Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution

Abstract

The electrochemical reduction of CO2 and H2 evolution from water can be used to store renewable energy that is produced intermittently. Scale-up of these reactions requires the discovery of effective electrocatalysts, but the electrocatalyst search space is too large to explore exhaustively. Here we present a theoretical, fully automated screening method that uses a combination of machine learning and optimization to guide density functional theory calculations, which are then used to predict electrocatalyst performance. We demonstrate the feasibility of this method by screening various alloys of 31 different elements, and thereby perform a screening that encompasses 50% of the d-block elements and 33% of the p-block elements. This method has thus far identified 131 candidate surfaces across 54 alloys for CO2 reduction and 258 surfaces across 102 alloys for H2 evolution. We use qualitative analyses to prioritize the top candidates for experimental validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for automating theoretical materials discovery.
Fig. 2: Fingerprint of coordination site.
Fig. 3: Identification of surfaces with near-optimal ∆ECO values for CO2RR.
Fig. 4: CO2 reduction activity map for bimetallics.
Fig. 5: Active site motif analysis.
Fig. 6: Analysis of results for the HER performance.

Similar content being viewed by others

Data availability

The code and data used to produce the figures in this article are available in the GASpy manuscript repository at https://github.com/ulissigroup/GASpy_manuscript. A snapshot of our adsorption energy data are included with this article in JSON format. A ‘mongo.py’ and a ‘how_to_read_gasdb_json.ipynb’ Jupyter notebook are also included to illustrate how to convert the JSON data into atoms objects as per the ASE49. Up-to-date versions of the JSON-formatted data are also available from the corresponding author on reasonable request. An up-to-date visualization of the data can also be viewed at http://sm1.cheme.cmu.edu/volcano.

References

  1. World Energy Outlook 2017 Technical Report (International Energy Agency, 2017); http://www.iea.org/weo2017/.

  2. Annual Energy Outlook 2017 with Projections to 2050 Technical Report (US Energy Information Administration, 2017); https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf

  3. Mackay, D. J. C. Sustainable Energy—without the Hot Air Vol. 2 (UIT Cambridge Ltd, Cambridge, 2009).

  4. Edenhofer, O., Madruga, R. P. & Sokona, Y. Renewable Energy Sources and Climate Change Mitigation (Cambridge Univ. Press, 2012).

  5. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  7. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 104, 15729–15735 (2007).

    Article  Google Scholar 

  8. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  9. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (John Wiley & Sons, Inc., Hoboken, 2015).

    Book  Google Scholar 

  12. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, H. A., Shi, C., Lausche, A. C., Peterson, A. A. & Nørskov, J. K. Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 18, 9194–9201 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    Article  CAS  Google Scholar 

  15. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51, 272–274 (2012).

    Article  CAS  Google Scholar 

  16. Scheffler, M. & Draxl, C. The NOMAD Repository (Computer Center of the Max-Planck Society, Garching, 2014).

  17. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  18. Montoya, J. H. & Persson, K. A. A high-throughput framework for determining adsorption energies on solid surfaces. Comp. Mater. 3, 14 (2017).

    Google Scholar 

  19. Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comp. Pract. E. 22, 685–701 (2010).

    Google Scholar 

  20. Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 1–7 (2014).

    Article  CAS  Google Scholar 

  21. Ward, L. et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 1–12 (2017).

    Article  Google Scholar 

  22. Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    Article  CAS  Google Scholar 

  23. Peterson, A. A. Acceleration of saddle-point searches with machine learning. J. Chem. Phys. 145, 074106 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Boes, J. R. & Kitchin, J. R. Modeling segregation on AuPd(111) surfaces with density functional theory and Monte Carlo simulations. J. Phys. Chem. C 121, 3479–3487 (2017).

    Article  CAS  Google Scholar 

  25. Han, Z. H. & Zhang, K. S. in Real-World Applications of Genetic Algorithms (ed. Roeva, O.) Ch. 17 (InTech, London, 2012).

  26. Settles, B. Active Learning (Williston, Morgan & Claypool, 2012).

  27. Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Warmuth, M. K. et al. Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci. 43, 667–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. Machine learning of molecular properties: Locality and active learning. J. Chem. Phys. 148, 1–9 (2018).

    Article  CAS  Google Scholar 

  30. Jain, A. et al. The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 1–11 (2013).

    Article  CAS  Google Scholar 

  31. Lukasz, M. Mendeleev—a Python resource for properties of chemical elements, ions and isotopes (2014); https://bitbucket.org/lukaszmentel/mendeleev

  32. Davie, S. J., Di Pasquale, N. & Popelier, P. L. Kriging atomic properties with a variable number of inputs. J. Chem. Phys 145, 1–11 (2016).

    Article  CAS  Google Scholar 

  33. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in materials science. Comp. Mater. 25, 28–33 (2018).

    Google Scholar 

  35. Olson, R. S. et al. in Applications of Evolutionary Computation (eds Squillero, G. & Burelli, P.) 123–137 (Lecture Notes in Computer Science, Vol. 9597, Springer International Publishing, Porto, 2016).

  36. Hyndman, R. J. & Athanasopoulos, G. Forecasting: Principles and Practice (2014); http://otexts.com/fpp

  37. Morimoto, M. et al. Electrodeposited Cu–Sn alloy for electrochemical CO2 reduction to CO/HCOO. Electrocatalysis 9, 323–332 (2018).

    Article  CAS  Google Scholar 

  38. Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    Article  CAS  Google Scholar 

  39. Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C2–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016).

    Article  CAS  Google Scholar 

  40. Maaten, L. V. D. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 1–21 (2014).

    Google Scholar 

  41. Cherepanov, P. V., Ashokkumar, M. & Andreeva, D. V. Ultrasound assisted formation of Al–Ni electrocatalyst for hydrogen evolution. Ultrason. Sonochem. 23, 142–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Yamauchi, M., Abe, R., Tsukuda, T., Kato, K. & Takata, M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J. Am. Chem. Soc. 133, 1150–1152 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Liao, H. et al. A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv. Energ. Mater. 7, 1–7 (2017).

    Google Scholar 

  44. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Mat. 29, 273002 (2017).

    Article  Google Scholar 

  50. Hammer, B., Hansen, L. B. & Nørskov, J. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  51. Bernhardsson, E., Freider, E. & Rouhani, A. Luigi, a Python package that builds complex pipelines of batch jobs (bithub, 2012); https://github.com/spotify/luigi

  52. Mathew, K. et al. Atomate: a high-level interface to generate, execute, and analyze computational materials science workflows. Comp. Mater. Sci. 139, 140–152 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. We thank K. Chan for helpful discussions about descriptor targets, as well as P. de Luna and E. T. Sargent for helpful discussions about analysis.

Author information

Authors and Affiliations

Authors

Contributions

K.T. and Z.W.U. contributed to the scientific workflow software and DFT calculations. K.T. and Z.W.U. made the regression models and analysis. K.T. performed the clustering analysis. K.T. and Z.W.U. wrote the manuscript. Z.W.U. conceived the idea.

Corresponding author

Correspondence to Zachary W. Ulissi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1 & 2, Supplementary Notes 1–3, Supplementary Methods & Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K., Ulissi, Z.W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal 1, 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0142-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing