Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MIF family proteins in genitourinary cancer: tumorigenic roles and therapeutic potential

Abstract

Genitourinary cancers encompass some of the most common solid tumours and have high rates of morbidity and mortality. Inflammation is associated with enhanced tumorigenesis, and a number of pro-inflammatory mediators, such as macrophage migration inhibitory factor (MIF), also promote tumorigenesis. Studies of the role of MIF (which largely functions via the type II transmembrane receptor CD74) in prostate, bladder and kidney cancers suggest that it is a pro-tumorigenic factor in genitourinary malignancy. Inhibiting MIF activity in cell culture and in preclinical animal models of genitourinary cancers reduces the phenotypic hallmarks of cancer, such as proliferation, angiogenesis and tumour aggressiveness, by downregulating signalling pathways such as those regulated by extracellular signal-regulated kinase (ERK), protein kinase B and p53, and MIF may also reverse immunosuppression. Progress has been made in our understanding of the role of MIF (and its family member d-dopachrome tautomerase (DDT)) in genitourinary cancers and how it can be therapeutically targeted.

Key points

  • Macrophage migration inhibitory factor (MIF) and its homologue d-dopachrome tautomerase (DDT) are pleiotropic cytokines with multiple functions in tumorigenesis.

  • The receptor CD74, and co-receptors such as CD44, CXC-chemokine receptor 2 (CXCR2) and CXCR4, mediate the effects of MIF in tumour cells, including the activation of pro-tumorigenic signalling.

  • The cellular levels of CD74 and the serum and cellular levels of MIF are elevated in genitourinary cancers.

  • The pharmacological and genetic inhibition of MIF, or the blockade of CD74–MIF interactions, reduces tumorigenesis in multiple genitourinary cancers through a variety of mechanisms.

  • Data indicate that MIF may have roles in immunosuppression in addition to its role in directly promoting tumour growth.

  • MIF may be a valid therapeutic target in genitourinary malignancies; inhibiting MIF-mediated pathways that directly promote tumorigenesis or those that enhance immunotherapy could be clinically beneficial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MIF signalling in cancer cells.
Fig. 2: MIF in the microenvironment.

Similar content being viewed by others

References

  1. Abdollah, F. et al. Incidence, survival and mortality rates of stage-specific bladder cancer in United States: a trend analysis. Cancer Epidemiol. 37, 219–225 (2013).

    PubMed  Google Scholar 

  2. Nakayama, T. & Kitano, S. Immunotherapy for genitourinary tumors. Int. J. Urol. https://doi.org/10.1111/iju.13902 (2019).

    Article  PubMed  Google Scholar 

  3. American Cancer Society. Cancer facts & figures 2017. Cancer. org https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-2017.pdf (2017).

  4. Dellis, A. et al. Management of advanced prostate cancer: a systematic review of existing guidelines and recommendations. Cancer Treat. Rev. 73, 54–61 (2019).

    PubMed  Google Scholar 

  5. Kamat, A. M. et al. Bladder cancer. Lancet 388, 2796–2810 (2016).

    PubMed  Google Scholar 

  6. Teo, M. Y. & Rosenberg, J. E. Nivolumab for the treatment of urothelial cancers. Expert Rev. Anticancer Ther. 18, 215–221 (2018).

    PubMed  Google Scholar 

  7. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bloom, B. R. & Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153, 80–82 (1966).

    CAS  PubMed  Google Scholar 

  10. Sun, H. W., Bernhagen, J., Bucala, R. & Lolis, E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. Proc. Natl Acad. Sci. USA 93, 5191–5196 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O’Reilly, C., Doroudian, M., Mawhinney, L. & Donnelly, S. C. Targeting, MIF in cancer: therapeutic strategies, current developments, and future opportunities. Med. Res. Rev. 36, 440–460 (2016).

    PubMed  Google Scholar 

  12. Bernhagen, J. et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365, 756–759 (1993). This study is the first to demonstrate a functional role of MIF in a disease state.

    CAS  PubMed  Google Scholar 

  13. Calandra, T. et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat. Med. 6, 164–170 (2000).

    CAS  PubMed  Google Scholar 

  14. Stoppe, C. et al. Interaction of MIF family proteins in myocardial ischemia/reperfusion damage and their influence on clinical outcome of cardiac surgery patients. Antioxid. Redox Signal. 23, 865–879 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Calandra, T. & Roger, T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat. Rev. Immunol. 3, 791–800 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Merk, M., Mitchell, R. A., Endres, S. & Bucala, R. D-Dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine 59, 10–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Merk, M. et al. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proc. Natl Acad. Sci. USA 108, E577–E585 (2011). This seminal paper demonstrates a functional relationship between MIF and DDT.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Esumi, N. et al. Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mamm. Genome 9, 753–757 (1998).

    CAS  PubMed  Google Scholar 

  19. Sugimoto, H. et al. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 A resolution. Biochemistry 38, 3268–3279 (1999).

    CAS  PubMed  Google Scholar 

  20. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    CAS  PubMed  Google Scholar 

  21. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    CAS  PubMed  Google Scholar 

  22. Lue, H. et al. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 26, 5046–5059 (2007).

    CAS  PubMed  Google Scholar 

  23. Lue, H., Kleemann, R., Calandra, T., Roger, T. & Bernhagen, J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect. 4, 449–460 (2002).

    CAS  PubMed  Google Scholar 

  24. Donnelly, S. C. & Bucala, R. Macrophage migration inhibitory factor: a regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol. Med. Today 3, 502–507 (1997).

    CAS  PubMed  Google Scholar 

  25. Lo, M. C. et al. Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Lett. 335, 81–92 (2013).

    CAS  PubMed  Google Scholar 

  26. Binsky, I. et al. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc. Natl Acad. Sci. USA 104, 13408–13413 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alfaro, C. et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 60, 24–31 (2017).

    CAS  PubMed  Google Scholar 

  28. Jones, S. A. & Jenkins, B. J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773–789 (2018).

    CAS  PubMed  Google Scholar 

  29. Perez-Gracia, J. L. et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: outcomes by prior number of regimens. Eur. Urol. 73, 462–468 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Flaig, T. W. The changing treatment landscape for metastatic urothelial carcinoma. J. Natl Compr. Canc. Netw. 16, 636–638 (2018).

    CAS  PubMed  Google Scholar 

  31. Chedgy, E. C. & Black, P. C. Nivolumab: the new second line treatment for advanced renal-cell carcinoma commentary on: nivolumab versus everolimus in advanced renal-cell carcinoma. Urology 89, 8–9 (2016).

    PubMed  Google Scholar 

  32. Nesi, G., Nobili, S., Cai, T., Caini, S. & Santi, R. Chronic inflammation in urothelial bladder cancer. Virchows Arch. 467, 623–633 (2015).

    CAS  PubMed  Google Scholar 

  33. Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 4, 540–550 (2004).

    CAS  PubMed  Google Scholar 

  34. Simpson, K. D., Templeton, D. J. & Cross, J. V. Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J. Immunol. 189, 5533–5540 (2012). This study shows that MIF may have a role in immunosuppression.

    CAS  PubMed  Google Scholar 

  35. Otvos, B. et al. Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34, 2026–2039 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Johler, S. M., Fuchs, J., Seitz, G. & Armeanu-Ebinger, S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol. Immunother. 65, 1465–1476 (2016).

    CAS  PubMed  Google Scholar 

  37. Rosengren, E. et al. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol. Med. 2, 143–149 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leng, L. et al. MIF signal transduction initiated by binding to CD74. J. Exp. Med. 197, 1467–1476 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fingerle-Rowson, G. et al. A tautomerase-null macrophage migration-inhibitory factor (MIF) gene knock-in mouse model reveals that protein interactions and not enzymatic activity mediate MIF-dependent growth regulation. Mol. Cell. Biol. 29, 1922–1932 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lubetsky, J. B. et al. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J. Biol. Chem. 277, 24976–24982 (2002).

    CAS  PubMed  Google Scholar 

  41. Al-Abed, Y. et al. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J. Biol. Chem. 280, 36541–36544 (2005).

    CAS  PubMed  Google Scholar 

  42. Bifulco, C., McDaniel, K., Leng, L. & Bucala, R. Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr. Pharm. Des. 14, 3790–3801 (2008).

    CAS  PubMed  Google Scholar 

  43. Mitchell, R. A. & Bucala, R. Tumor growth-promoting properties of macrophage migration inhibitory factor (MIF). Semin. Cancer Biol. 10, 359–366 (2000).

    CAS  PubMed  Google Scholar 

  44. Xin, D. et al. The MIF homologue D-dopachrome tautomerase promotes COX-2 expression through beta-catenin-dependent and -independent mechanisms. Mol. Cancer Res. 8, 1601–1609 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Choudhary, S. et al. Macrophage migratory inhibitory factor promotes bladder cancer progression via increasing proliferation and angiogenesis. Carcinogenesis 34, 2891–2899 (2013). This article shows that pharmacological inhibition of MIF substantially limits muscle-invasive tumour growth in bladder cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Coleman, A. M. et al. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. J. Immunol. 181, 2330–2337 (2008).

    CAS  PubMed  Google Scholar 

  47. Meyer-Siegler, K. L., Iczkowski, K. A., Leng, L., Bucala, R. & Vera, P. L. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J. Immunol. 177, 8730–8739 (2006). This paper shows a role for MIF in prostate cancer.

    CAS  PubMed  Google Scholar 

  48. Chevalier, M. F. et al. ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Invest. 127, 2916–2929 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Figueiredo, C. R. et al. Blockade of MIF-CD74 signalling on macrophages and dendritic cells restores the antitumour immune response against metastatic melanoma. Front. Immunol. 9, 1132 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Cournia, Z. et al. Discovery of human macrophage migration inhibitory factor (MIF)-CD74 antagonists via virtual screening. J. Med. Chem. 52, 416–424 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gai, J. W. et al. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells. Oncol. Lett. 15, 7631–7638 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Gil-Yarom, N. et al. CD74 is a novel transcription regulator. Proc. Natl Acad. Sci. USA 114, 562–567 (2017). This paper is the first to demonstrate a role for CD74 in transcriptional regulation.

    CAS  PubMed  Google Scholar 

  53. Klasen, C. et al. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J. Immunol. 192, 5273–5284 (2014).

    CAS  PubMed  Google Scholar 

  54. Schwartz, V. et al. A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett. 583, 2749–2757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Senter, P. D. et al. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase and biological activities by acetaminophen metabolites. Proc. Natl Acad. Sci. USA 99, 144–149 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kithcart, A. P. et al. A small-molecule inhibitor of macrophage migration inhibitory factor for the treatment of inflammatory disease. FASEB J. 24, 4459–4466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Christian, B. A. et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B cell non-Hodgkin lymphoma. Br. J. Haematol. 169, 701–710 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alinari, L. et al. Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 117, 4530–4541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hare, A. A. et al. Optimization of N-benzyl-benzoxazol-2-ones as receptor antagonists of macrophage migration inhibitory factor (MIF). Bioorg. Med. Chem. Lett. 20, 5811–5814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Meyer-Siegler, K. L., Leifheit, E. C. & Vera, P. L. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells. BMC Cancer 4, 34 (2004).

    PubMed  PubMed Central  Google Scholar 

  61. Calandra, T., Bernhagen, J., Mitchell, R. A. & Bucala, R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179, 1895–1902 (1994).

    CAS  PubMed  Google Scholar 

  62. Bloom, B. R. & Shevach, E. Requirement for T cells in the production of migration inhibitory factor. J. Exp. Med. 142, 1306–1311 (1975).

    CAS  PubMed  Google Scholar 

  63. Young, A. N. et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am. J. Pathol. 158, 1639–1651 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Choi, J. W., Kim, Y., Lee, J. H. & Kim, Y. S. CD74 expression is increased in high-grade, invasive urothelial carcinoma of the bladder. Int. J. Urol. 20, 251–255 (2013).

    CAS  PubMed  Google Scholar 

  65. Amin, M. A. et al. Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ. Res. 93, 321–329 (2003).

    CAS  PubMed  Google Scholar 

  66. Li, G. Q., Xie, J., Lei, X. Y. & Zhang, L. Macrophage migration inhibitory factor regulates proliferation of gastric cancer cells via the PI3K/Akt pathway. World J. Gastroenterol. 15, 5541–5548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 190, 1375–1382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jung, H., Seong, H. A. & Ha, H. Critical role of cysteine residue 81 of macrophage migration inhibitory factor (MIF) in MIF-induced inhibition of p53 activity. J. Biol. Chem. 283, 20383–20396 (2008).

    CAS  PubMed  Google Scholar 

  69. Petrenko, O. & Moll, U. M. Macrophage migration inhibitory factor MIF interferes with the Rb-E2F pathway. Mol. Cell 17, 225–236 (2005).

    CAS  PubMed  Google Scholar 

  70. Brock, S. E., Rendon, B. E., Xin, D., Yaddanapudi, K. & Mitchell, R. A. MIF family members cooperatively inhibit p53 expression and activity. PLOS ONE 9, e99795 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Taylor, J. A. 3rd et al. Regulation of the prostaglandin pathway during development of invasive bladder cancer in mice. Prostaglandins Other Lipid Mediat. 88, 36–41 (2009).

    CAS  PubMed  Google Scholar 

  72. Mitchell, R. A. et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc. Natl Acad. Sci. USA 99, 345–350 (2002).

    CAS  PubMed  Google Scholar 

  73. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  PubMed  Google Scholar 

  74. Nakanishi, M. & Rosenberg, D. W. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 35, 123–137 (2013).

    CAS  PubMed  Google Scholar 

  75. Finetti, F. et al. mPGES-1 in prostate cancer controls stemness and amplifies epidermal growth factor receptor-driven oncogenicity. Endocr. Relat. Cancer 22, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Abdul-Aziz, A. M. et al. MIF-induced stromal PKCbeta/IL8 is essential in human acute myeloid leukemia. Cancer Res. 77, 303–311 (2017).

    CAS  PubMed  Google Scholar 

  77. Zhu, G. et al. HIF-alpha/MIF and NF-kappaB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+myeloid cells in hypoxic microenvironment of HNSCC. Neoplasia 16, 168–179 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xie, J. et al. Macrophage migration inhibitor factor upregulates MCP-1 expression in an autocrine manner in hepatocytes during acute mouse liver injury. Sci. Rep. 6, 27665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Veillat, V. et al. Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J. Clin. Endocrinol. Metab. 95, E403–E412 (2010).

    CAS  PubMed  Google Scholar 

  80. Najafi, M. et al. Macrophage polarity in cancer: a review. J. Cell. Biochem. 120, 2756–2765 (2018).

    PubMed  Google Scholar 

  81. Taniguchi, K. & Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol. 26, 54–74 (2014).

    CAS  PubMed  Google Scholar 

  82. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huttl, S. et al. Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem. J. 473, 1405–1422 (2016).

    PubMed  Google Scholar 

  84. Huttl, S. et al. Processing of CD74 by the intramembrane protease SPPL2a is critical for B cell receptor signaling in transitional B cells. J. Immunol. 195, 1548–1563 (2015).

    PubMed  Google Scholar 

  85. Becker-Herman, S., Arie, G., Medvedovsky, H., Kerem, A. & Shachar, I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol. Biol. Cell 16, 5061–5069 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Salminen, A. & Kaarniranta, K. Control of p53 and NF-kappaB signaling by WIP1 and MIF: role in cellular senescence and organismal aging. Cell Signal. 23, 747–752 (2011).

    CAS  PubMed  Google Scholar 

  87. Shi, X. et al. CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25, 595–606 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bernhagen, J. et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 (2007).

    CAS  PubMed  Google Scholar 

  89. Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45 (2003).

    CAS  PubMed  Google Scholar 

  90. Lourenco, S. et al. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J. Immunol. 194, 3463–3474 (2015).

    CAS  PubMed  Google Scholar 

  91. Zhang, H. et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 36, 2095–2104 (2017).

    CAS  PubMed  Google Scholar 

  92. Kleemann, R. et al. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  93. Sugimoto, H. et al. Crystallization and preliminary X-ray analysis of human D-dopachrome tautomerase. J. Struct. Biol. 120, 105–108 (1997).

    CAS  PubMed  Google Scholar 

  94. Guo, D. et al. D-Dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. Int. J. Cancer 139, 2056–2067 (2016).

    CAS  PubMed  Google Scholar 

  95. Rajasekaran, D. et al. Targeting distinct tautomerase sites of D-DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB J. 28, 4961–4971 (2014). This paper notes that MIF and DDT may need to be specifically targeted, as not all inhibitors target them both.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Winner, M. et al. A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells. Cancer Res. 68, 7253–7257 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT03424603 (2018).

  98. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT00989586 (2017).

  99. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT01765790 (2017).

  100. Cho, Y. et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl Acad. Sci. USA 107, 11313–11318 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT01982942 (2018).

  102. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT03594435 (2018).

  103. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/show/NCT02714036 (2018).

  104. Meyer-Siegler, K. & Hudson, P. B. Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology 48, 448–452 (1996).

    CAS  PubMed  Google Scholar 

  105. Sfanos, K. S., Hempel, H. A. & De Marzo, A. M. The role of inflammation in prostate cancer. Adv. Exp. Med. Biol. 816, 153–181 (2014).

    CAS  PubMed  Google Scholar 

  106. Twu, O. & Johnson, P. J. Parasite extracellular vesicles: mediators of intercellular communication. PLOS Pathog. 10, e1004289 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Twu, O. et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc. Natl Acad. Sci. USA 111, 8179–8184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ding, G. X. et al. The association between MIF-173 G>C polymorphism and prostate cancer in southern Chinese. J. Surg. Oncol. 100, 106–110 (2009).

    CAS  PubMed  Google Scholar 

  109. Meyer-Siegler, K. L., Iczkowski, K. A. & Vera, P. L. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer 5, 73 (2005).

    PubMed  PubMed Central  Google Scholar 

  110. Hussain, F. et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol. Cancer Ther. 12, 1223–1234 (2013).

    CAS  PubMed  Google Scholar 

  111. Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. 7, 736–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tawadros, T. et al. Release of macrophage migration inhibitory factor by neuroendocrine-differentiated LNCaP cells sustains the proliferation and survival of prostate cancer cells. Endocr. Relat. Cancer 20, 137–149 (2013).

    CAS  PubMed  Google Scholar 

  113. Meyer-Siegler, K. L., Cox, J., Leng, L., Bucala, R. & Vera, P. L. Macrophage migration inhibitory factor anti-thrombin III complexes are decreased in bladder cancer patient serum: complex formation as a mechanism of inactivation. Cancer Lett. 290, 49–57 (2010).

    CAS  PubMed  Google Scholar 

  114. Vera, P. L. et al. Elevated urine levels of macrophage migration inhibitory factor in inflammatory bladder conditions: a potential biomarker for a subgroup of interstitial cystitis/bladder pain syndrome patients. Urology 116, 55–62 (2018).

    PubMed  Google Scholar 

  115. Sanchez-Zamora, Y. et al. Macrophage migration inhibitory factor is a therapeutic target in treatment of non-insulin-dependent diabetes mellitus. FASEB J. 24, 2583–2590 (2010).

    CAS  PubMed  Google Scholar 

  116. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fantini, D. et al. A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene 37, 1911–1925 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Taylor, J. A. 3rd et al. Null mutation for macrophage migration inhibitory factor (MIF) is associated with less aggressive bladder cancer in mice. BMC Cancer 7, 135 (2007).

    PubMed  PubMed Central  Google Scholar 

  119. Mirsaidi, N. et al. Enhanced mortality to metastatic bladder cancer cell line MB49 in vasoactive intestinal peptide gene knockout mice. Front. Endocrinol. 8, 162 (2017).

    Google Scholar 

  120. Sui, X., Lei, L., Chen, L., Xie, T. & Li, X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 8, 93279–93294 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Siefker-Radtke, A. O., Apolo, A. B., Bivalacqua, T. J., Spiess, P. E. & Black, P. C. Immunotherapy with checkpoint blockade in the treatment of urothelial carcinoma. J. Urol. 199, 1129–1142 (2018).

    PubMed  Google Scholar 

  122. Shachar, I. An essential MIF-CD74 signaling axis in kidney tubular regeneration, with prospects for precision medicine and pharmacological augmentation. Am. J. Physiol. Renal Physiol. 313, F1084–F1086 (2017).

    PubMed  Google Scholar 

  123. Haase, V. H. The VHL tumor suppressor in development and disease: functional studies in mice by conditional gene targeting. Semin. Cell Dev. Biol. 16, 564–574 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Penticuff, J. C. & Kyprianou, N. Therapeutic challenges in renal cell carcinoma. Am. J. Clin. Exp. Urol. 3, 77–90 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Masoud, G. N. & Li, W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378–389 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Terry, S., Buart, S. & Chouaib, S. Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front. Immunol. 8, 1625 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Valino-Rivas, L. et al. CD74 in kidney disease. Front. Immunol. 6, 483 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Baugh, J. A. et al. Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1. Biochem. Biophys. Res. Commun. 347, 895–903 (2006).

    CAS  PubMed  Google Scholar 

  129. Du, W. et al. Tumor-derived macrophage migration inhibitory factor promotes an autocrine loop that enhances renal cell carcinoma. Oncogene 32, 1469–1474 (2013). This study shows a role for MIF in RCC.

    CAS  PubMed  Google Scholar 

  130. Pasupuleti, V. et al. Dysregulated D-dopachrome tautomerase, a hypoxia-inducible factor-dependent gene, cooperates with macrophage migration inhibitory factor in renal tumorigenesis. J. Biol. Chem. 289, 3713–3723 (2014).

    CAS  PubMed  Google Scholar 

  131. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gupta, Y., Pasupuleti, V., Du, W. & Welford, S. M. Macrophage migration inhibitory factor secretion is induced by ionizing radiation and oxidative stress in cancer cells. PLOS ONE 11, e0146482 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Galsky, M. D. et al. Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur. Urol. 73, 751–759 (2018).

    CAS  PubMed  Google Scholar 

  134. Sapra, P. et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res. 11, 5257–5264 (2005).

    CAS  PubMed  Google Scholar 

  135. Govindan, S. V. et al. Milatuzumab-SN-38 conjugates for the treatment of CD74 + cancers. Mol. Cancer Ther. 12, 968–978 (2013).

    CAS  PubMed  Google Scholar 

  136. Pantouris, G. et al. Nanosecond dynamics regulate the MIF-induced activity of CD74. Angew. Chem. Int. Ed. 57, 7116–7119 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Leo and Anne Albert Trust for supporting this work.

Reviewer information

Nature Reviews Urology thanks J. Lathia and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.A.T., J.P. and B.L.W. researched data for the article. J.A.T., J.P., B.L.W. and T.M.S. made substantial contributions to discussion of the article contents. J.A.T., J.P. and B.L.W. wrote the manuscript. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John A. Taylor III.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Delayed-type hypersensitivity reactions

Cell-mediated immune responses associated with foreign antigen recognition.

Innate immune response

An initial immune response mounted by the innate immune system (neutrophils, monocytes and macrophages) that happens immediately upon antigen recognition.

Adaptive immune response

An adaptive immune response is carried out after antigen recognition by adaptive immune cells (B cells and T cells) after long-term antigen recognition and memory.

Arachidonic acid metabolism

Arachidonic acid is the primary precursor to multiple prostaglandins that serve as primary inflammatory mediators as well as mediators of pain, muscle contraction and pro-tumorigenic signalling pathways.

G protein-coupled receptor

A protein receptor that transmits signalling through guanine nucleotide binding proteins.

Transcellular pathway

A poorly understood method for macrophage migration inhibitory factor (MIF) to cross the cellular barrier that does not appear to be receptor-mediated.

Lethal endotoxaemia

A type of shock in which the body undergoes organ failure owing to an uncontrolled immune response to high levels of bacteria or bacterial particles.

Antibody–drug conjugates

(ADCs). Conjugates of an antibody and a chemotherapeutic designed to enhance the therapeutic potential of both.

Gleason scores

A system of scoring prostate cancer to predict tumour invasiveness and size.

Transdifferentiation

Differentiation to a new somatic cell type without undergoing transfer to a typical pluripotent state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penticuff, J.C., Woolbright, B.L., Sielecki, T.M. et al. MIF family proteins in genitourinary cancer: tumorigenic roles and therapeutic potential. Nat Rev Urol 16, 318–328 (2019). https://doi.org/10.1038/s41585-019-0171-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0171-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing