Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

C-type lectins in immunity and homeostasis

Abstract

The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative C-type lectin structures.
Fig. 2: Role of C-type lectins in cancer.
Fig. 3: Cellular functions of transmembrane C-type lectins in antimicrobial immunity.
Fig. 4: C-type lectins in autoimmunity.

Similar content being viewed by others

References

  1. Zelensky, A. N. & Gready, J. E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Weis, W. I., Taylor, M. E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. Ivetic, A. Signals regulating L-selectin-dependent leucocyte adhesion and transmigration. Int. J. Biochem. Cell Biol. 45, 550–555 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. Lafouresse, F. et al. L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood 126, 1336–1345 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Poulin, L. F. et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119, 6052–6062 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Schraml, B. U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154, 843–858 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Sancho, D. & Reis e Sousa, C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30, 491–529 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cibrian, D. & Sanchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Willment, J. A. et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine dectin-1 on primary cells. Eur. J. Immunol. 35, 1539–1547 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Whitsett, J. A. & Weaver, T. E. Alveolar development and disease. Am. J. Respir. Cell. Mol. Biol. 53, 1–7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kang, I. et al. Versican deficiency significantly reduces lung inflammatory response induced by polyinosine-polycytidylic acid stimulation. J. Biol. Chem. 292, 51–63 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Tanisawa, K. et al. Exome-wide association study identifies CLEC3B missense variant p. S106G as being associated with extreme longevity in East Asian populations. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 309–318 (2017).

    PubMed  Google Scholar 

  14. Yue, R., Shen, B. & Morrison, S. J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. eLife 5, e18782 (2016). This paper defines a key role for the poorly described tetranectin subfamily member CLEC11A as a growth factor that is required to promote bone formation from mesenchymal progenitors.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fedeles, S. V., Gallagher, A. R. & Somlo, S. Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol. Med. 20, 251–260 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lowe, K. L. et al. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 125, 3769–3777 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Haining, E. J. et al. CLEC-2 contributes to hemostasis independently of classical hemITAM signaling in mice. Blood 130, 2224–2228 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki-Inoue, K., Osada, M. & Ozaki, Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J. Thromb. Haemost. 15, 219–229 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Acton, S. E. et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 514, 498–502 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Astarita, J. L. et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat. Immunol. 16, 75–84 (2015). References 19 and 20 reveal the importance of CLEC2 expression by DCs and its interactions with podoplanin expressed by fibroblastic reticular cells for facilitating the rapid lymph node expansion that is required to initiate adaptive immune responses.

    Article  PubMed  CAS  Google Scholar 

  21. Mi, Y. et al. Functional consequences of mannose and asialoglycoprotein receptor ablation. J. Biol. Chem. 291, 18700–18717 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Burley, K. et al. Altered fibrinolysis in autosomal dominant thrombomodulin-associated coagulopathy. Blood 128, 1879–1883 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nakamura-Ishizu, A., Takubo, K., Kobayashi, H., Suzuki-Inoue, K. & Suda, T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J. Exp. Med. 212, 2133–2146 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shahrour, M. A. et al. Hypomyelinating leukodystrophy associated with a deleterious mutation in the ATRN gene. Neurogenetics 18, 135–139 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Friedrich, D. et al. Does human attractin have DP4 activity? Biol. Chem. 388, 155–162 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. Martin, M. & Blom, A. M. Complement in removal of the dead — balancing inflammation. Immunol. Rev. 274, 218–232 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Sancho, D. & Reis e Sousa, C. Sensing of cell death by myeloid C-type lectin receptors. Curr. Opin. Immunol. 25, 46–52 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Neumann, K. et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity 40, 389–399 (2014). This study provides one of the first insights into the endogenous ligands of inhibitory C-type lectins and the importance of these receptors in regulating inflammatory responses.

    Article  PubMed  CAS  Google Scholar 

  29. Hanc, P. et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42, 839–849 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nagata, M. et al. Intracellular metabolite beta-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc. Natl Acad. Sci. USA 114, E3285–E3294 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhou, H. et al. IRAKM-Mincle axis links cell death to inflammation: pathophysiological implications for chronic alcoholic liver disease. Hepatology 64, 1978–1993 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Greco, S. H. et al. Mincle signaling promotes Con A hepatitis. J. Immunol. 197, 2816–2827 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tanaka, M. et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat. Commun. 5, 4982 (2014).

    Article  CAS  Google Scholar 

  34. Arumugam, T. V. et al. An atypical role for the myeloid receptor Mincle in central nervous system injury. J. Cereb. Blood Flow Metab. 37, 2098–2111 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016). This study provides a key observation linking a DAMP released by cancer cells, SAP130, with activation of the C-type lectin mincle, which promotes immunosuppressive macrophage responses that favour oncogenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kostarnoy, A. V. et al. Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate. Proc. Natl Acad. Sci. USA 114, E2758–E2765 (2017). This manuscript exemplifies how recognition of DAMPs by C-type lectins can trigger inappropriate responses that promote allergic inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hanc, P. et al. A pH- and ionic strength-dependent conformational change in the neck region regulates DNGR-1 function in dendritic cells. EMBO J. 35, 2484–2497 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cao, L., Shi, X., Chang, H., Zhang, Q. & He, Y. pH-dependent recognition of apoptotic and necrotic cells by the human dendritic cell receptor DEC205. Proc. Natl Acad. Sci. USA 112, 7237–7242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ding, D., Yao, Y., Zhang, S., Su, C. & Zhang, Y. C-type lectins facilitate tumor metastasis. Oncol. Lett. 13, 13–21 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Shirai, T. et al. C-Type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J. Thromb. Haemost. 15, 513–525 (2017).

    Article  PubMed  CAS  Google Scholar 

  41. Ku, A. W. et al. Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. eLife 5, e17375 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Daley, D. et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23, 556–567 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shifrin, N., Raulet, D. H. & Ardolino, M. NK cell self tolerance, responsiveness and missing self recognition. Semin. Immunol. 26, 138–144 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lanier, L. L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3, 575–582 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Deng, W. et al. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015). This is the first report showing that an NKG2D ligand, ULBP1, shed from cancerous cells can activate, rather than repress, the protective functions of NK cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Crane, C. A. et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl Acad. Sci. USA 111, 12823–12828 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kimura, Y. et al. The innate immune receptor dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc. Natl Acad. Sci. USA 113, 14097–14102 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Seifert, L. et al. Dectin-1 regulates hepatic fibrosis and hepatocarcinogenesis by suppressing TLR4 signaling pathways. Cell Rep. 13, 1909–1921 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chiba, S. et al. Recognition of tumor cells by dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 3, e04177 (2014).This paper describes how myeloid cell-expressed dectin 1 recognizes tumour-associated carbohydrates, inducing an IRF5-dependent transcriptional response that leads to NK cell activation and antitumour immune responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Albeituni, S. H. et al. Yeast-derived particulate beta-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J. Immunol. 196, 2167–2180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhao, Y. et al. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 12368 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Streng-Ouwehand, I. et al. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells. eLife 5, e11765 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geijtenbeek, T. B. & Gringhuis, S. I. C-type lectin receptors in the control of T helper cell differentiation. Nat. Rev. Immunol. 16, 433–448 (2016). This Review covers the effect of C-type lectins on adaptive immunity, as well as their intracellular signalling pathways.

    Article  PubMed  CAS  Google Scholar 

  54. Joo, H. et al. C-Type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses. Immunity 41, 592–604 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dambuza, I. M. & Brown, G. D. C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32C, 21–27 (2015).

    Article  CAS  Google Scholar 

  56. Mansour, M. K. et al. Dectin-1 activation controls maturation of beta-1,3-glucan-containing phagosomes. J. Biol. Chem. 288, 16043–16054 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Drummond, R. A., Gaffen, S. L., Hise, A. G. & Brown, G. D. Innate defense against fungal pathogens. Cold Spring Harb. Perspect. Med. 5, a019620 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. Lee, M. J. et al. Phosphoinositide 3-kinase delta regulates dectin-2 signaling and the generation of Th2 and Th17 immunity. J. Immunol. 197, 278–287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Li, S. S. et al. The NK receptor NKp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe 14, 387–397 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Ali, M. F., Driscoll, C. B., Walters, P. R., Limper, A. H. & Carmona, E. M. β-Glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. J. Immunol. 195, 5318–5326 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Drummond, R. A. & Lionakis, M. S. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front. Cell. Infect. Microbiol. 6, 39 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wirnsberger, G. et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med. 22, 915–923 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. Xiao, Y. et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat. Med. 22, 906–914 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhu, L. L. et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J. Exp. Med. 213, 1555–1570 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhao, X. et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat. Med. 23, 337–346 (2017). References 64–66 describe CBLB as a key negative regulator of C-type lectin-mediated signalling during fungal infection, making it an attractive target for the development of novel antifungal therapeutics.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Roth, S. et al. Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell Rep. 17, 2572–2583 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Cao, Z. et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity 43, 715–726 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Iborra, S. et al. Leishmania uses Mincle to target an inhibitory ITAM signaling pathway in dendritic cells that dampens adaptive immunity to infection. Immunity 45, 788–801 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Blanco-Menendez, N. et al. SHIP-1 couples to the dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to Candida albicans. J. Immunol. 195, 4466–4478 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Deng, Z. et al. Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses. Nat. Immunol. 16, 642–652 (2015). This paper unexpectedly shows that the phosphatase SHP2 functions as an essential scaffold facilitating SYK recruitment and C-type lectin-mediated intracellular signalling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rieber, N. et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17, 507–514 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Drummond, R. A. et al. CD4+ T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol. 9, 492–502 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tang, C. et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Yang, A. M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Choteau, L. et al. Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Mucosal Immunol. 9, 767–776 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Loures, F. V. et al. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog. 11, e1004643 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schonherr, F. A. et al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 10, 1335–1350 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Wuthrich, M. et al. Fonsecaea pedrosoi-induced Th17-cell differentiation in mice is fostered by dectin-2 and suppressed by Mincle recognition. Eur. J. Immunol. 45, 2542–2552 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wevers, B. A. et al. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15, 494–505 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Garfoot, A. L., Shen, Q., Wuthrich, M., Klein, B. S. & Rappleye, C. A. The Eng1 beta-glucanase enhances histoplasma virulence by reducing beta-glucan exposure. mBio 7, e01388–01315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Goyal, S., Klassert, T. E. & Slevogt, H. C-type lectin receptors in tuberculosis: what we know. Med. Microbiol. Immunol. 205, 513–535 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. Yonekawa, A. et al. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41, 402–413 (2014).

    Article  PubMed  CAS  Google Scholar 

  88. Toyonaga, K. et al. C-type lectin receptor DCAR recognizes mycobacterial phosphatidyl-inositol mannosides to promote a Th1 response during infection. Immunity 45, 1245–1257 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Ostrop, J. et al. Contribution of MINCLE-SYK signaling to activation of primary human APCs by mycobacterial cord factor and the novel adjuvant TDB. J. Immunol. 195, 2417–2428 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Tientcheu, L. D. et al. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur. J. Immunol. 47, 432–445 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wilson, G. J. et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 17, 252–259 (2015). This paper describes MCL as the first non-redundant PRR required for the control of mycobacterial infection in both mice and humans.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dorhoi, A. et al. The adaptor molecule CARD9 is essential for tuberculosis control. J. Exp. Med. 207, 777–792 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Troegeler, A. et al. C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc. Natl Acad. Sci. USA 114, E540–E549 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Behler-Janbeck, F. et al. C-type lectin Mincle recognizes glucosyl-diacylglycerol of Streptococcus pneumoniae and plays a protective role in pneumococcal pneumonia. PLoS Pathog. 12, e1006038 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sharma, A., Steichen, A. L., Jondle, C. N., Mishra, B. B. & Sharma, J. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J. Infect. Dis. 209, 1837–1846 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Chen, S. T. et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat. Commun. 8, 299 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hashimoto, J. et al. Surfactant protein A inhibits growth and adherence of uropathogenic Escherichia coli to protect the bladder from infection. J. Immunol. 198, 2898–2905 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    Article  PubMed  CAS  Google Scholar 

  99. Lightfoot, Y. L. et al. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34, 881–895 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gringhuis, S. I., Kaptein, T. M., Wevers, B. A., Mesman, A. W. & Geijtenbeek, T. B. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKepsilon- and CYLD-dependent Bcl3 activation. Nat. Commun. 5, 3898 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Mukherjee, S. et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505, 103–107 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Greene, T. T. et al. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression. eLife 5, e14749 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Schmiedel, D. & Mandelboim, O. Disarming cellular alarm systems-manipulation of stress-induced NKG2D ligands by human herpesviruses. Front. Immunol. 8, 390 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ribeiro, C. M. et al. Receptor usage dictates HIV-1 restriction by human TRIM5alpha in dendritic cell subsets. Nature 540, 448–452 (2016). This paper shows how langerin, but not DC-SIGN, uses a TRIM5α-mediated autophagy pathway to target HIV for lysosomal degradation in human Langerhans cells.

    Article  PubMed  CAS  Google Scholar 

  105. van den Berg, L. M. et al. Langerhans cell-dendritic cell cross-talk via langerin and hyaluronic acid mediates antigen transfer and cross-presentation of HIV-1. J. Immunol. 195, 1763–1773 (2015).

    Article  PubMed  CAS  Google Scholar 

  106. Iborra, S. et al. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Invest. 122, 1628–1643 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Monteiro, J. T. & Lepenies, B. Myeloid C-type lectin receptors in viral recognition and antiviral immunity. Viruses 9, E59 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Mesman, A. W. et al. Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases. Cell Host Microbe 16, 31–42 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Chen, S. T. et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672–676 (2008).

    Article  PubMed  CAS  Google Scholar 

  111. Teng, O. et al. CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza virus pathogenicity in vivo. J. Virol. 91, e01813–01816 (2017).

    Article  PubMed  CAS  Google Scholar 

  112. Zhao, D. et al. The myeloid LSECtin is a DAP12-coupled receptor that is crucial for inflammatory response induced by Ebola virus glycoprotein. PLoS Pathog. 12, e1005487 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Huang, Y. L. et al. CLEC5A is critical for dengue virus-induced osteoclast activation and bone homeostasis. J. Mol. Med. 94, 1025–1037 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jaeger, M., Stappers, M. H., Joosten, L. A., Gyssens, I. C. & Netea, M. G. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol. 10, 989–1008 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Vazquez-Mendoza, A., Carrero, J. C. & Rodriguez-Sosa, M. Parasitic infections: a role for C-type lectins receptors. Biomed. Res. Int. 2013, 456352 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Cestari, I., Evans-Osses, I., Schlapbach, L. J., de Messias-Reason, I. & Ramirez, M. I. Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites. Mol. Immunol. 53, 328–334 (2013).

    Article  PubMed  CAS  Google Scholar 

  117. Vazquez, A. et al. Mouse macrophage galactose-type lectin (mMGL) is critical for host resistance against Trypanosoma cruzi infection. Int. J. Biol. Sci. 10, 909–920 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Thawer, S. et al. Surfactant protein-D is essential for immunity to helminth infection. PLoS Pathog. 12, e1005461 (2016). This manuscript highlights the importance of the collectin SP-D in protective innate immune responses in the lungs during infection with parasitic worms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Caliz, R. et al. Gender-specific effects of genetic variants within Th1 and Th17 cell-mediated immune response genes on the risk of developing rheumatoid arthritis. PLoS ONE 8, e72732 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Hanyecz, A. et al. Proteoglycan aggrecan conducting T cell activation and apoptosis in a murine model of rheumatoid arthritis. Biomed. Res. Int. 2014, 942148 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Markovics, A. et al. Immune recognition of citrullinated proteoglycan aggrecan epitopes in mice with proteoglycan-induced arthritis and in patients with rheumatoid arthritis. PLoS ONE 11, e0160284 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Epp Boschmann, S. et al. Mannose-binding lectin polymorphisms and rheumatoid arthritis: a short review and meta-analysis. Mol. Immunol. 69, 77–85 (2016).

    Article  PubMed  CAS  Google Scholar 

  123. Guo, J. et al. A replication study confirms the association of dendritic cell immunoreceptor (DCIR) polymorphisms with ACPA-negative RA in a large Asian cohort. PLoS ONE 7, e41228 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fujikado, N. et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat. Med. 14, 176–180 (2008).

    Article  PubMed  CAS  Google Scholar 

  125. Maruhashi, T. et al. DCIR maintains bone homeostasis by regulating IFN-gamma production in T cells. J. Immunol. 194, 5681–5691 (2015).

    Article  PubMed  CAS  Google Scholar 

  126. Redelinghuys, P. et al. MICL controls inflammation in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1386–1391 (2016).

    Article  PubMed  CAS  Google Scholar 

  127. Joyce-Shaikh, B. et al. Myeloid DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone erosion associated with autoimmune arthritis. J. Exp. Med. 207, 579–589 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hashimoto, K., Oda, Y., Nakamura, F., Kakinoki, R. & Akagi, M. Lectin-like, oxidized low-density lipoprotein receptor-1-deficient mice show resistance to age-related knee osteoarthritis. Eur. J. Histochem. 61, 2762 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chen, D. Y. et al. A potential role of myeloid DAP12-associating lectin (MDL)-1 in the regulation of inflammation in rheumatoid arthritis patients. PLoS ONE 9, e86105 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ishikawa, M. et al. Plasma sLOX-1 is a potent biomarker of clinical remission and disease activity in patients with seropositive RA. Mod. Rheumatol 26, 696–701 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Andersson, A. K. et al. Blockade of NKG2D ameliorates disease in mice with collagen-induced arthritis: a potential pathogenic role in chronic inflammatory arthritis. Arthritis Rheum. 63, 2617–2629 (2011).

    Article  PubMed  CAS  Google Scholar 

  132. Mariaselvam, C. M. et al. Association of NKG2D gene variants with susceptibility and severity of rheumatoid arthritis. Clin. Exp. Immunol. 187, 369–375 (2017).

    Article  PubMed  CAS  Google Scholar 

  133. Soleimanpour, S. A. et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 157, 1577–1590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Schuster, C. et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015). Variation in CLEC16A is associated with multiple autoimmune diseases; this study shows that this probably results from the role of CLEC16A in thymic epithelial cell autophagy, which affects thymocyte selection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Li, J. et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat. Commun. 6, 6804 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bronson, P. G. et al. Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency. Nat. Genet. 48, 1425–1429 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Axelgaard, E., Ostergaard, J. A., Thiel, S. & Hansen, T. K. Diabetes is associated with increased autoreactivity of mannan-binding lectin. J. Diabetes Res. 2017, 6368780 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Yan, M., Mehta, J. L., Zhang, W. & Hu, C. LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc. Drugs Ther. 25, 451–459 (2011).

    Article  PubMed  CAS  Google Scholar 

  139. Zou, X. Z. et al. Involvement of epithelial-mesenchymal transition afforded by activation of LOX-1/ TGF-beta1/KLF6 signaling pathway in diabetic pulmonary fibrosis. Pulm. Pharmacol. Ther. 44, 70–77 (2017).

    Article  PubMed  CAS  Google Scholar 

  140. Karumuthil-Melethil, S., Perez, N., Li, R. & Vasu, C. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J. Immunol. 181, 8323–8334 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Yoshimoto, R. et al. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc. Drugs Ther. 25, 379–391 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Rizzacasa, B. et al. LOX-1 and its splice variants: a new challenge for atherosclerosis and cancer-targeted therapies. Int. J. Mol. Sci. 18, E290 (2017).

    Article  PubMed  CAS  Google Scholar 

  143. Thakkar, S. et al. Structure-based design targeted at LOX-1, a receptor for oxidized low-density lipoprotein. Sci. Rep. 5, 16740 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Biocca, S. et al. Molecular mechanism of statin-mediated LOX-1 inhibition. Cell Cycle 14, 1583–1595 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Wight, T. N., Kinsella, M. G., Evanko, S. P., Potter-Perigo, S. & Merrilees, M. J. Versican and the regulation of cell phenotype in disease. Biochim. Biophys. Acta 1840, 2441–2451 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sorensen, G. L. et al. Surfactant protein D is proatherogenic in mice. Am. J. Physiol. Heart Circ. Physiol. 290, H2286–H2294 (2006).

    Article  PubMed  CAS  Google Scholar 

  147. Hirano, Y. et al. Surfactant protein-D deficiency suppresses systemic inflammation and reduces atherosclerosis in ApoE knockout mice. Cardiovasc. Res. 113, 1208–1218 (2017).

    Article  PubMed  CAS  Google Scholar 

  148. Sorensen, G. L. et al. Association between the surfactant protein D (SFTPD) gene and subclinical carotid artery atherosclerosis. Atherosclerosis 246, 7–12 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Haddad, Y. et al. The dendritic cell receptor DNGR-1 promotes the development of atherosclerosis in mice. Circ. Res. 121, 234–243 (2017).

    Article  PubMed  CAS  Google Scholar 

  150. Kiyotake, R. et al. Human Mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290, 25322–25332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Clement, M. et al. Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response. Circulation 134, 1039–1051 (2016).

    Article  PubMed  CAS  Google Scholar 

  152. Salazar, F., Sewell, H. F., Shakib, F. & Ghaemmaghami, A. M. The role of lectins in allergic sensitization and allergic disease. J. Allergy Clin. Immunol. 132, 27–36 (2013).

    Article  PubMed  CAS  Google Scholar 

  153. Higashino-Kameda, M. et al. A critical role of dectin-1 in hypersensitivity pneumonitis. Inflamm. Res. 65, 235–244 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Ito, T. et al. Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b+ dendritic cells. J. Immunol. 198, 61–70 (2017).

    Article  PubMed  CAS  Google Scholar 

  155. Overton, N. L., Simpson, A., Bowyer, P. & Denning, D. W. Genetic susceptibility to severe asthma with fungal sensitization. Int. J. Immunogenet. 44, 93–106 (2017).

    Article  PubMed  CAS  Google Scholar 

  156. Mackay, R. M. et al. Airway surfactant protein D deficiency in adults with severe asthma. Chest 149, 1165–1172 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kamalakannan, M., Chang, L. M., Grishina, G., Sampson, H. A. & Masilamani, M. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. Allergy 71, 1145–1155 (2016).

    Article  PubMed  CAS  Google Scholar 

  158. Salazar, F. et al. The mannose receptor negatively modulates the Toll-like receptor 4-aryl hydrocarbon receptor-indoleamine 2,3-dioxygenase axis in dendritic cells affecting T helper cell polarization. J. Allergy Clin. Immunol. 137, 1841–1851.e2 (2016).

    Article  PubMed  CAS  Google Scholar 

  159. Ito, T. et al. IL-22 induces Reg3gamma and inhibits allergic inflammation in house dust mite-induced asthma models. J. Exp. Med. 214, 3037–3050 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Do, D. C. et al. N-Glycan in cockroach allergen regulates human basophil function. Immun. Inflamm Dis. 5, 386–399 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Acharya, K. R. & Ackerman, S. J. Eosinophil granule proteins: form and function. J. Biol. Chem. 289, 17406–17415 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Cibrian, D. et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    Article  PubMed  CAS  Google Scholar 

  163. Uto, T. et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat. Commun. 7, 11273 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Akatsu, C. et al. CD72 negatively regulates B lymphocyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP. J. Exp. Med. 213, 2691–2706 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lee, E. J. et al. Mincle activation and the Syk/Card9 signaling axis are central to the development of autoimmune disease of the eye. J. Immunol. 196, 3148–3158 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Stoppelkamp, S. et al. Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis. Mol. Immunol. 67, 398–406 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Quatrini, L. et al. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci. Signal. 8, ra108 (2015).

    Article  PubMed  CAS  Google Scholar 

  168. Redelinghuys, P. & Brown, G. D. Inhibitory C-type lectin receptors in myeloid cells. Immunol. Lett. 136, 1–12 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Hsu, Y. Y. et al. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget 7, 68122–68139 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Asano, K. et al. Secretion of inflammatory factors from chondrocytes by layilin signaling. Biochem. Biophys. Res. Commun. 452, 85–90 (2014).

    Article  PubMed  CAS  Google Scholar 

  171. Trudel, M., Yao, Q. & Qian, F. The role of G-protein-coupled receptor proteolysis site cleavage of polycystin-1 in renal physiology and polycystic kidney disease. Cells 5, 3 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  172. Kato, Y. et al. Targeting antigen to Clec9A primes follicular Th cell memory responses capable of robust recall. J. Immunol. 195, 1006–1014 (2015).

    Article  PubMed  CAS  Google Scholar 

  173. van der Meer, J. W., Joosten, L. A., Riksen, N. & Netea, M. G. Trained immunity: a smart way to enhance innate immune defence. Mol. Immunol. 68, 40–44 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Wellcome Trust, the UK Medical Research Council (MRC), the MRC Centre for Medical Mycology at the University of Aberdeen and Arthritis Research UK for financial support. The authors apologize to colleagues whose many valuable contributions could not be cited owing to space constraints.

Reviewer information

Nature Reviews Immunology thanks S. Gringhuis, J. Ruland and D. Sancho for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussing the content and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Gordon D. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Imperial College London C-type Lectins website: http://www.imperial.ac.uk/research/animallectins/ctld/classes/C-type1.html

UniProtKB: http://www.uniprot.org

Supplementary information

41577_2018_4_MOESM1_ESM.docx

Supplementary Table 1 Full names, groups and aliases of key CLRs mentioned in the text, arranged in alphabetical order, and indicating their cellular distribution

Glossary

Proteoglycans

Proteins that are heavily glycosylated, normally with one or more covalently attached glycosaminoglycans. They are found in the extracellular matrix, in connective tissue and on the surface of cells.

Autosomal dominant polycystic kidney disease

One of the most common monogenic diseases found in humans; it is characterized by structurally abnormal renal tubules that form fluid-filled cysts.

Fibroblastic reticular cells

(FRCs). Myofibroblast stromal cells of mesenchymal origin found in lymphoid tissues. They express the CLEC2 ligand podoplanin, and they create a three-dimensional network facilitating antigen transport and leukocyte migration.

Myeloid-derived suppressor cells

(MDSCs). A heterogeneous population of cells of myeloid origin that have the ability to suppress T cell responses in multiple diseases. MDSCs can be further divided into monocytic MDSCs and neutrophilic MDSCs.

Pattern recognition receptors

(PRRs). Receptors that bind to conserved molecular patterns normally found in pathogens (pathogen-associated molecular patterns (PAMPs)) but also to structures associated with cellular damage (damage-associated molecular patterns (DAMPs)). Examples of PAMPs include β-glucans and lipopolysaccharide. Examples of DAMPs include F-actin and spliceosome-associated protein 130 (SAP130).

Neutrophil extracellular traps

(NETs). Extracellular structures consisting of DNA, hydrolytic enzymes and other antimicrobial components that are produced following the induction of a defined cell death programme in neutrophils. NETs, and similar structures produced by other cell types, trap and kill microorganisms extracellularly.

Adjuvants

In the immunological context, adjuvants are compounds that potentiate or boost the immunogenicity of an antigen. Adjuvants are required to improve the effectiveness of vaccines, as they stimulate innate immune responses that promote the development of adaptive immunity to the vaccine antigens.

Autophagy

An intracellular uptake mechanism that induces the membrane enclosure of intracellular components and their targeting to the lysosomal pathway for degradation.

Cytotoxic T lymphocyte

(CTL). CTLs are CD8+ T cells that can kill infected, transformed or damaged cells. CTLs recognize cellular antigens that are presented in the context of MHC class I molecules, which can trigger their cytotoxic activities either directly, through the release of perforin, granzymes and granulysin that enter and kill the target cells, or indirectly, through expression of FAS ligand, which binds to FAS on the surface of target cells, inducing a death-associated intracellular signalling pathway.

Genome-wide association studies

(GWAS). Genetic sequencing studies used to determine whether a genetic variant (normally a single-nucleotide polymorphism) found within a population is associated with a trait of interest, such as a specific disease.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, G.D., Willment, J.A. & Whitehead, L. C-type lectins in immunity and homeostasis. Nat Rev Immunol 18, 374–389 (2018). https://doi.org/10.1038/s41577-018-0004-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0004-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer