Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis

Abstract

LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca2+ signalling pathway that depends on intracellular Ca2+ sources from endoplasmic reticulum, endoplasmic reticulum–phagosome communication, Ca2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca2+–CaM signalling in aspergillosis. Finally, we demonstrate that Ca2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca2+–CaM signalling to inhibit LAP. These findings reveal the important role of Ca2+–CaM signalling in antifungal immunity and identify an immunological function of Ca2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ca2+–CaM signalling regulates A. fumigatus LAP.
Fig. 2: CaM phagosome recruitment is dependent on endoplasmic reticulum Ca2+ sources.
Fig. 3: Ca2+ sequestration inside the phagosome abrogates CaM recruitment and inhibits LAP.
Fig. 4: A. fumigatus cell wall melanin inhibits peri-phagosomal Ca2+ accumulation to the phagosome.
Fig. 5: Ca2+ sequestration by melanin inside the phagosome blocks CaM dependent activation of LAP.
Fig. 6: CALM1 gene polymorphism CC is associated with increased risk for invasive aspergillosis in a high-risk group of haematopoietic stem-cell recipients.

Similar content being viewed by others

References

  1. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell. Biol. 17, 893–906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kyrmizi, I. et al. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signalling. J. Immunol. 191, 1287–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. de Luca, A. et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc. Natl Acad. Sci. USA 111, 3526–3531 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oikonomou, V. et al. Noncanonical fungal autophagy inhibits inflammation in response to IFN-gamma via DAPK1. Cell Host Microbe 20, 744–757 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nunes, P. & Demaurex, N. The role of calcium signalling in phagocytosis. J. Leukoc. Biol. 88, 57–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25, 193–205 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. Lennartz, M. R., Lefkowith, J. B., Bromley, F. A. & Brown, E. J. Immunoglobulin G-mediated phagocytosis activates a calcium-independent, phosphatidylethanolamine-specific phospholipase. J. Leukoc. Biol. 54, 389–398 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Ganley, I. G., Wong, P. M., Gammoh, N. & Jiang, X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42, 731–743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malik, Z. A., Denning, G. M. & Kusner, D. J. Inhibition of Ca2+ signalling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191, 287–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vergne, I., Chua, J. & Deretic, V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198, 653–659 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zheng, L., Nibbering, P. H. & van Furth, R. Cytosolic free calcium is essential for immunoglobulin G-stimulated intracellular killing of Staphylococcus aureus by human monocytes. Infect. Immun. 60, 3092–3097 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Subramanian Vignesh, K., Landero Figueroa, J. A., Porollo, A., Caruso, J. A. & Deepe, G. S. Jr. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39, 697–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Mototani, H. et al. A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum. Mol. Genet. 14, 1009–1017 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Cunha, C. et al. IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J. Allergy Clin. Immunol. S0091-6749(17)30515-8 [pii]10.1016/j.jaci.2017.0 (2017).

  20. Matte, C. et al. Leishmania major promastigotes evade LC3-associated phagocytosis through the action of GP63. PLoS Pathog. 12, e1005690 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boonhok, R. et al. LAP-like process as an immune mechanism downstream of IFN-gamma in control of the human malaria Plasmodium vivax liver stage. Proc. Natl Acad. Sci. USA 113, E3519–3528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, X. et al. Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathog. 12, e1005363 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Malik, Z. A., Iyer, S. S. & Kusner, D. J. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J. Immunol. 166, 3392–3401 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Sawyer, D. W., Sullivan, J. A. & Mandell, G. L. Intracellular free calcium localization in neutrophils during phagocytosis. Science 230, 663–666 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Stendahl, O. et al. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 265, 1439–1441 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Steinckwich, N., Schenten, V., Melchior, C., Brechard, S. & Tschirhart, E. J. An essential role of STIM1, Orai1, and S100A8-A9 proteins for Ca2+ signalling and FcgammaR-mediated phagosomal oxidative activity. J. Immunol. 186, 2182–2191 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Worth, R. G., Kim, M. K., Kindzelskii, A. L., Petty, H. R. & Schreiber, A. D. Signal sequence within Fc gamma RIIA controls calcium wave propagation patterns: apparent role in phagolysosome fusion. Proc. Natl Acad. Sci. USA 100, 4533–4538 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nunes, P. et al. STIM1 juxtaposes ER to phagosomes, generating Ca2+ hotspots that boost phagocytosis. Curr. Biol. 22, 1990–1997 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Guido, D., Demaurex, N. & Nunes, P. Junctate boosts phagocytosis by recruiting endoplasmic reticulum Ca2+ stores near phagosomes. J. Cell Sci. 128, 4074–4082 (2015).

    CAS  PubMed  Google Scholar 

  30. Campbell-Valois, F. X. et al. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol. Cell Proteom. 11, 016378 (2012).

    Article  CAS  Google Scholar 

  31. Kelly, E. K., Wang, L. & Ivashkiv, L. B. Calcium-activated pathways and oxidative burst mediate zymosan-induced signalling and IL-10 production in human macrophages. J. Immunol. 184, 5545–5552 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Cathcart, M. K. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 23–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, C. S. et al. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 11, 264–276 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Arnaudeau, S., Kelley, W. L., Walsh, J. V. Jr. & Demaurex, N. Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J. Biol. Chem. 276, 29430–29439 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Riazanski, V. et al. TRPC6 channel translocation into phagosomal membrane augments phagosomal function. Proc. Natl Acad. Sci. USA 112, E6486–6495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaeth, M. et al. Ca2+ signalling but not store-operated Ca2+ entry is required for the function of macrophages and dendritic cells. J. Immunol. 195, 1202–1217 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zelante, T. et al. CD103+ dendritic cells control Th17 cell function in the lung. Cell Rep. 12, 1789–1801 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y. & Simon, J. D. Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res. 18, 42–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. d’Ischia, M. et al. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 28, 520–544 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hong, L. & Simon, J. D. Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. J. Phys. Chem. B 111, 7938–7947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drager, U. C. Calcium binding in pigmented and albino eyes. Proc. Natl Acad. Sci. USA 82, 6716–6720 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bush, W. D. & Simon, J. D. Quantification of Ca2+ binding to melanin supports the hypothesis that melanosomes serve a functional role in regulating calcium homeostasis. Pigment Cell Res. 20, 134–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hoogduijn, M. J. et al. Melanin has a role in Ca2+ homeostasis in human melanocytes. Pigment Cell Res. 16, 127–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Biesemeier, A., Schraermeyer, U. & Eibl, O. Quantitative chemical analysis of ocular melanosomes in stained and non-stained tissues. Micron 42, 461–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Meyer zum Gottesberge, A. M. Physiology and pathophysiology of inner ear melanin. Pigment Cell Res. 1, 238–249 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Zecca, L. et al. The neuromelanin of human substantia nigra and its interaction with metals. J. Neural Transm. (Vienna) 109, 663–672 (2002).

    Article  CAS  Google Scholar 

  48. Malik, Z. A. et al. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signalling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170, 2811–2815 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Vergne, I., Chua, J. & Deretic, V. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic 4, 600–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Y. P., Raman, R., Sharma, Y. & Chang, Y. F. Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J. Biol. Chem. 283, 25140–25149 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Sebghati, T. S., Engle, J. T. & Goldman, W. E. Intracellular parasitism by Histoplasma capsulatum: fungal virulence and calcium dependence. Science 290, 1368–1372 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Takematsu, H. & Seiji, M. Effect of macrophages on elimination of dermal melanin from the dermis. Arch. Dermatol. Res 276, 96–98 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Xiang, W., Song, X., Peng, J., Xu, A. & Bi, Z. Real-time in vivo confocal laser scanning microscopy of melanin-containing cells: a promising diagnostic intervention. Microsc. Res. Tech. 78, 1121–1127 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nakamura, S. et al. Melanin-laden macrophages in cerebrospinal fluid in Vogt-Koyanagi-Harada syndrome. Arch. Ophthalmol. 114, 1184–1188 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Polak, M. E. et al. Mechanisms of local immunosuppression in cutaneous melanoma. Br. J. Cancer 96, 1879–1887 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsai, H. F., Chang, Y. C., Washburn, R. G., Wheeler, M. H. & Kwon-Chung, K. J. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J. Bacteriol. 180, 3031–3038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oliveira, C., Costa-Pinto, A. R., Reis, R. L., Martins, A. & Neves, N. M. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules 15, 2196–2205 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Wasylnka, J. A. & Moore, M. M. Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively chargeddcarbohydrates on the conidial sdrface. Infect. Immun. 68, 3377–3384 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Pauw, B. et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 46, 1813–1821 (2008).

    Article  PubMed  Google Scholar 

  60. Scrucca, L., Santucci, A. & Aversa, F. Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant. 40, 381–387 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Tavernarakis for helpful suggestions and G. Garinis and A. Eliopoulos for providing antibodies and reagents. The authors are grateful to G. Chalepakis, E. Papadogiorgaki and other members of the electron microscopy facility at UOC.

I.K.’s work is supported by the Onassis Foundation under the ‘Special Grant and Support Program for Scholars’ Association Members’ (Grant no. R ZM 003-1/2016-2017); G.C. was supported by grants from the Greek State Scholarship Foundation (I.K.Y.), the Hellenic General Secretariat for Research and Technology-Excellence program (ARISTEIA) and a Research Grant from Institut Mérieux; J.P.L. was supported by European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 260338 ALLFUN and ANR-10-BLAN-1309 HYDROPHOBIN, and the Association Vaincre La Mucoviscidose (RF20140501052/1/1/141); H.F. and N.M.N. were supported by the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e Tecnologia (FCT) project SPARTAN (PTDC/CTM-BIO/4388/2014), funded through the PIDDAC Program. A.C. and C.C. were supported by NORTE 2020, under the Portugal 2020 Partnership Agreement, through the ERDF (NORTE-01-0145-FEDER-000013), and by FCT (IF/00735/2014 and SFRH/BPD/96176/2013). G.S.D. and J.L.F. were supported by NIH grant AI-106269. K.J.K-C is supported by the Division of Intramural Research (DIR), NIAID, NIH.

Author information

Authors and Affiliations

Authors

Contributions

I.K. designed, performed and analysed most of the experiments in this study, established protocols for Ca2+ imaging and phagosome processing and participated in the writing of the manuscript. A.C. and C.C. performed experiments on analysis of CaLM1 SNPs in clinical samples. J.F.L. and A.C.Jr. provided patient samples and clinical information. L.F.J.A. performed ICP-MS measurements of Ca2+ content of phagosomes; P.Z. and N.P. performed Ion Chromatography Analysis of Ca2+ binding affinity of A. fumigatus conidia; T.A., G.S., D.P.K., G.S.D. Jr and A.B. analysed data and provided suggestions throughout the study. K.S. performed electron microscopy studies. J.E. and K.J.K. provided reagents and analysed data. H.F. and N.M.N. developed, produced and characterized the DTPA-PEI-coated conidia; A.B. generated A. fumigatus purified melanin; I.V and J.P.L. generated A. fumigatus mutants and provided reagents, analysed data and provided discussions and suggestions throughout the study. G.C. conceived and supervised the study, performed experiments, was involved in the design and evaluation of all experiments, and wrote the manuscript along with comments from co-authors.

Corresponding author

Correspondence to Georgios Chamilos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19, Supplementary Tables 1 and 2

Reporting Summary

Supplementary Video 1

Primary human monocytes loaded with Fluo4 and then infected with conidia of the melanin-competent parental strain (Ku80) of A. fumigatus at a MOI of 10:1. Internalization of conidia was followed at 5 s intervals. A representative frame of this video is shown in Fig. 4b (top panel). A video of 1 of 12 experiments performed independently with similar results is shown

Supplementary Video 2

Primary human monocytes loaded with Fluo4 and then infected with conidia of melanin-competent ΔrodA mutant of A. fumigatus at a MOI of 10:1. Internalization of conidia was followed at 5 s intervals. A representative frame of this video is shown in Fig. 4b (middle panel). Video of 1 of 5 experiments performed independently with similar results is shown

Supplementary Video 3

Primary human monocytes loaded with Fluo4 and then infected with conidia of melanin-deficient (albino) ΔrodA/pksP mutant of A. fumigatus at a MOI of 10:1. Internalization of conidia was followed at 5 s intervals. A representative frame of this video is shown in Fig. 4b (lower panel). Video of 1 of 12 experiments performed independently with similar results is shown

Supplementary Video 4

Primary human monocytes loaded with Fluo4 and then infected with conidia of melanin-deficient (albino) 24 ΔrodA/pksP mutant of A. fumigatus. Internalization of conidia was followed at 5 s intervals. A representative frame from a cell with peri-phagosomal Ca2+ ring in the middle of the optical field of this video is shown in Fig. 4c. Video of 1 of 12 experiments performed independently with similar results is shown

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyrmizi, I., Ferreira, H., Carvalho, A. et al. Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nat Microbiol 3, 791–803 (2018). https://doi.org/10.1038/s41564-018-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0167-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology