Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index

Abstract

The molecular mechanisms of toxicity of chemically modified phosphorothioate antisense oligonucleotides (PS-ASOs) are not fully understood. Here, we report that toxic gapmer PS-ASOs containing modifications such as constrained ethyl (cEt), locked nucleic acid (LNA) and 2′-O-methoxyethyl (2′-MOE) bind many cellular proteins with high avidity, altering their function, localization and stability. We show that RNase H1–dependent delocalization of paraspeckle proteins to nucleoli is an early event in PS-ASO toxicity, followed by nucleolar stress, p53 activation and apoptotic cell death. Introduction of a single 2′-O-methyl (2′-OMe) modification at gap position 2 reduced protein-binding, substantially decreasing hepatotoxicity and improving the therapeutic index with minimal impairment of antisense activity. We validated the ability of this modification to generally mitigate PS-ASO toxicity with more than 300 sequences. Our findings will guide the design of PS-ASOs with optimal therapeutic profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Toxic cEt gapmer PS-ASOs induce apoptosis.
Fig. 2: Toxic 3-10-3 cEt gapmer PS-ASOs delocalize paraspeckle proteins and kinetics of ASO toxicity.
Fig. 3: Toxicity of PS-ASOs correlates with intracellular protein-binding.
Fig. 4: A single 2′-OMe modification at gap position 2 reduces ASO–protein interactions and mitigates ASO toxicity.
Fig. 5: The 2′-OMe modification at gap position 2 broadly mitigates toxicity and improves the therapeutic index of PS-ASOs.
Fig. 6: Models of PS-ASO toxicity.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Crooke, S. T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 27, 70–77 (2017).

    Article  CAS  Google Scholar 

  2. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  Google Scholar 

  3. Swayze, E. E. & Bhat, B. in Antisense Drug Technology—Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 143–182 (CRC Press, 2008).

  4. Frazier, K. S. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol. 43, 78–89 (2015).

    Article  Google Scholar 

  5. Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687–700 (2007).

    Article  CAS  Google Scholar 

  6. Burdick, A. D. et al. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides. Nucleic Acids Res. 42, 4882–4891 (2014).

    Article  CAS  Google Scholar 

  7. Kakiuchi-Kiyota, S. et al. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. Toxicol. Sci. 138, 234–248 (2014).

    Article  CAS  Google Scholar 

  8. Kamola, P. J. et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res. 43, 8638–8650 (2015).

    Article  CAS  Google Scholar 

  9. Kasuya, T. et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci. Rep. 6, 30377 (2016).

    Article  CAS  Google Scholar 

  10. Burel, S. A. et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 44, 2093–2109 (2016).

    Article  CAS  Google Scholar 

  11. Kakiuchi-Kiyota, S., Whiteley, L. O., Ryan, A. M. & Mathialagan, N. Development of a method for profiling protein interactions with LNA-modified antisense oligonucleotides using protein microarrays. Nucleic Acid Ther. 26, 93–101 (2016).

    Article  CAS  Google Scholar 

  12. Kamola, P. J. et al. Strategies for in vivo screening and mitigation of hepatotoxicity associated with antisense drugs. Mol. Ther. Nucleic Acids 8, 383–394 (2017).

    Article  CAS  Google Scholar 

  13. Dieckmann, A. et al. A sensitive in vitro approach to assess the hybridization-dependent toxic potential of high affinity gapmer oligonucleotides. Mol. Ther. Nucleic Acids 10, 45–54 (2018).

    Article  CAS  Google Scholar 

  14. Bohr, H. G. et al. Electronic structures of LNA phosphorothioate oligonucleotides. Mol. Ther. Nucleic Acids 8, 428–441 (2017).

    Article  CAS  Google Scholar 

  15. Brown, D. A. et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J. Biol. Chem. 269, 26801–26805 (1994).

    CAS  PubMed  Google Scholar 

  16. Liang, X. H., Sun, H., Shen, W. & Crooke, S. T. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res. 43, 2927–2945 (2015).

    Article  CAS  Google Scholar 

  17. Shen, W. et al. Acute hepatotoxicity of 2’ fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46, 2204–2217 (2018).

    Article  CAS  Google Scholar 

  18. Vickers, T. A. & Crooke, S. T. Development of a quantitative BRET affinity assay for nucleic acid-protein interactions. PLoS ONE 11, e0161930 (2016).

    Article  Google Scholar 

  19. Sewing, S. et al. Establishment of a predictive in vitro assay for assessment of the hepatotoxic potential of oligonucleotide drugs. PLoS ONE 11, e0159431 (2016).

    Article  Google Scholar 

  20. Shen, W., Liang, X. H. & Crooke, S. T. Phosphorothioate oligonucleotides can displace NEAT1 RNA and form nuclear paraspeckle-like structures. Nucleic Acids Res. 42, 8648–8662 (2014).

    Article  CAS  Google Scholar 

  21. Bailey, J. K., Shen, W., Liang, X. H. & Crooke, S. T. Nucleic acid binding proteins affect the subcellular distribution of phosphorothioate antisense oligonucleotides. Nucleic Acids Res. 45, 10649–10671 (2017).

    Article  CAS  Google Scholar 

  22. Lorenz, P., Baker, B. F., Bennett, C. F. & Spector, D. L. Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies. Mol. Biol. Cell. 9, 1007–1023 (1998).

    Article  CAS  Google Scholar 

  23. Calo, E. et al. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature 554, 112–117 (2018).

    Article  CAS  Google Scholar 

  24. Vickers, T. A. & Crooke, S. T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res. 43, 8955–8963 (2015).

    Article  CAS  Google Scholar 

  25. Liang, X. H., Sun, H., Nichols, J. G. & Crooke, S. T. RNase H1-dependent antisense oligonucleotides are robustly active in directing rna cleavage in both the cytoplasm and the nucleus. Mol. Ther. 25, 2075–2092 (2017).

    Article  CAS  Google Scholar 

  26. Crooke, S. T., Wang, S., Vickers, T. A., Shen, W. & Liang, X. H. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35, 230–237 (2017).

    Article  CAS  Google Scholar 

  27. Thomas, M. P. et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3’ uridylated intermediates degraded by DIS3L2. Cell Rep. 11, 1079–1089 (2015).

    Article  CAS  Google Scholar 

  28. Liang, X. H. et al. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2’-modifications and enhances antisense activity. Nucleic Acids Res. 44, 3892–3907 (2016).

    Article  CAS  Google Scholar 

  29. Mircsof, D. et al. Mutations in NONO lead to syndromic intellectual disability and inhibitory synaptic defects. Nat. Neurosci. 18, 1731–1736 (2015).

    Article  CAS  Google Scholar 

  30. Shen, W., Liang, X. H., Sun, H., De Hoyos, C. L. & Crooke, S. T. Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS ONE 12, e0173494 (2017).

    Article  Google Scholar 

  31. Takeuchi, A. et al. Loss of Sfpq causes long-gene transcriptopathy in the brain. Cell Rep. 23, 1326–1341 (2018).

    Article  CAS  Google Scholar 

  32. Stanton, R. et al. Chemical modification study of antisense gapmers. Nucleic Acid Ther. 22, 344–359 (2012).

    Article  CAS  Google Scholar 

  33. Hagedorn, P. H. et al. Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther. 23, 302–310 (2013).

    Article  CAS  Google Scholar 

  34. Shen, W., Liang, X. H., Sun, H. & Crooke, S. T. 2’-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 43, 4569–4578 (2015).

    Article  CAS  Google Scholar 

  35. Liang, X. H., Shen, W., Sun, H., Prakash, T. P. & Crooke, S. T. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Res. 42, 7819–7832 (2014).

    Article  CAS  Google Scholar 

  36. Wang, S. et al. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res. 46, 3579–3594 (2018).

    Article  CAS  Google Scholar 

  37. Kasuya, T. & Kugimiya, A. Role of computationally evaluated target specificity in the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acid Ther. 28, 312–317 (2018).

    Article  CAS  Google Scholar 

  38. Henry, S. P. et al. in Antisense Drug Technology—Principles, Strategies, and Applications 2nd edn (ed. Crooke, S. T.) 305–326 (CRC Press, 2008).

  39. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  Google Scholar 

  40. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

    Article  CAS  Google Scholar 

  41. King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62 (2013).

    Article  CAS  Google Scholar 

  42. Shav-Tal, Y. & Zipori, D. PSF and p54(nrb)/NonO—multi-functional nuclear proteins. FEBS Lett. 531, 109–114 (2002).

    Article  CAS  Google Scholar 

  43. Koch, T., Shim, I., Lindow, M., Orum, H. & Bohr, H. G. Quantum mechanical studies of DNA and LNA. Nucleic Acid Ther. 24, 139–148 (2014).

    Article  CAS  Google Scholar 

  44. Gao, W. Y., Han, F. S., Storm, C., Egan, W. & Cheng, Y. C. Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol. Pharmacol. 41, 223–229 (1992).

    CAS  PubMed  Google Scholar 

  45. Shen, W. et al. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Res. 45, 10672–10692 (2017).

    Article  CAS  Google Scholar 

  46. Lima, W. F. et al. Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Res. 44, 5299–5312 (2016).

    Article  CAS  Google Scholar 

  47. Ostergaard, M. E. et al. Efficient synthesis and biological evaluation of 5’-GalNAc conjugated antisense oligonucleotides. Bioconjug. Chem. 26, 1451–1455 (2015).

    Article  Google Scholar 

  48. Liebhaber, S. A., Wolf, S. & Schlessinger, D. Differences in rRNA metabolism of primary and SV40-transformed human fibroblasts. Cell 13, 121–127 (1978).

    Article  CAS  Google Scholar 

  49. Wu, H. et al. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J. Biol. Chem. 279, 17181–17189 (2004).

    Article  CAS  Google Scholar 

  50. Wu, H., Sun, H., Liang, X., Lima, W. F. & Crooke, S. T. Human RNase H1 is associated with protein P32 and is involved in mitochondrial pre-rRNA processing. PLoS ONE 8, e71006, 71001–71015. (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Ionis Pharmaceuticals internal funding. We thank B. DeBrosse-Serra and X. Xiao for histology assistance; M. Andrade and T. Prakash for ASO synthesis; N. Allen for help in the animal studies; D. Sipe for handling of animal facilities; A. Berdeja for technical support; T. Reigle for helping with figure preparation; and H. Chang, S. Wang, J. Bailey, M. Graham, A. Mullick, E. Swayze and F. Bennett for discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.S., M.T.M., P.P.S., T.A.V., X.L. and S.T.C. designed the research. W.S., C.L.D., M.T.M., T.A.V., H.S., A.L., T.A.B.III, M.R., S.M., C.E.H., M.B., S.F.M., R.M.C. and S.G. performed the experiments. All authors analyzed the data. W.S., P.P.S., T.A.V., X.L. and S.T.C. wrote the manuscript.

Corresponding author

Correspondence to Stanley T. Crooke.

Ethics declarations

Competing interests

All authors are employees of Ionis Pharmaceuticals. A patent related to this study has been submitted.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42 and Supplementary Tables 1–7

Reporting Summary

Supplementary Video 1

Kinetics of non-toxic cEt gapmer PS-ASOs association with P54nrb in live cells. The HeLa/LgBiT-P54nrb cell line was transfected with pNPM1-GFP. The following day cells were treated with 100 nM non-toxic SmBiT-conjugated cEt gapmer PS-ASO 978671 (3′ SmBiT peptide-conjugated 549148) and visualized using a bioluminescence imaging microscope at 3-min intervals for a total of 2.25 h collecting brightfield, GFP (green) and NLuc bioluminescence (blue) signals. Data are representative of three biologically independent experiments.

Supplementary Video 2

Kinetics of toxic cEt gapmer PS-ASOs association with P54nrb in live cells. The HeLa/LgBiT-P54nrb cell line was transfected with pNPM1-GFP. The following day cells were treated with 100 nM toxic SmBiT-conjugated cEt gapmer PS-ASO 978780 (3′ SmBiT peptide-conjugated 464917) and visualized using a bioluminescence imaging microscope at 3-min intervals for a total of 1.5 h collecting brightfield, GFP (green) and NLuc bioluminescence (blue) signals. Data are representative of three biologically independent experiments.

Supplementary Video 3

Live cell movie of toxic PS-ASO-induced nucleolar delocalization of paraspeckle protein PSF. HeLa cells overexpressing GFP-PSF (white signal) were transfected with toxic (T) PS-ASO 821033 (5′-Cy3-labeled 558807; red signal) at 200 nM and visualized using a confocal microscope at 5-min intervals for 70 minutes. Data are representative of three biologically independent experiments.

Supplementary Video 4

Kinetics of toxic cEt gapmer PS-ASO association with P54nrb in live cells depleted of RNase H1. The LgBiT-P54nrb HeLa cell line was treated with a siRNA targeting RNase H1 for 48 h. The cells were then treated with the toxic SmBiT-conjugated cEt ASO 978780 at 100 nM. Images were collected at 3-minute intervals for 2 h collecting brightfield and NLuc bioluminescence (blue) signals. Data are representative of three biologically independent experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., De Hoyos, C.L., Migawa, M.T. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 37, 640–650 (2019). https://doi.org/10.1038/s41587-019-0106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-019-0106-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research