

Very Deep ConvNets for Large-Scale Image Recognition

Karen Simonyan, Andrew Zisserman
University of Oxford

Overview

- ConvNet design choices: depth, width, receptive fields
- Variety of models with different depth:

ConvNet Model	Dataset	Conv. & FC layers	
LeNet-5 [LeCun et al., 1998]	MNIST	5	
[Ciresan et al., 2012]	CIFAR	7	
AlexNet [Krizhevsky et al., 2012] [Zeiler & Fergus, 2012]	ImageNet	8	
OverFeat [Sermanet et al., 2012]	Challenge	9	
[Goodfellow et al., 2013]	SVHN	11	

How does ConvNet depth affect accuracy on ImageNet?

Contributions

- Comparison of very deep ConvNets
 - simple architecture design
 - increasing depth: from 11 to 19 layers
- Evaluation of very deep features on other datasets

The models are publicly available

AlexNet

image conv-64

conv-192

conv-384

conv-256

conv-256

FC-4096

FC-4096

FC-1000

19-layer

image

conv-64

conv-64

conv-128

conv-128

conv-256

conv-256

conv-256

conv-256

conv-512

conv-512

conv-512

conv-512

conv-512

conv-512

conv-512

conv-512

FC-4096

FC-4096

FC-1000

Network Design

- Single family of networks
- Key design choices:
 - 3x3 conv. kernels very small
 - stacks of conv. layers w/o pooling (but with ReLU)
 - conv. stride 1 no skipping
- Other details are conventional:
 - Rectification (ReLU) non-linearity
 - 5 max-pool layers (x2 downsampling)
 - no normalisation
 - 3 fully-connected layers

13-layer

image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

Why Stacks of 3x3 Filters?

- A stack of 3x3 layers has a large receptive field
 - two 3x3 layers 5x5 receptive field
 - three 3x3 layers 7x7 receptive field
- More ReLU non-linearities
 - more discriminative
- Less parameters than a single layer
- Design simplicity
 - no need to tune layer parameters

Start from 11 layers, inject more conv. layers

Start from 11 layers, inject more conv. layers

image	image
conv-64	conv-64
maxpool	conv-64
	maxpool
conv-128	conv-128
maxpool	conv-128
	maxpool
conv-256	conv-256
conv-256	conv-256
maxpool	maxpool
conv-512	conv-512
conv-512	conv-512
maxpool	maxpool
conv-512	conv-512
conv-512	conv-512
maxpool	maxpool
FC-4096	FC-4096
FC-4096	FC-4096
FC-1000	FC-1000
softmax	softmax
11-layer	13-layer

• Start from 11 layers, inject more conv. layers

Start from 11 layers, inject more conv. layers

image	image	image
conv-64	conv-64	conv-64
maxpool	conv-64	conv-64
Παλροσι	maxpool	maxpool
conv-128	conv-128	conv-128
-	conv-128	conv-128
maxpool		maxpool
	maxpool	
conv-256	conv-256	conv-256
conv-256	conv-256	conv-256
maxpool	maxpool	conv-256
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000
softmax	softmax	softmax
11-layer	13-layer	16-layer

• Start from 11 layers, inject more conv. layers

Start from 11 layers, inject more conv. layers

image	image	image	image
conv-64	conv-64	conv-64	conv-64
maxpool	conv-64	conv-64	conv-64
	maxpool	maxpool	maxpool
conv-128	conv-128	conv-128	conv-128
maxpool	conv-128	conv-128	conv-128
	maxpool	maxpool	maxpool
conv-256	conv-256	conv-256	conv-256
conv-256	conv-256	conv-256	conv-256
maxpool	maxpool	conv-256	conv-256
		maxpool	conv-256
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
conv-512	conv-512	conv-512	conv-512
conv-512	conv-512	conv-512	conv-512
maxpool	maxpool	conv-512	conv-512
		maxpool	conv-512
			maxpool
FC-4096	FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000	FC-1000
softmax	softmax	softmax	softmax
11-layer	13-layer	16-layer	19-layer

• Start from 11 layers, inject more conv. layers

Training

- ConvNet input during training: fixed-size 224x224 crop
- But images have various sizes...
- Solution:
 - rescale images to a certain size (preserving aspect ratio)
 - random 224x224 crop
- Image size affects the scale of image statistics seen by a ConvNet
 - single-scale: 256xN or 384xN
 - multi-scale: randomly sample the size for each image from 256xN to 512xN
- Standard augmentation: random flip and RGB shift

Training (2)

- Mini-batch gradient descent with momentum
- Regularisation: dropout and weight decay
- Fast convergence (74 training epochs)
- Initialisation
 - deep nets are prone to vanishing/exploding gradient
 - 11-layer net: random initialisation from $\mathcal{N}(0;0.01)$
 - deeper nets
 - top and bottom layers initialised with 11-layer net
 - other layers random initialisation
 - also possible to initialise all layers randomly [Glorot & Bengio, 2010]

Testing

- ConvNet evaluation on variable-size images:
 - Testing on multiple 224x224 crops [AlexNet]
 - Dense application over the whole image: [OverFeat]
 - all layers are treated as convolutional
 - sum-pooling of class score maps
 - more efficient than multiple crops
 - Combination of both
- Multiple image sizes:
 - 256xN, 384xN, 512xN
 - class scores averaged

Implementation

- Heavily-modified Caffe toolbox
- Multiple GPU support
 - 4 x NVIDIA Titan in an off-the-shelf workstation
 - synchronous data parallelism
 - ~3.75 times speed-up, 2-3 weeks for training

Evaluation on ImageNet Classification

Effect of Depth and Scale

- Error decreases with depth
- Using multiple scales is important
 - multi-scale training outperforms single-scale
 - multi-scale testing further improves the results

Evaluation: Dense vs Multi-Crop

- Dense evaluation is on par with multi-crop
- Dense & multi-crop are complementary
- Combining predictions from 2 nets is beneficial

ImageNet Challenge 2014 (Classification)

- 1st place: GoogLeNet (6.7% with 7 nets, 7.9% with 1 net)
- 2nd place: this work
 - submission: 7.3% with 2 nets, 8.4% with 1 net
 - post-submission: 6.8% with 2 nets, 7.0% with 1 net

Comparison with GoogLeNet

image conv-64 conv-64 maxpool

conv-128 conv-128

maxpool conv-256

conv-256 conv-256 conv-256

maxpool

conv-512 conv-512

conv-512

conv-512

maxpool

conv-512

conv-512 conv-512

conv-512 maxpool

FC-4096 FC-4096

FC-1000

softmax

- models developed independently
- both are very deep:
 - 19 (VGG) vs 22 (GoogLeNet) weight layers
- mitigating gradient instability:
 - pre-training (VGG) vs auxiliary losses (GoogLeNet)
- multi-scale training of both
- filter configuration:
 - VGG: only 3x3, stride 1 convolution
 - GoogLeNet: 5x5, 3x3, 1x1 filters combined into complex multi-branch modules to reduce computation complexity
- speed: GoogLeNet is several times faster
- single-model accuracy: VGG is ~0.5% better

Recent Advances

- Deep Image: Scaling up Image Recognition
 - 5.33% error
 - models based on VGG-16, but wider
- Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
 - 4.94% error
 - models based on VGG-19, but deeper and wider with PReLU
- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
 - 4.82% error
 - Inception layers with batch normalisation

Beyond ImageNet Classification...

ImageNet Challenge 2014 (Localisation)

Object bounding box prediction

- Very deep location regressor (similar to OverFeat)
- Last layer predicts a box for each class
- Initialised with classification models
- Fine-tuning of all layers

Top-5 Localisation Error (Test Set)

- 1st place: VGG (25.3% error), 2nd place: GoogLeNet (26.4%)
- Outperforms OverFeat by using deeper representations

Very Deep Features on Other Datasets

- ImageNet-pretrained ConvNets are excellent feature extractors on other datasets
- We compare against the state of the art, based on less deep ConvNet features, trained on ILSVRC
- Simple recognition pipeline
 - last fully-connected (classification) layer is removed
 - dense evaluation over the whole image → global sum-pooling
 - aggregation over several scales
 - L₂ normalisation → linear SVM
 - no fine-tuning

Results on Caltech & PASCAL VOC

Method	Caltech 101	Caltech 256	PASCAL VOC 2007	PASCAL VOC 2012 (class-n)	PASCAL VOC 2012 (actions)
Best published result using shallow ConvNets	93.4	77.6	81.5	81.7	76.3
19-layer	92.3	85.1	89.3	89.0	-
16 & 19-layer	92.7	86.2	89.7	89.3	84.0

- Very deep features are competitive or better than the state of the art despite a simple pipeline
- Two ConvNet extractors are complementary
- Even better results have been recently reported using our released models

Other Tasks...

Since the public release of models, they have been successfully applied by the community to:

- object detection
- semantic segmentation
- image caption generation
- texture classification
- etc.

Summary

- Representation depth is important
- Excellent results using very deep ConvNets
 - simple architecture, small receptive fields
 - but very deep → lots of non-linearity
- VGG-16 & VGG-19 models publicly available from:
 - http://www.robots.ox.ac.uk/~vgg/research/very_deep/
 - formats: Caffe and MatConvNet
 - can be used with any package with a cuDNN back-end, e.g.
 Torch and Theano