Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Glutamate as a therapeutic target in psychiatric disorders

Abstract

Glutamate is the primary excitatory neurotransmitter in the mammalian brain. Glutamatergic neurotransmission may be modulated at multiple levels, only a minority of which are currently being exploited for pharmaceutical development. Ionotropic receptors for glutamate are divided into N-methyl-D-aspartate receptor (NMDAR) and AMPA receptor subtypes. NMDAR have been implicated in the pathophysiology of schizophrenia. The glycine modulatory site of the NMDAR is currently a favored therapeutic target, with several modulatory agents currently undergoing clinical development. Of these, the full agonists glycine and D-serine have both shown to induce significant, large effect size reductions in persistent negative and cognitive symptoms when added to traditional or newer atypical antipsychotics in double-blind, placebo-controlled clinical studies. Glycine (GLYT1) and small neutral amino-acid (SNAT) transporters, which regulate glycine levels, represent additional targets for drug development, and may represent a site of action of clozapine. Brain transporters for D-serine have recently been described. Metabotropic glutamate receptors are positively (Group I) or negatively (Groups II and III) coupled to glutamatergic neurotransmission. Metabotropic modulators are currently under preclinical development for neuropsychiatric conditions, including schizophrenia, depression and anxiety disorders. Other conditions for which glutamate modulators may prove effective include stroke, epilepsy, Alzheimer disease and PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Nieuwenhuys R . The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berlin) 1994; 190: 307–337.

    Article  CAS  Google Scholar 

  2. Amara SG, Fontana AC . Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 2002; 41: 313–318.

    Article  CAS  PubMed  Google Scholar 

  3. Shulman RG, Hyder F, Rothman DL . Biophysical basis of brain activity: implications for neuroimaging. Q Rev Biophys 2002; 35: 287–325.

    Article  CAS  PubMed  Google Scholar 

  4. Bonvento G, Sibson N, Pellerin L . Does glutamate image your thoughts? Trends Neurosci 2002; 25: 359–364.

    Article  CAS  PubMed  Google Scholar 

  5. Mackenzie B, Erickson JD . Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 2003; 447: 784–795.

    Article  CAS  PubMed  Google Scholar 

  6. Aschner M . Neuron-astrocyte interactions: implications for cellular energetics and antioxidant levels. Neurotoxicology 2000; 21: 1101–1107.

    CAS  PubMed  Google Scholar 

  7. Chaudhry FA, Schmitz D, Reimer RJ, Larsson P, Gray AT, Nicoll R et al. Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci 2002; 22: 62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shoham S, Javitt DC, Heresco-Levy U . High dose glycine nutrition affects glial cell morphology in rat hippocampus and cerebellum. Int J Neuropsychopharmacol 1999; 2: 35–40.

    Article  CAS  PubMed  Google Scholar 

  9. Shoham S, Javitt DC, Heresco-Levy U . Chronic high-dose glycine nutrition: effects on rat brain cell morphology. Biol Psychiatry 2001; 49: 876–885.

    Article  CAS  PubMed  Google Scholar 

  10. Yamakura T, Shimoji K . Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 1999; 59: 279–298.

    Article  CAS  PubMed  Google Scholar 

  11. Nicoll RA . Expression mechanisms underlying long-term potentiation: a postsynaptic view. Philos Trans Roy Soc London B Biol Sci 2003; 358: 721–726.

    Article  CAS  Google Scholar 

  12. Kwon YH, Esguerra M, Sur M . NMDA and non-NMDA receptors mediate visual responses of neurons in the cat's lateral geniculate nucleus. J Neurophysiol 1991; 66: 414–428.

    Article  CAS  PubMed  Google Scholar 

  13. Schiller J, Schiller Y . NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 2001; 11: 343–348.

    Article  CAS  PubMed  Google Scholar 

  14. Rivadulla C, Sharma J, Sur M . Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 2001; 21: 1710–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heggelund P, Hartveit E . Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. J Neurophysiol 1990; 63: 1347–1360.

    Article  CAS  PubMed  Google Scholar 

  16. Philpot BD, Sekhar AK, Shouval HZ, Bear MF . Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 2001; 29: 157–169.

    Article  CAS  PubMed  Google Scholar 

  17. Shouval HZ, Bear MF, Cooper LN . A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 2002; 99: 10831–10836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirao T, Sekino Y . Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines. Neurosci Res 2001; 40: 1–7.

    Article  CAS  PubMed  Google Scholar 

  19. O'Brien RJ, Lau LF, Huganir RL . Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol 1998; 8: 364–369.

    Article  CAS  PubMed  Google Scholar 

  20. Clark BA, Cull-Candy SG . Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci 2002; 22: 4428–4436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tovar KR, Westbrook GL . Mobile NMDA receptors at hippocampal synapses. Neuron 2002; 34: 255–264.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson JW, Asher P . Glycine potentiates the NMDA responses in cultured mouse brain neurons. Nature 1987; 325: 529–531.

    Article  CAS  PubMed  Google Scholar 

  23. Hashimoto A, Nishikawa T, Oka T, Takahashi K . Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J Neurochem 1993; 60: 783–786.

    Article  CAS  PubMed  Google Scholar 

  24. Mothet JP, Parent AT, Wolosker H, Brady Jr RO, Linden DJ, Ferris CD et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97: 4926–4931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hood WF, Compton RP, Monahan JB . D-cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 1989; 98: 91–95.

    Article  CAS  PubMed  Google Scholar 

  26. Supplisson S, Bergman C . Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes. J Neurosci 1997; 17: 4580–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K . Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 1995; 65: 454–458.

    Article  CAS  PubMed  Google Scholar 

  28. Debler EA, Lajtha A . High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamatic acid in synaptosomal (P2) tissue: a kinetic and substrate specificity analysis. J Neurochemistry 1987; 48: 1851–1856.

    Article  CAS  Google Scholar 

  29. Javitt DC, Duncan L, McGrath E, Balla A, Sershen H . System A mediated glycine transport in cortical synaptosomes is inhibited by therapeutic concentrations of clozapine: implications for mechanims of action. Mol Psychiatry, submitted.

  30. Gomeza J, Ohno K, Betz H . Glycine transporter isoforms in the mammalian central nervous system: structures, functions and therapeutic promises. Curr Opin Drug Discov Devel 2003; 6: 675–682.

    CAS  PubMed  Google Scholar 

  31. Roux MJ, Supplisson S . Neuronal and glial glycine transporters have different stoichiometries. Neuron 2000; 25: 373–383.

    Article  CAS  PubMed  Google Scholar 

  32. Takanaga H, Tokuda N, Ohtsuki S, Hosoya K, Terasaki T . ATA2 is predominantly expressed as system A at the blood–brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 2002; 61: 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  33. Dunlop DS, Neidle A . The origin and turnover of D-serine in brain. Biochem Biophys Res Commun 1997; 235: 26–30.

    Article  CAS  PubMed  Google Scholar 

  34. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady Jr RO, Ferris CD et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 1999; 96: 721–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolosker H, Blackshaw S, Snyder SH . Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96: 13409–13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Javitt DC, Balla A, Sershen H . A novel alanine-insensitive D-serine transporter in rat brain synaptosomal membranes. Brain Res 2002; 941: 146–149.

    Article  CAS  PubMed  Google Scholar 

  38. Yamomoto N, Tomita U, Umino A, Kaneda K, Kawaguchi N, Iwama H et al. Uptake and release of [3H]D-serine in the synaptosomal P2 fraction prepared from the rat cerebral cortex. Neurochem Res 2001; 26: 285.

    Google Scholar 

  39. Tanaka H, Grooms SY, Bennett MV, Zukin RS . The AMPAR subunit GluR2: still front and center-stage. Brain Res 2000; 886: 190–207.

    Article  CAS  PubMed  Google Scholar 

  40. Isaac JT, Nicoll RA, Malenka RC . Silent glutamatergic synapses in the mammalian brain. Can J Physiol Pharmacol 1999; 77: 735–737.

    Article  CAS  PubMed  Google Scholar 

  41. Rogawski MA, Donevan SD . AMPA receptors in epilepsy and as targets for antiepileptic drugs. Adv Neurol 1999; 79: 947–963.

    CAS  PubMed  Google Scholar 

  42. Suppiramaniam V, Bahr BA, Sinnarajah S, Owens K, Rogers G, Yilma S et al. Member of the Ampakine class of memory enhancers prolongs the single channel open time of reconstituted AMPA receptors. Synapse 2001; 40: 154–158.

    Article  CAS  PubMed  Google Scholar 

  43. Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R . Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 2003; 14: 257–277.

    Article  CAS  PubMed  Google Scholar 

  44. Chavez-Noriega LE, Schaffhauser H, Campbell UC . Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Target CNS Neurol Disord 2002; 1: 261–281.

    Article  CAS  Google Scholar 

  45. Alagarsamy S, Rouse ST, Junge C, Hubert GW, Gutman D, Smith Y et al. NMDA-induced phosphorylation and regulation of mGluR5. Pharmacol Biochem Behav 2002; 73: 299–306.

    Article  CAS  PubMed  Google Scholar 

  46. Javitt DC, Zukin SR . Mechanisms of phencyclidine (PCP)-N-methyl-D-asparate (NMDA) receptor interaction: implications for schizophrenia. In: Tamminga CA, Schulz SC (eds). Raven Press: New York, 1991 pp 13–20.

  47. Olney JW, Newcomer JW, Farber NB . NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999; 33: 523–533.

    Article  CAS  PubMed  Google Scholar 

  48. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999; 20: 106–118.

    Article  CAS  PubMed  Google Scholar 

  49. Abi-Saab WM, D'Souza DC, Moghaddam B, Krystal JH . The NMDA antagonist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 1998; 31 (Suppl 2): 104–109.

    Article  CAS  PubMed  Google Scholar 

  50. Coyle JT . The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 1996; 3: 241–253.

    Article  CAS  PubMed  Google Scholar 

  51. Carlsson A, Hansson LO, Waters N, Carlsson ML . A glutamatergic deficiency model of schizophrenia. Br J Psychiatry Suppl 1999; 37: 2–6.

    Article  Google Scholar 

  52. Kapur S, Seeman P . NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D(2) and serotonin 5-HT(2)receptors-implications for models of schizophrenia. Mol Psychiatry 2002; 7: 837–844.

    Article  CAS  PubMed  Google Scholar 

  53. Domino E, Luby E . Abnormal mental states induced by phencyclidine as a model of schizophrenia. In: Domino E (ed). PCP (Phencyclidine): Historical and Current Perspectives. NPP Books: Ann Arbor, MI, 1981 pp 401–418.

    Google Scholar 

  54. Domino EF, Chodoff P, Corssen G . Pharmacological effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 1965; 6: 279–291.

    Article  CAS  PubMed  Google Scholar 

  55. Javitt DC . Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 1987; 9: 12–35.

    CAS  PubMed  Google Scholar 

  56. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  57. Saykin AJ, Gur RC, Gur RE, Mozley PD, Mozley LH, Resnick SM et al. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry 1991; 48: 618–624.

    Article  CAS  PubMed  Google Scholar 

  58. Bilder RM, Goldman RS, Robinson D, Reiter G, Bell L, Bates JA et al. Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am J Psychiatry 2000; 157: 549–559.

    Article  CAS  PubMed  Google Scholar 

  59. Morris RGM . Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 1989; 9: 3040–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luby ED, Gottlieb JS, Cohen BD, Rosenbaum G, Domino EF . Model psychoses and schizophrenia. Am J Psychiatry 1962; 119: 61–67.

    Article  CAS  PubMed  Google Scholar 

  61. Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D et al. Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 1999; 156: 1646–1649.

    Article  CAS  PubMed  Google Scholar 

  62. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC . Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 2000; 57: 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  63. Erard R, Luisada PV, Peele R . The PCP psychosis: prolonged intoxication or drug-precipitated functional illness? J Psychedelic Drugs 1980; 12: 235–245.

    Article  CAS  PubMed  Google Scholar 

  64. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA . Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001; 25: 455–467.

    Article  CAS  PubMed  Google Scholar 

  65. Lahti AC, Koffel B, LaPorte D, Tamminga CA . Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 1995; 13: 9–19.

    Article  CAS  PubMed  Google Scholar 

  66. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997; 17: 141–150.

    Article  CAS  PubMed  Google Scholar 

  67. Umbricht D, Koller R, Vollenweider FX, Schmid L . Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychiatry 2002; 51: 400–406.

    Article  CAS  PubMed  Google Scholar 

  68. Thompson DM, Moerschbaecher JM . Phencyclidine in combination with d-amphetamine: differential effects on acquisition and performance of response chains in monkeys. Pharmacol Biochem Behav 1984; 20: 619–627.

    Article  CAS  PubMed  Google Scholar 

  69. Thompson DM, Winsauer PJ, Mastropaolo J . Effects of phencyclidine, ketamine and MDMA on complex operant behavior in monkeys. Pharmacol Biochem Behav 1987; 26: 401–405.

    Article  CAS  PubMed  Google Scholar 

  70. Linn GS, Javitt DC . Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 2001; 12: 117–120.

    Article  CAS  PubMed  Google Scholar 

  71. Linn GS, Negi SS, Gerum SV, Javitt DC . Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology (Berlin) 2003; 169: 234–239.

    Article  CAS  Google Scholar 

  72. Javitt DC, Lindsley RW . Effects of phencyclidine on prepulse inhibition of acoustic startle response in the Macaque. Psychophysiology 2001; 156: 165–168.

    CAS  Google Scholar 

  73. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  PubMed  Google Scholar 

  74. Duncan EJ, Madonick SH, Parwani A, Angrist B, Rajan R, Chakravorty S et al. Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 2001; 25: 72–83.

    Article  CAS  PubMed  Google Scholar 

  75. Balla A, Koneru R, Smiley J, Sershen H, Javitt DC . Continuous phencyclidine treatment induces schizophrenia-like hyperreactivity of striatal dopamine release. Neuropsychopharmacology 2001; 25: 157–164.

    Article  CAS  PubMed  Google Scholar 

  76. Balla A, Sershen H, Serra M, Koneru R, Javitt DC . Subchronic continuous phencyclidine administration potentiates amphetamine-induced frontal cortex dopamine release. Neuropsychopharmacology 2003; 28: 34–44.

    Article  CAS  PubMed  Google Scholar 

  77. Linn GS, O'Keeffe RT, Schroeder CE, Lifshitz K, Javitt DC . Behavioral effects of chronic phencyclidine in monkeys. Neuroreport 1999; 10: 2789–2793.

    Article  CAS  PubMed  Google Scholar 

  78. Jentsch JD, Taylor JR, Elsworth JD, Redmond Jr DE, Roth RH . Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 1999; 90: 823–832.

    Article  CAS  PubMed  Google Scholar 

  79. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  PubMed  Google Scholar 

  80. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T . Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 2001; 21: 750–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E et al. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 2002; 22: 6713–6723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang YP, Wang H, Feng R, Kyin M, Tsien JZ . Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 2001; 41: 779–790.

    Article  CAS  PubMed  Google Scholar 

  83. Coyle JT, Tsai G, Bergeron R, Martina M, Berger-Sweeney J . Gene Knockout Study of Glycine Transporter I. Program No. 373.15.2003 Abstract Viewer/Itinerary Planner. Society for Neuroscience: Washington, DC, 2003 Online. 2003.

    Google Scholar 

  84. Jentsch JD, Redmond Jr DE, Elsworth JD, Taylor JR, Youngren KD, Roth RH . Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 1997; 277: 953–955.

    Article  CAS  PubMed  Google Scholar 

  85. Jentsch JD, Roth RH, Taylor JR . Object retrieval/detour deficits in monkeys produced by prior subchronic phencyclidine administration: evidence for cognitive impulsivity. Biol Psychiatry 2000; 48: 415–424.

    Article  CAS  PubMed  Google Scholar 

  86. Curran HV, Monaghan L . In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction 2001; 96: 749–760.

    Article  CAS  PubMed  Google Scholar 

  87. Jansen KL . Ketamine—can chronic use impair memory? Int J Addict 1990; 25: 133–139.

    Article  CAS  PubMed  Google Scholar 

  88. Ellison G, Keys A, Noguchi K . Long-term changes in brain following continuous phencyclidine administration: an autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-3H(N)-TCP, and AMPA receptor ligands [In Process Citation]. Pharmacol Toxicol 1999; 84: 9–17.

    Article  CAS  PubMed  Google Scholar 

  89. Moghaddam B, Adams B, Verma A, Daly D . Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA . Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003; 117: 697–706.

    Article  CAS  PubMed  Google Scholar 

  91. Moghaddam B, Adams BW . Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  92. Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 2000; 57: 270–276.

    Article  CAS  PubMed  Google Scholar 

  93. Moghaddam B . Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993; 60: 1650–1657.

    Article  CAS  PubMed  Google Scholar 

  94. Olney JW, Farber NB . Glutamate receptor dysfunction in schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  95. Farber NB, Hanslick J, Kirby C, McWilliams L, Olney JW . Serotonergic agents that activate 5HT2A receptors prevent NMDA antagonist neurotoxicity. Neuropsychopharmacology 1998; 18: 57–62.

    Article  CAS  PubMed  Google Scholar 

  96. van Berckel BN, Evenblij CN, van Loon BJ, Maas MF, van der Geld MA, Wynne HJ et al. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology 1999; 21: 203–210.

    Article  CAS  PubMed  Google Scholar 

  97. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC . Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 2000; 157: 826–828.

    Article  CAS  PubMed  Google Scholar 

  98. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT . D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 1999; 156: 1822–1825.

    CAS  PubMed  Google Scholar 

  99. Goff DC, Tsai G, Manoach DS, Flood J, Darby D, Coyle JT . D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 1996; 153: 1628–1630.

    Article  CAS  PubMed  Google Scholar 

  100. Evins AE, Amico ET, Shih V, Goff DC . Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm 1997; 104: 761–766.

    Article  CAS  PubMed  Google Scholar 

  101. Melone M, Bragina L, Conti F . Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 2003; 8: 12–13.

    Article  CAS  PubMed  Google Scholar 

  102. Pietraszek M, Golembiowska K, Bijak M, Ossowska K, Wolfarth S . Differential effects of chronic haloperidol and clozapine administration on glutamatergic transmission in the fronto-parietal cortex in rats: microdialysis and electrophysiological studies. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 417–424.

    Article  CAS  PubMed  Google Scholar 

  103. Javitt DC, Frusciante M . Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology (Berlin) 1997; 129: 96–98.

    Article  CAS  Google Scholar 

  104. Harsing Jr LG, Solyom S, Salamon C . The role of glycineB binding site and glycine transporter (GlyT1) in the regulation of [3H]GABA and [3H]glycine release in the rat brain. Neurochem Res 2001; 26: 915–923.

    Article  CAS  PubMed  Google Scholar 

  105. Javitt DC, Sershen H, Hashim A, Lajtha A . Inhibition of striatal dopamine release by glycine and glycyldodecylamide. Brain Res Bull 2000; 52: 213–216.

    Article  CAS  PubMed  Google Scholar 

  106. Javitt DC, Sershen H, Hashim A, Lajtha A . Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 1997; 17: 202–204.

    Article  CAS  PubMed  Google Scholar 

  107. Toth E, Weiss B, Banay-Schwartz M, Lajtha A . Effect of glycine derivatives on behavioral changes induced by 3-mercaptopropionic acid or phencyclidine in mice. Res Comm Psychol Psychiat Behav 1986; 11: 1–9.

    CAS  Google Scholar 

  108. Javitt DC, Balla A, Sershen H, Lajtha A . A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 1999; 45: 668–679.

    Article  CAS  PubMed  Google Scholar 

  109. Aubrey KR, Vandenberg RJ . N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS) is a selective persistent inhibitor of glycine transport. Br J Pharmacol 2001; 134: 1429–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G et al. Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett 2001; 11: 2007–2009.

    Article  CAS  PubMed  Google Scholar 

  111. Harsing Jr LG, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 2003; 74: 811–825.

    Article  CAS  PubMed  Google Scholar 

  112. Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H . Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 2003; 29: 300–307.

    Article  CAS  Google Scholar 

  113. Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ et al. The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 2003; 23: 7586–7591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen L, Muhlhauser M, Yang CR . Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89: 691–703.

    Article  CAS  PubMed  Google Scholar 

  115. Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP, Moreau JL . Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 2003; 54: 1162–1170.

    Article  CAS  PubMed  Google Scholar 

  116. Tsai G, Lane HY, Yang P, Chong MY, Lange N . Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 2004; 55: 452–456.

    Article  CAS  PubMed  Google Scholar 

  117. Johnson SA, Luu NT, Herbst TA, Knapp R, Lutz D, Arai A et al. Synergistic interactions between ampakines and antipsychotic drugs. J Pharmacol Exp Ther 1999; 289: 392–397.

    CAS  PubMed  Google Scholar 

  118. Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001; 21: 484–487.

    Article  CAS  PubMed  Google Scholar 

  119. Marenco S, Egan MF, Goldberg TE, Knable MB, McClure RK, Winterer G et al. Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr Res 2002; 57: 221–226.

    Article  PubMed  Google Scholar 

  120. Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM . Chronic elevation of brain-derived neurotrophic factor by ampakines. J Pharmacol Exp Ther 2003; 307: 297–305.

    Article  CAS  PubMed  Google Scholar 

  121. Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 2000; 57: 270–276.

    Article  CAS  PubMed  Google Scholar 

  122. Dursun SM, McIntosh D, Milliken H . Clozapine plus lamotrigine in treatment-resistant schizophrenia. Arch Gen Psychiatry 1999; 56: 950.

    Article  CAS  PubMed  Google Scholar 

  123. Dursun SM, Deakin JF . Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatment-resistant schizophrenia: a naturalistic case-series outcome study. J Psychopharmacol 2001; 15: 297–301.

    Article  CAS  PubMed  Google Scholar 

  124. Tiihonen J, Hallikainen T, Ryynanen OP, Repo-Tiihonen E, Kotilainen I, Eronen M et al. Lamotrigine in treatment-resistant schizophrenia: a randomized placebo-controlled crossover trial. Biol Psychiatry 2003; 54: 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  125. Benquet P, Gee CE, Gerber U . Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002; 22: 9679–9686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 2002; 22: 5452–5461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A . The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 2002; 43: 1199–1209.

    Article  CAS  PubMed  Google Scholar 

  128. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ et al. Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 2003; 306: 116–123.

    Article  CAS  PubMed  Google Scholar 

  129. Cosford ND, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J et al. 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 2003; 46: 204–206.

    Article  CAS  PubMed  Google Scholar 

  130. Pilc A, Klodzinska A, Branski P, Nowak G, Palucha A, Szewczyk B et al. Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 2002; 43: 181–187.

    Article  CAS  PubMed  Google Scholar 

  131. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    Article  CAS  PubMed  Google Scholar 

  132. Brody SA, Conquet F, Geyer MA . Effect of antipsychotic treatment on the prepulse inhibition deficit of mGluR5 knockout mice. Psychopharmacology (Berl) 2003; 172: 187–195.

    Article  CAS  Google Scholar 

  133. Chojnacka-Wojcik E, Klodzinska A, Pilc A . Glutamate receptor ligands as anxiolytics. Curr Opin Invest Drugs 2001; 2: 1112–1119.

    CAS  Google Scholar 

  134. Maeda J, Suhara T, Okauchi T, Semba J . Different roles of group I and group II metabotropic glutamate receptors on phencyclidine-induced dopamine release in the rat prefrontal cortex. Neurosci Lett 2003; 336: 171–174.

    Article  CAS  PubMed  Google Scholar 

  135. Pin JP, Acher F . The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Target CNS Neurol Disord 2002; 1: 297–317.

    Article  CAS  Google Scholar 

  136. Muly EC, Maddox M, Smith Y . Distribution of mGluR1alpha and mGluR5 immunolabeling in primate prefrontal cortex. J Comp Neurol 2003; 467: 521–535.

    Article  CAS  PubMed  Google Scholar 

  137. Paquet M, Smith Y . Group I metabotropic glutamate receptors in the monkey striatum: subsynaptic association with glutamatergic and dopaminergic afferents. J Neurosci 2003; 23: 7659–7669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schoepp DD, Marek GJ . Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Target CNS Neurol Disord 2002; 1: 215–225.

    Article  CAS  Google Scholar 

  139. Clark M, Johnson BG, Wright RA, Monn JA, Schoepp DD . Effects of the mGlu2/3 receptor agonist LY379268 on motor activity in phencyclidine-sensitized rats. Pharmacol Biochem Behav 2002; 73: 339–346.

    Article  CAS  PubMed  Google Scholar 

  140. Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A et al. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am J Med Genet 2003; 116B: 17–22.

    Article  PubMed  Google Scholar 

  141. Cartmell J, Monn JA, Schoepp DD . Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology (Berlin) 2000; 148: 423–429.

    Article  CAS  Google Scholar 

  142. Swanson CJ, Schoepp DD . The group II metabotropic glutamate receptor agonist (−)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats. J Pharmacol Exp Ther 2002; 303: 919–927.

    Article  CAS  PubMed  Google Scholar 

  143. Lorrain DS, Schaffhauser H, Campbell UC, Baccei CS, Correa LD, Rowe B et al. Group II mGlu receptor activation suppresses norepinephrine release in the ventral hippocampus and locomotor responses to acute ketamine challenge. Neuropsychopharmacology 2003; 28: 1622–1632.

    Article  CAS  PubMed  Google Scholar 

  144. Ossowska K, Pietraszek M, Wardas J, Nowak G, Zajaczkowski W, Wolfarth S et al. The role of glutamate receptors in antipsychotic drug action. Amino Acids 2000; 19: 87–94.

    Article  CAS  PubMed  Google Scholar 

  145. Johnson MP, Baez M, Jagdmann Jr GE, Britton TC, Large TH, Callagaro DO et al. Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2- trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem 2003; 46: 3189–3192.

    Article  CAS  PubMed  Google Scholar 

  146. Tatarczynska E, Palucha A, Szewczyk B, Chojnacka-Wojcik E, Wieronska J, Pilc A . Anxiolytic- and antidepressant-like effects of group III metabotropic glutamate agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) in rats. Pol J Pharmacol 2002; 54: 707–710.

    Article  CAS  PubMed  Google Scholar 

  147. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ . Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003; 348: 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  148. Rogawski MA, Wenk GL . The neuropharmacological basis for the use of memantine in the treatment of Alzheimer's disease. CNS Drug Rev 2003; 9: 275–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Danysz W, Parsons CG . The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. Int J Geriatr Psychiatry 2003; 18: S23–32.

    Article  PubMed  Google Scholar 

  150. Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, Quack G . Neuroprotection by memantine against neurodegeneration induced by beta-amyloid(1-40). Brain Res 2002; 958: 210–221.

    Article  CAS  PubMed  Google Scholar 

  151. Abe K, Misawa M . Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci Res 2003; 45: 25–31.

    Article  CAS  PubMed  Google Scholar 

  152. Bruno V, Battaglia G, Copani A, D'Onofrio M, Di Iorio P, De Blasi A et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 2001; 21: 1013–1033.

    Article  CAS  PubMed  Google Scholar 

  153. Fakouhi TD, Jhee SS, Sramek JJ, Benes C, Schwartz P, Hantsburger G et al. Evaluation of cycloserine in the treatment of Alzheimer's disease. J Geriatr Psychiatry Neurol 1995; 8: 226–230.

    Article  CAS  PubMed  Google Scholar 

  154. Schwartz BL, Hashtroudi S, Herting RL, Schwartz P, Deutsch SI . d-Cycloserine enhances implicit memory in Alzheimer patients. Neurology 1996; 46: 420–424.

    Article  CAS  PubMed  Google Scholar 

  155. Randolph C, Roberts JW, Tierney MC, Bravi D, Mouradian MM, Chase TN . D-cycloserine treatment of Alzheimer disease. Alzheimer Dis Assoc Disord 1994; 8: 198–205.

    Article  CAS  PubMed  Google Scholar 

  156. Tsai GE, Falk WE, Gunther J, Coyle JT . Improved cognition in Alzheimer's disease with short-term D-cycloserine treatment. Am J Psychiatry 1999; 156: 467–469.

    CAS  PubMed  Google Scholar 

  157. Procter AW, Stirling JM, Stratmann GC, Cross AJ, Bowen DM . Loss of glycine-dependent radioligand binding to the N-methyl-D-aspartate-phencyclidine receptor complex in patients with Alzheimer's disease. Neurosci Lett 1989; 101: 62–66.

    Article  CAS  PubMed  Google Scholar 

  158. Danysz W . CX-516 cortex pharmaceuticals. Curr Opin Invest Drugs 2002; 3: 1081–1088.

    CAS  Google Scholar 

  159. Krystal JH, Karper LP, Bennett A, D'Souza DC, Abi-Dargham A, Morrissey K et al. Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology (Berlin) 1998; 135: 213–229.

    Article  CAS  Google Scholar 

  160. Boylan LS, Devinsky O, Barry JJ, Ketter TA . Psychiatric uses of antiepileptic treatments. Epilepsy Behav 2002; 3: 54–59.

    Article  PubMed  Google Scholar 

  161. Grillon C, Cordova J, Levine LR, Morgan III CA . Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berlin) 2003; 168: 446–454.

    Article  CAS  Google Scholar 

  162. Schoepp DD, Wright RA, Levine LR, Gaydos B, Potter WZ . LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress 2003; 6: 189–197.

    Article  CAS  PubMed  Google Scholar 

  163. Pilc A . LY-354740 (Eli Lilly). IDrugs 2003; 6: 66–71.

    CAS  PubMed  Google Scholar 

  164. Crane GE . The psychotropic effect of cycloserine: a new use of an antibiotic. Compr Psychiatry 1961; 2: 51–59.

    Article  Google Scholar 

  165. Papp M, Moryl E . Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 1996; 316: 145–151.

    Article  CAS  PubMed  Google Scholar 

  166. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  PubMed  Google Scholar 

  167. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7 (Suppl 1): S71–S80.

    Article  CAS  PubMed  Google Scholar 

  168. Paul IA, Skolnick P . Glutamate and Depression: Clinical and Preclinical Studies. Ann NY Acad Sci 2003; 1003: 250–272.

    Article  CAS  PubMed  Google Scholar 

  169. Palz S, Ucha A, Tatarczynska E, Branski P, Szewczyk B, Wieronska JM et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004; 46: 151–159.

    Article  CAS  Google Scholar 

  170. Stewart CA, Reid IC . Antidepressant mechanisms: functional and molecular correlates of excitatory amino acid neurotransmission. Mol Psychiatry 2002; 7 (Suppl 1): S15–S22.

    Article  CAS  PubMed  Google Scholar 

  171. Petrie RX, Reid IC, Stewart CA . The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Ther 2000; 87: 11–25.

    Article  CAS  PubMed  Google Scholar 

  172. McEwen BS . The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000; 886: 172–189.

    Article  CAS  PubMed  Google Scholar 

  173. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nacher J, Rosell DR, Alonso-Llosa G, McEwen BS . NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur J Neurosci 2001; 13: 512–520.

    Article  CAS  PubMed  Google Scholar 

  175. De Montis MG, Gambarana C, Meloni D, Taddei I, Tagliamonte A . Long-term imipramine effects are prevented by NMDA receptor blockade. Brain Res 1993; 606: 63–67.

    Article  CAS  PubMed  Google Scholar 

  176. Meloni D, Gambarana C, De Montis MG, Dal Pra P, Taddei I, Tagliamonte A . Dizocilpine antagonizes the effect of chronic imipramine on learned helplessness in rats. Pharmacol Biochem Behav 1993; 46: 423–426.

    Article  CAS  PubMed  Google Scholar 

  177. Van Der Meulen JA, Bilbija L, Joosten RN, De Bruin JP, Feenstra MG . The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats. Neuroreport 2003; 14: 2225–2228.

    Article  CAS  PubMed  Google Scholar 

  178. Bohn I, Giertler C, Hauber W . NMDA receptors in the rat orbital prefrontal cortex are involved in guidance of instrumental behaviour under reversal conditions. Cereb Cortex 2003; 13: 968–976.

    Article  PubMed  Google Scholar 

  179. Riekkinen Jr P, Ikonen S, Riekkinen M . D-cycloserine, a partial NMDA receptor-associated glycine-B site agonist, enhances reversal learning, but a cholinesterase inhibitor and nicotine has no effect. Neuroreport 1998; 9: 3647–3651.

    Article  CAS  PubMed  Google Scholar 

  180. Schuster GM, Schmidt WJ . D-cycloserine reverses the working memory impairment of hippocampal-lesioned rats in a spatial learning task. Eur J Pharmacol 1992; 224: 97–98.

    Article  CAS  PubMed  Google Scholar 

  181. Heresco-Levy U, Kremer I, Javitt DC, Goichman R, Reshef A, Blanaru M et al. Pilot-controlled trial of D-cycloserine for the treatment of post-traumatic stress disorder. Int J Neuropsychopharmacol 2002; 5: 301–307.

    Article  CAS  PubMed  Google Scholar 

  182. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M . Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29–36.

    Article  CAS  PubMed  Google Scholar 

  183. Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M et al. Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 2001; 4: 385–392.

    Article  CAS  PubMed  Google Scholar 

  184. Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC . High dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 2004; 55: 165–171.

    Article  CAS  PubMed  Google Scholar 

  185. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  186. Heresco-Levy U . Clnical trials with glycine site agonists of the NMDA receptor used as adjuvants to conventional and atypical antipsychotics. Int J Neuropsychopharmacol 2004; 7: S25.

    Google Scholar 

  187. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56: 21–27.

    Article  CAS  PubMed  Google Scholar 

  188. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC . Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 2002; 159: 480–482.

    Article  PubMed  Google Scholar 

  189. Goff DC, Henderson DC, Evins AE, Amico E . A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 1999; 45: 512–514.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this manuscript was supported in part by USPHS Grants K02 MH01439, R01 DA03383, and R37 MH49334, and by a Clinical Scientist Award in Translational Research from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Javitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javitt, D. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9, 984–997 (2004). https://doi.org/10.1038/sj.mp.4001551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001551

Keywords

This article is cited by

Search

Quick links