contributes to its immune functions.
Fig. 2: The generation and maintenance of cutaneous tissue-resident memory T cells.
Fig. 3: T cells in the pathogenesis of psoriasis.

Similar content being viewed by others

References

  1. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl Med. 7, 269rv261 (2015).

    Article  CAS  Google Scholar 

  4. Pasparakis, M., Haase, I. & Nestle, F. O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Kupper, T. S. & Fuhlbrigge, R. C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4, 211–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elias, P. M. The skin barrier as an innate immune element. Semin. Immunopathol. 29, 3–14 (2007).

    Article  PubMed  Google Scholar 

  7. Burgeson, R. E. & Christiano, A. M. The dermal-epidermal junction. Curr. Opin. Cell Biol. 9, 651–658 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Robert, C. & Kupper, T. S. Inflammatory skin diseases, T cells, and immune surveillance. N. Engl. J. Med. 341, 1817–1828 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kupper, T. S. The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses. J. Invest. Dermatol. 94, 146S–150S (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Kashem, S. W., Haniffa, M. & Kaplan, D. H. Antigen-presenting cells in the skin. Annu. Rev. Immunol. 35, 469–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl Med. 7, 279ra239 (2015).

    Article  CAS  Google Scholar 

  16. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med. 21, 647–653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, R., Bevan, M. J., Reiner, S. L. & Fearon, D. T. The precursors of memory: models and controversies. Nat. Rev. Immunol. 9, 662–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carbone, F. R. Tissue-resident memory T cells and fixed immune surveillance in nonlymphoid organs. J. Immunol. 195, 17–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Mackay, C. R. et al. Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur. J. Immunol. 22, 887–895 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Mackay, C. R., Andrew, D. P., Briskin, M., Ringler, D. J. & Butcher, E. C. Phenotype, and migration properties of three major subsets of tissue homing T cells in sheep. Eur. J. Immunol. 26, 2433–2439 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L., Fuhlbrigge, R. C., Karibian, K., Tian, T. & Kupper, T. S. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25, 511–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8, 685–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sigmundsdottir, H. & Butcher, E. C. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 8, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. McCully, M. L. et al. Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamanaka, K. et al. Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression. J. Allergy Clin. Immunol. 121, 148–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Bergsbaken, T. & Bevan, M. J. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat. Immunol. 16, 406–414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harris, T. H. et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T cell help. Nature 462, 510–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, L. et al. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell-mediated immunity. Nat. Med. 16, 224–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Campbell, J. J., Clark, R. A., Watanabe, R. & Kupper, T. S. Sezary syndrome and mycosis fungoides arise from distinct T cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767–771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campbell, J. J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Gehad, A. et al. A primary role for human central memory cells in tissue immunosurveillance. Blood Adv. 2, 292–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Beura, L. K. et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clark, R. A. et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci. Transl Med. 4, 117ra117 (2012).

    Article  CAS  Google Scholar 

  48. Bromley, S. K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A. D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Hogan, R. J. et al. Protection from respiratory virus infections can be mediated by antigen-specific CD4+ T cells that persist in the lungs. J. Exp. Med. 193, 981–986 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Marshall, D. R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 98, 6313–6318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teraki, Y. & Shiohara, T. IFN-gamma-producing effector CD8+ T cells and IL-10-producing regulatory CD4+ T cells in fixed drug eruption. J. Allergy Clin. Immunol. 112, 609–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark, R. A. & Kupper, T. S. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109, 194–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thome, J. J. & Farber, D. L. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol. 36, 428–435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salerno, E. P., Olson, W. C., McSkimming, C., Shea, S. & Slingluff, C. L. Jr. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int. J. Cancer 134, 563–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Djenidi, F. et al. CD8+ CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Li, J., Olshansky, M., Carbone, F. R. & Ma, J. Z. Transcriptional analysis of T cells resident in human skin. PLOS ONE 11, e0148351 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mackay, L. K. et al. T-Box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, S. L., Mackay, L. K. & Gebhardt, T. Distinct recirculation potential of CD69+ CD103 and CD103+ thymic memory CD8+ T cells. Immunol. Cell Biol. 94, 975–980 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borges da Silva, H. et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature 559, 264–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Richmond, J. M. et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci. Transl Med. 10, eaam7710 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Van Braeckel-Budimir, N., Varga, S. M., Badovinac, V. P. & Harty, J. T. Repeated antigen exposure extends the durability of influenza-specific lung-resident memory CD8+ T cells and heterosubtypic immunity. Cell Rep. 24, 3374–3382 (2018).

    Article  PubMed  CAS  Google Scholar 

  71. Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L. & Ahmed, R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176, 2079–2083 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Park, C. O. et al. Staged development of long-lived T cell receptor alphabeta TH17 resident memory T cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142, 647–662 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gebhardt, T. et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477, 216–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Collins, N. et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation. Nat. Commun. 7, 11514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Himmelein, S. et al. Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae 2, 5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wakim, L. M., Jones, C. M., Gebhardt, T., Preston, C. M. & Carbone, F. R. CD8+ T cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol. Cell Biol. 86, 666–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, J. et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204, 595–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu, J. et al. Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu, J. et al. Persistence of HIV-1 receptor-positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med. 15, 886–892 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Thome, J. J. et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159, 814–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. MacLeod, A. S. et al. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J. Clin. Invest. 123, 4364–4374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jameson, J. M., Cauvi, G., Witherden, D. A. & Havran, W. L. A keratinocyte-responsive gamma delta TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172, 3573–3579 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Jiang, X., Campbell, J. J. & Kupper, T. S. Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc. Natl Acad. Sci. USA 107, 7443–7448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jameson, J. et al. A role for skin gammadelta T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Adams, E. J., Gu, S. & Luoma, A. M. Human gamma delta T cells: evolution and ligand recognition. Cell. Immunol. 296, 31–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cruz, M. S., Diamond, A., Russell, A. & Jameson, J. M. Human alphabeta and gammadelta T cells in skin immunity and disease. Front. Immunol. 9, 1304 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jiang, X. et al. Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration during primary contact hypersensitivity. PLOS ONE 12, e0169397 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Strid, J. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9, 146–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai, Y. et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Komori, H. K. et al. Cutting edge: dendritic epidermal gammadelta T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. J. Immunol. 188, 2972–2976 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van Rhijn, I., Godfrey, D. I., Rossjohn, J. & Moody, D. B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Dougan, S. K., Kaser, A. & Blumberg, R. S. CD1 expression on antigen-presenting cells. Curr. Top. Microbiol. Immunol. 314, 113–141 (2007).

    CAS  PubMed  Google Scholar 

  105. Mori, L., Lepore, M. & De Libero, G. The immunology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 34, 479–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Godfrey, D. I., Stankovic, S. & Baxter, A. G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. de Jong, A. et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15, 177–185 (2014).

    Article  PubMed  CAS  Google Scholar 

  108. de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nat. Immunol. 11, 1102–1109 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bourgeois, E. A. et al. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212, 149–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheung, K. L. et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med. 213, 2399–2412 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, J. H. et al. CD1a on Langerhans cells controls inflammatory skin disease. Nat. Immunol. 17, 1159–1166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vincent, M. S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. Cell Host Microbe 21, 467–477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Naik, S. et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Saoudi, A., Seddon, B., Heath, V., Fowell, D. & Mason, D. The physiological role of regulatory T cells in the prevention of autoimmunity: the function of the thymus in the generation of the regulatory T cell subset. Immunol. Rev. 149, 195–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 182, 190–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Seneschal, J., Clark, R. A., Gehad, A., Baecher-Allan, C. M. & Kupper, T. S. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hirahara, K. et al. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol. 177, 4488–4494 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van der Veeken, J. et al. Memory of inflammation in regulatory T cells. Cell 166, 977–990 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Miragaia, R. J. et al. Single cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504 (2017).

    Article  CAS  Google Scholar 

  128. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sather, B. D. et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204, 1335–1347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nosbaum, A. et al. Cutting edge: regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196, 2010–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Lowes, M. A., Bowcock, A. M. & Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 445, 866–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Trembath, R. C. et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum. Mol. Genet. 6, 813–820 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Gottlieb, S. L. et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1, 442–447 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Zheng, Y. et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Griffiths, C. E. et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362, 118–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Lowes, M. A. et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest. Dermatol. 128, 1207–1211 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Papp, K. et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br. J. Dermatol. 173, 930–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Papp, K. A. et al. Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. J. Invest. Dermatol. 132, 2466–2469 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Sofen, H. et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J. Allergy Clin. Immunol. 133, 1032–1040 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nair, R. P. et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Invest. Dermatol. 128, 1653–1661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zaba, L. C., Krueger, J. G. & Lowes, M. A. Resident and “inflammatory” dendritic cells in human skin. J. Invest. Dermatol. 129, 302–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Fobelo Lozano, M. J., Serrano Gimenez, R. & Castro Fernandez, M. Emergence of inflammatory bowel disease during treatment with secukinumab. J. Crohns Colitis 12, 1131–1133 (2018).

    PubMed  Google Scholar 

  156. Matos, T. R. et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J. Clin. Invest. 127, 4031–4041 (2017).

    Article  Google Scholar 

  157. Deckers, I. A. et al. Investigating international time trends in the incidence and prevalence of atopic eczema 1990–2010: a systematic review of epidemiological studies. PLOS ONE 7, e39803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guttman-Yassky, E., Nograles, K. E. & Krueger, J. G. Contrasting pathogenesis of atopic dermatitis and psoriasis — part II: immune cell subsets and therapeutic concepts. J. Allergy Clin. Immunol. 127, 1420–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Guttman-Yassky, E., Nograles, K. E. & Krueger, J. G. Contrasting pathogenesis of atopic dermatitis and psoriasis — part I: clinical and pathologic concepts. J. Allergy Clin. Immunol. 127, 1110–1118 (2011).

    Article  PubMed  Google Scholar 

  160. Brunner, P. M., Guttman-Yassky, E. & Leung, D. Y. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J. Allergy Clin. Immunol. 139, S65–S76 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Czarnowicki, T., Krueger, J. G. & Guttman-Yassky, E. Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J. Allergy Clin. Immunol. Pract. 2, 371–379 (2014).

    Article  PubMed  Google Scholar 

  162. McGrath, J. A. & Uitto, J. The filaggrin story: novel insights into skin-barrier function and disease. Trends Mol. Med. 14, 20–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Esaki, H. et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J. Allergy Clin. Immunol. 138, 1639–1651 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Jarrett, R. et al. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase. Sci. Transl Med. 8, 325ra318 (2016).

    Article  CAS  Google Scholar 

  165. Gutowska-Owsiak, D., Schaupp, A. L., Salimi, M., Taylor, S. & Ogg, G. S. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br. J. Dermatol. 165, 492–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Islam, S. A. et al. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat. Immunol. 12, 167–177 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Cevikbas, F. et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133, 448–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Simpson, E. L. et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 375, 2335–2348 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Guttman-Yassky, E. et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: a randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 78, 872–881 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mirzoyev, S. A., Schrum, A. G., Davis, M. D. P. & Torgerson, R. R. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990–2009. J. Invest. Dermatol. 134, 1141–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Strazzulla, L. C. et al. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J. Am. Acad. Dermatol. 78, 1–12 (2018).

    Article  PubMed  Google Scholar 

  175. Pratt, C. H. et al. Alopecia areata. Nat. Rev. Dis. Primers 3, 17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Betz, R. C. et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat. Commun. 6, 5966 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Gilhar, A., Etzioni, A. & Paus, R. Alopecia areata. N. Engl. J. Med. 366, 1515–1525 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Dressel, D. et al. Alopecia areata but not androgenetic alopecia is characterized by a restricted and oligoclonal T cell receptor-repertoire among infiltrating lymphocytes. J. Cutan. Pathol. 24, 164–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. Gilhar, A., Ullmann, Y., Berkutzki, T., Assy, B. & Kalish, R. S. Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. J. Clin. Invest. 101, 62–67 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Xing, L. et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu, L. Y., Craiglow, B. G., Dai, F. & King, B. A. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J. Am. Acad. Dermatol. 76, 22–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Strazzulla, L. C. et al. Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J. Am. Acad. Dermatol. 78, 15–24 (2018).

    Article  PubMed  Google Scholar 

  184. Taieb, A. & Picardo, M. Clinical practice. Vitiligo. N. Engl. J. Med. 360, 160–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Frisoli, M. L. & Harris, J. E. Vitiligo: mechanistic insights lead to novel treatments. J. Allergy Clin. Immunol. 140, 654–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. van den Boorn, J. G. et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J. Invest. Dermatol. 129, 2220–2232 (2009).

    Article  PubMed  CAS  Google Scholar 

  187. Jimbow, K., Chen, H., Park, J. S. & Thomas, P. D. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br. J. Dermatol. 144, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Speeckaert, R. et al. Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 32, 1089–1098 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Rashighi, M. et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci. Transl Med. 6, 223ra223 (2014).

    Article  CAS  Google Scholar 

  190. Harris, J. E. et al. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8+ T cell accumulation in the skin. J. Invest. Dermatol. 132, 1869–1876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Richmond, J. M. et al. CXCR3 depleting antibodies prevent and reverse vitiligo in mice. J. Invest. Dermatol. 137, 982–985 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Harris, J. E. et al. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J. Am. Acad. Dermatol. 74, 370–371 (2016).

    Article  PubMed  Google Scholar 

  193. Craiglow, B. G. & King, B. A. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 151, 1110–1112 (2015).

    Article  PubMed  Google Scholar 

  194. Rothstein, B. et al. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J. Am. Acad. Dermatol. 76, 1054–1060 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Blauvelt, A. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J. Am. Acad. Dermatol. 76, 405–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Papp, K. A. et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N. Engl. J. Med. 376, 1551–1560 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Timerman, D. et al. Novel application of high-dose rate brachytherapy for severe, recalcitrant palmoplantar pustulosis. Clin. Exp. Dermatol. 41, 498–501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.W.H. is supported by a Career Development Award from the Dermatology Foundation. T.S.K. is supported by grants R01 AR065807, R01 AI127654 and R01 CA210372 from the US National Institutes of Health.

Reviewer information

Nature Reviews Immunology thanks P. Scott and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data, discussion of content and to the writing, review and editing of this article.

Corresponding author

Correspondence to Thomas S. Kupper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, A.W., Kupper, T.S. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat Rev Immunol 19, 490–502 (2019). https://doi.org/10.1038/s41577-019-0162-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0162-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing