Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Model tropical Atlantic biases underpin diminished Pacific decadal variability

Abstract

Pacific trade winds have displayed unprecedented strengthening in recent decades1. This strengthening has been associated with east Pacific sea surface cooling2 and the early twenty-first-century slowdown in global surface warming2,3, amongst a host of other substantial impacts4,5,6,7,8,9. Although some climate models produce the timing of these recently observed trends10, they all fail to produce the trend magnitude2,11,12. This may in part be related to the apparent model underrepresentation of low-frequency Pacific Ocean variability and decadal wind trends2,11,12,13 or be due to a misrepresentation of a forced response1,14,15,16 or a combination of both. An increasingly prominent connection between the Pacific and Atlantic basins has been identified as a key driver of this strengthening of the Pacific trade winds12,17,18,19,20. Here we use targeted climate model experiments to show that combining the recent Atlantic warming trend with the typical climate model bias leads to a substantially underestimated response for the Pacific Ocean wind and surface temperature. The underestimation largely stems from a reduction and eastward shift of the atmospheric heating response to the tropical Atlantic warming trend. This result suggests that the recent Pacific trends and model decadal variability may be better captured by models with improved mean-state climatologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends (1992–2011) of PARCP SST, SLP, wind stress and precipitation.
Fig. 2: Changes of AGCM simulated global Walker circulation.
Fig. 3: Changes of AGCM simulated precipitation.
Fig. 4: Schematic representation of the AGCM interbasin links and modelled surface flux changes.
Fig. 5: Trends (1992–2011) of PARCP SST, wind stress and precipitation.

Similar content being viewed by others

References

  1. L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

    Article  Google Scholar 

  2. England, M. H. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  3. Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  4. Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).

    Article  Google Scholar 

  5. McGregor, S., Gupta, A. S. & England, M. H. Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Clim. 25, 8164–8176 (2012).

    Article  Google Scholar 

  6. Nidheesh, A. G., Lengaigne, M., Vialard, J., Unnikrishnan, A. S. & Dayan, H. Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim. Dyn. 41, 381–402 (2013).

    Article  Google Scholar 

  7. Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014).

    Article  Google Scholar 

  8. Merrifield, M. A. & Maltrud, M. E. Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett. 38, 1–5 (2011).

    Article  Google Scholar 

  9. Feng, M. et al. The reversal of the multi-decadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys. Res. Lett. 38, 1–6 (2011).

    Article  Google Scholar 

  10. Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Change 4, 898–902 (2014).

    Article  Google Scholar 

  11. Carson, M., Köhl, A. & Stammer, D. The impact of regional multidecadal and century-scale internal climate variability on sea level trends in CMIP5 models. J. Clim. 28, 853–861 (2015).

    Article  Google Scholar 

  12. McGregor, S. et al. Recent walker circulation strengthening and pacific cooling amplified by atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  13. Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the walker circulation: Implications for projections. J. Clim. 28, 20–35 (2015).

    Article  Google Scholar 

  14. Kohyama, T., Hartmann, D. L. & Battisti, D. S. La Niña-like mean-state response to global warming and potential oceanic roles. J. Clim. 30, 4207–4225 (2017).

    Article  Google Scholar 

  15. Coats, S. & Karnauskas, K. B. Are simulated and observed twentieth century tropical pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article  Google Scholar 

  16. Luo, J. J., Wang, G., & Dommenget, D. May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim. Dynam. 50, 1335–1351 (2017).

    Article  Google Scholar 

  17. Li, X., Holland, D. M., Gerber, E. P. & Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505, 538–542 (2014).

    Article  CAS  Google Scholar 

  18. Kucharski, F. et al. Atlantic forcing of Pacific decadal variability. Clim. Dynam. 46, 2337–2351 (2016).

    Article  Google Scholar 

  19. Kajtar, J. B., Santoso, A., McGregor, S., England, M. H., & Baillie, Z. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim. Dynam. 50, 1471–1484 (2017).

    Article  Google Scholar 

  20. Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017).

    Article  Google Scholar 

  21. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  22. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  23. Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Article  Google Scholar 

  24. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  25. Gill, A. E. Some simple solutions for heat induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  26. Polo, I., Martin-Rey, M., Rodriguez-Fonseca, B., Kucharski, F. & Mechoso, C. R. Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim. Dynam. 44, 115–131 (2014).

    Article  Google Scholar 

  27. Graham, N. E. & Barnett, T. P. Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238, 657–659 (1987).

    Article  CAS  Google Scholar 

  28. Timmermann, A. et al. The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Clim. 20, 4899–4919 (2007).

    Article  Google Scholar 

  29. Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    Article  CAS  Google Scholar 

  30. Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Article  Google Scholar 

  31. Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).

    Article  Google Scholar 

  32. Stuecker, M. F., Jin, F.-F., Timmermann, A. & McGregor, S. Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Clim. 28, 1093–1111 (2015).

    Article  Google Scholar 

  33. Kiehl, J. T., Shields, C. A., Hack, J. J. & Collins, W. D. The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2584–2596 (2006).

    Article  Google Scholar 

  34. Monterey, G. I. & Levitus, S. Climatological Cycle of Mixed Layer Depth in the World Ocean (US Government Printing Office, NOAA NESDIS, 1997).

  35. Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M. & Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Clim. 21, 5145–5153 (2008).

    Article  Google Scholar 

  36. Wilks, D. S. Resampling hypothesis tests for autocorrelated fields. J. Clim. 10, 65–82 (1997).

    Article  Google Scholar 

  37. Chiodi, A. M. & Harrison, D. E. Simulating ENSO SSTA from TAO/Triton winds: the impacts of 20 years of buoy observations in the Pacific waveguide and comparison with reanalysis products. J. Clim. 30, 1041–1059 (2017).

    Article  Google Scholar 

  38. Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in clmate models: from CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).

    Article  Google Scholar 

  39. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  40. Compo, G. P. et al. The twentieth century reanalysis project. Q J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  41. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC), including the ARC Centre of Excellence in Climate System Science (ARC grant CE110001028). M.F.S. was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Sciences (CPAESS). J.B.K. and M.C. were supported by the Natural Environment Research Council (grant number NE/N005783/1). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project (CMIP), and we thank the climate modelling groups for producing and making their model output available. S.M. also thanks D. Dommenget for discussions during the early stages of this work.

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived the study and wrote the initial manuscript draft. M.F.S. conducted the AGCM and partially coupled model simulations. S.M. and J.B.K. analysed the model output and generated figures. All authors contributed to interpreting the results, discussion of the associated dynamics and refinement of the paper.

Corresponding author

Correspondence to Shayne McGregor.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGregor, S., Stuecker, M.F., Kajtar, J.B. et al. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nature Clim Change 8, 493–498 (2018). https://doi.org/10.1038/s41558-018-0163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0163-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing