Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-1 pathways in inflammation and human diseases

Abstract

Interleukin (IL)-1 was first cloned in the 1980s, and rapidly emerged as a key player in the regulation of inflammatory processes. The term IL-1 refers to two cytokines, IL-1α and IL-1β, which are encoded by two separate genes. The effects of IL-1 are tightly controlled by several naturally occurring inhibitors, such as IL-1 receptor antagonist (IL-1Ra), IL-1 receptor type II (IL-1RII), and other soluble receptors. Numerous IL-1 inhibitors have been developed and tested primarily in rheumatoid arthritis, with only modest effects. By contrast, the use of IL-1 antagonists has been uniformly associated with beneficial effects in patients with hereditary autoinflammatory conditions associated with excessive IL-1 signaling, such as cryopyrinopathies and IL-1Ra deficiency. Successful treatment with IL-1 blockers has also been reported in other hereditary autoinflammatory diseases, as well as in nonhereditary inflammatory diseases, such as Schnizler syndrome, systemic-onset juvenile idiopathic arthritis and adult Still disease. The role of microcrystals in the regulation of IL-1β processing and release has provided the rationale for the use of IL-1 inhibitors in crystal-induced arthritis. Finally, preliminary results indicating that IL-1 targeting is efficacious in type 2 diabetes and smoldering myeloma have further broadened the spectrum of IL-1-driven diseases.

Key Points

  • Interleukin (IL)-1, which includes IL-1α and IL-1β, exerts strong proinflammatory activities and has a major role in host responses to exogenous and endogenous noxious stimuli

  • The proinflammatory activities of IL-1 are controlled by several endogenous inhibitors, such as IL-1 receptor antagonist (IL-1Ra), membrane-bound and soluble IL-1 receptor type II and IL-1 receptor accessory protein

  • Numerous exogenous (for example, microbial components and asbestos) and endogenous (for example, monosodium urate and calcium pyrophosphate dihydrate crystals) agents can activate caspase 1, which induces release of bioactive IL-1β

  • The role of IL-1 in disease is exemplified by the description of hereditary autoinflammatory diseases caused by excessive IL-1 signaling secondary to either IL-1β overproduction or IL-1Ra deficiency

  • A beneficial effect of targeting IL-1 has been described in several hereditary and non-hereditary autoinflammatory diseases

  • The potential role of IL-1 in the pathogenesis of type 2 diabetes and smoldering myeloma has been supported by the results of recent clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis, maturation and cellular localization of IL-1α and IL-1β.
Figure 2: Regulation of IL-1 activity by both membrane-bound and soluble forms of IL-1 receptors.
Figure 3: Therapeutic approaches to targeting IL-1.

Similar content being viewed by others

References

  1. Atkins, E. Pathogenesis of fever. Physiol. Rev. 40, 580–646 (1960).

    Article  CAS  PubMed  Google Scholar 

  2. Dinarello, C. A. The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314–1325 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Auron, P. E. et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc. Natl Acad. Sci. USA 81, 7907–7911 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. March, C. J. et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315, 641–647 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Webb, A. C. et al. Interleukin-1 gene (IL1) assigned to long arm of human chromosome 2. Lymphokine Res. 5, 77–85 (1986).

    CAS  PubMed  Google Scholar 

  6. Bensi, G. et al. Human interleukin-1 beta gene. Gene 52, 95–101 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Priestle, J. P., Schär, H. P. & Grütter, M. G. Crystallographic refinement of interleukin 1 beta at 2.0 A resolution. Proc. Natl Acad. Sci. USA 86, 9667–9671 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graves, B. J. et al. Structure of interleukin 1 alpha at 2.7-A resolution. Biochemistry 29, 2679–2684 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Stevenson, F. T., Bursten, S. L., Fanton, C., Locksley, R. M. & Lovett, D. H. The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc. Natl Acad. Sci. USA 90, 7245–7249 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carruth, L. M., Demczuk, S. & Mizel, S. B. Involvement of a calpain-like protease in the processing of the murine interleukin 1α precursor. J. Biol. Chem. 266, 12162–12167 (1991).

    CAS  PubMed  Google Scholar 

  11. Jacques, C., Gosset, M., Berenbaum, F. & Gabay, C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam. Horm. 74, 371–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mosley, B. et al. The interleukin-1 receptor binds the human interleukin-1α precursor but not the interleukin-1β precursor. J. Biol. Chem. 262, 2941–2944 (1987).

    CAS  PubMed  Google Scholar 

  13. Black, R. A. et al. Generation of biologically active interleukin-1β by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 263, 9437–9442 (1988).

    CAS  PubMed  Google Scholar 

  14. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Franchi, L., Eigenbrod, T., Muñoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamkanfi, M. & Dixit, V. M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227, 95–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Arend, W. P., Palmer, G. & Gabay, C. IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev. 223, 20–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Fantuzzi, G. & Dinarello, C. A. Interleukin-18 and interleukin-1β: two cytokine substrates for ICE (caspase-1). J. Clin. Immunol. 19, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Greten, F. R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guma, M. et al. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1β. Arthritis Rheum. 60, 3651–3662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460, 269–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Talabot-Ayer, D., Lamacchia, C., Gabay, C. & Palmer, G. Interleukin-33 is biologically active independently of caspase-1 cleavage. J. Biol. Chem. 284, 19420–19426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sims, J. E. et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585–589 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Dunne, A. & O'Neill, L. A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, re3 (2003).

    PubMed  Google Scholar 

  33. Boraschi, D. & Tagliabue, A. The interleukin-1 receptor family. Vitam. Horm. 74, 229–254 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Greenfeder, S. A. et al. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, L. S. et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24, 79–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Dinarello, C. A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  PubMed  Google Scholar 

  37. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Arend, W. P., Joslin, F. G. & Massoni, R. J. Effects of immune complexes on production by human monocytes of interleukin 1 or an interleukin 1 inhibitor. J. Immunol. 134, 3868–3875 (1985).

    CAS  PubMed  Google Scholar 

  40. Balavoine, J. F. et al. Prostaglandin E2 and collagenase production by fibroblasts and synovial cells is regulated by urine-derived human interleukin 1 and inhibitor(s). J. Clin. Invest. 78, 1120–1124 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arend, W. P., Welgus, H. G., Thompson, R. C. & Eisenberg, S. P. Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist. J. Clin. Invest. 85, 1694–1697 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fischer, E. et al. Comparison between effects of interleukin-1 alpha administration and sublethal endotoxemia in primates. Am. J. Physiol. 261, R442–R452 (1991).

    CAS  PubMed  Google Scholar 

  43. Gabay, C. & Palmer, G. Mutations in the IL-1RN locus lead to autoinflammation. Nat. Rev. Rheumatol. 9, 480–482 (2009).

    Article  CAS  Google Scholar 

  44. Sims, J. E., Giri, J. G. & Dower, S. K. The two interleukin-1 receptors play different roles in IL-1 actions. Clin. Immunol. Immunopathol. 72, 9–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Colotta, F., Dower, S. K., Sims, J. E. & Mantovani, A. The type II 'decoy' receptor: a novel regulatory pathway for interleukin 1. Immunol. Today 15, 562–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Garlanda, C., Anders, H. J. & Mantovani, A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol. 30, 439–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, L. E., Muzio, M., Mantovani, A. & Whitehead, A. S. IL-1 signaling cascade in liver cells and the involvement of a soluble form of the IL-1 receptor accessory protein. J. Immunol. 164, 5277–5286 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, D. E. et al. The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action. Immunity 18, 87–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, D. E. et al. A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 30, 817–831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Finckh, A. & Gabay, C. At the horizon of innovative therapy in rheumatology: new biologic agents. Curr. Opin. Rheumatol. 20, 269–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bresnihan, B. et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum. 41, 2196–2204 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Cohen, S. et al. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 614–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, Y. et al. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum. 43, 1001–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Genovese, M. C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Alten, R. et al. The human anti-IL-1β monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res. Ther. 10, R67 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bensen, W. G. et al. Results of a phase 2 randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R type I) in patients with rheumatoid arthritis [abstract #994]. Arthritis Rheum. 58 (Suppl.), S535 (2008).

    Google Scholar 

  59. Drevlow, B. E. et al. Recombinant human interleukin-1 receptor type I in the treatment of patients with active rheumatoid arthritis. Arthritis Rheum. 39, 257–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Pavelka, K. et al. Clinical effects of pralnacasan (PRAL), an orally-active interleukin-1β converting enzyme (ICE) inhibitor, in a 285 patient Phase II trial in rheumatoid arthritis [abstract LB02]. Arthritis Rheum. 46, 3415 (2002).

    Google Scholar 

  61. Agostini, L. et al. NLRP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hoffman, H. M. et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364, 1779–1785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hawkins, P. N., Lachmann, H. J. & McDermott, M. F. Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N. Engl. J. Med. 348, 2583–2584 (2003).

    Article  PubMed  Google Scholar 

  64. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reddy, S. et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N. Engl. J. Med. 360, 2438–2444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chae, J. J. et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment. Blood 112, 1794–1803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chae, J. J. et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol. Cell 11, 591–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Chae, J. J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl Acad. Sci. USA 103, 9982–9987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, J. W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 13, 236–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Seshadri, S., Duncan, M. D., Hart, J. M., Gavrilin, M. A. & Wewers, M. D. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1β processing and release. J. Immunol. 179, 1274–1281 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Roldan, R., Ruiz, A. M., Miranda, M. D. & Collantes, E. Anakinra: new therapeutic approach in children with Familial Mediterranean Fever resistant to colchicine. Joint Bone Spine 75, 504–505 (2008).

    Article  PubMed  Google Scholar 

  74. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, J. W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dierselhuis, M. P., Frenkel, J., Wulffraat, N. M. & Boelens, J. J. Anakinra for flares of pyogenic arthritis in PAPA syndrome. Rheumatology (Oxford) 44, 406–408 (2005).

    Article  CAS  Google Scholar 

  77. Mandey, S. H., Kuijk, L. M., Frenkel, J. & Waterham, H. R. A role for geranylgeranylation in interleukin-1β secretion. Arthritis Rheum. 54, 3690–3695 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kuijk, L. M. et al. HMG-CoA reductase inhibition induces IL-1β release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112, 3563–3573 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Cailliez, M. et al. Anakinra is safe and effective in controlling hyperimmunoglobulinaemia D syndrome-associated febrile crisis. J. Inherit. Metab. Dis. 29, 763 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lobito, A. A. et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108, 1320–1327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Todd, I. et al. Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients' leukocytes. Arthritis Rheum. 56, 2765–2773 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Gattorno, M. et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum. 58, 1516–1520 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martin, T. M. et al. The NOD2 defect in Blau syndrome does not result in excess interleukin-1 activity. Arthritis Rheum. 60, 611–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Koning, H. D. et al. Schnitzler syndrome: beyond the case reports: review and follow-up of 94 patients with an emphasis on prognosis and treatment. Semin. Arthritis Rheum. 37, 137–148 (2007).

    Article  PubMed  Google Scholar 

  86. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 58, 1505–1515 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Ruperto, N. et al. A phase II trial with Canakinumab (ACZ885), a new IL-1-beta blocking monoclonal antibody, to evaluate safety and preliminary efficacy in children with systemic juvenile idiopathic arthritis (SJIA) [abstract #OP-0298]. Ann. Rheum. Dis. 68 (Suppl. 3), 170 (2009).

    Google Scholar 

  89. Kelly, A. & Ramanan, A. V. A case of macrophage activation syndrome successfully treated with anakinra. Nat. Clin. Pract. Rheumatol. 4, 615–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Lequerre, T. et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann. Rheum. Dis. 67, 302–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NLRP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Announ, N., Palmer, G., Guerne, P. A. & Gabay, C. Anakinra is a possible alternative in the treatment and prevention of acute attacks of pseudogout in end-stage renal failure. Joint Bone Spine 76, 424–426 (2009).

    Article  PubMed  Google Scholar 

  94. Terkeltaub, R. et al. Placebo-controlled pilot study of Rilonacept (IL-1 trap), a long acting IL-1 inhibitor, in refractory chronic active gouty arthritis [abstract LB518-L2]. Arthritis Rheum. 56, 4231–4232 (2007).

    Google Scholar 

  95. Picco, P. et al. Successful treatment of idiopathic recurrent pericarditis in children with interleukin-1β receptor antagonist (anakinra): an unrecognized autoinflammatory disease? Arthritis Rheum. 60, 264–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lust, J. A. et al. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1β-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 84, 114–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Merhi-Soussi, F. et al. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc. Res. 66, 583–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Joosten, L. A., Helsen, M. M., van de Loo, F. A. & van den Berg, W. B. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis Rheum. 39, 797–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Arner, E. C., Harris, R. R., DiMeo, T. M., Collins, R. C. & Galbraith, W. Interleukin-1 receptor antagonist inhibits proteoglycan breakdown in antigen induced but not polycation induced arthritis in the rabbit. J. Rheumatol. 22, 1338–1346 (1995).

    CAS  PubMed  Google Scholar 

  101. Van Lent, P. L. et al. Major role for interleukin 1 but not for tumor necrosis factor in early cartilage damage in immune complex arthritis in mice. J. Rheumatol. 22, 2250–2258 (1995).

    CAS  PubMed  Google Scholar 

  102. Kuiper, S. et al. Different roles of tumour necrosis factor alpha and interleukin 1 in murine streptococcal cell wall arthritis. Cytokine 10, 690–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, Y. et al. Altered susceptibility to collagen-induced arthritis in transgenic mice with aberrant expression of interleukin-1 receptor antagonist. Arthritis Rheum. 41, 1798–1805 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Palmer, G. et al. Mice transgenic for intracellular interleukin-1 receptor antagonist type 1 are protected from collagen-induced arthritis. Eur. J. Immunol. 33, 434–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Bakker, A. C. et al. Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum. 40, 893–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Nguyen, K. H. et al. Direct synovial gene transfer with retroviral vectors in rat adjuvant arthritis. J. Rheumatol. 25, 1118–1125 (1998).

    CAS  PubMed  Google Scholar 

  107. Pan, R. Y. et al. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum. 43, 289–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Oligino, T. J., Ghivizzani, S. & Wolfe, D. Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Ther. 6, 1713–1720 (1996).

    Article  CAS  Google Scholar 

  109. Otani, K. et al. Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J. Immunol. 156, 3558–3562 (1996).

    CAS  PubMed  Google Scholar 

  110. Muller-Ladner, U. et al. Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective. J. Immunol. 158, 3492–3498 (1997).

    CAS  PubMed  Google Scholar 

  111. Economides, A. N. et al. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat. Med. 9, 47–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. van den Berg, W. B., Joosten, L. A., Helsen, M. & van de Loo, F. A. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin. Exp. Immunol. 95, 237–243 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choe, J. Y., Crain, B., Wu, S. R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J. Exp. Med. 197, 537–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schorlemmer, H. U., Kanzy, E. J., Langner, K. D. & Kurrle, R. Immunomodulatory activity of recombinant IL-1 receptor (IL-1-R) on models of experimental rheumatoid arthritis. Agents Actions 39, C113–C116 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Dawson, J. et al. Effects of soluble interleukin-1 type II receptor on rabbit antigen-induced arthritis: clinical, biochemical and histological assessment. Rheumatology (Oxford) 38, 401–406 (1999).

    Article  CAS  Google Scholar 

  116. Bessis, N. et al. The type II decoy receptor of IL-1 inhibits murine collagen-induced arthritis. Eur. J. Immunol. 30, 867–875 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Smeets, R. L. et al. Soluble interleukin-1 receptor accessory protein ameliorates collagen-induced arthritis by a different mode of action from that of interleukin-1 receptor antagonist. Arthritis Rheum. 52, 2202–2211 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Smeets, R. L. et al. Effectiveness of the soluble form of the interleukin-1 receptor accessory protein as an inhibitor of interleukin-1 in collagen-induced arthritis. Arthritis Rheum. 48, 2949–2958 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Ku, G., Faust, T., Lauffer, L. L., Livingston, D. J. & Harding, M. W. Interleukin-1β converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice. Cytokine 8, 377–386 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Swiss National science Foundation grants 320000-119728 (to C. Gabay) and 320000-12031 (to G. Palmer), and by the Rheumasearch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Gabay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6, 232–241 (2010). https://doi.org/10.1038/nrrheum.2010.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing