Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Genetic polymorphism in ethanol metabolism: acetaldehyde contribution to alcohol abuse and alcoholism

Abstract

Acetaldehyde, the first product of ethanol metabolism, has been speculated to be involved in many pharmacological and behavioral effects of ethanol. In particular, acetaldehyde has been suggested to contribute to alcohol abuse and alcoholism. In the present paper, we review current data on the role of acetaldehyde and ethanol metabolism in alcohol consumption and abuse. Ethanol metabolism involves several enzymes. Whereas alcohol dehydrogenase metabolizes the bulk of ethanol within the liver, other enzymes, such as cytochrome P4502E1 and catalase, also contributes to the production of acetaldehyde from ethanol oxidation. In turn, acetaldehyde is metabolized by the enzyme aldehyde dehydrogenase. In animal studies, acetaldehyde is mainly reinforcing particularly when injected directly into the brain. In humans, genetic polymorphisms of the enzymes alcohol dehydrogenase and aldehyde dehydrogenase are also associated with alcohol drinking habits and the incidence of alcohol abuse. From these human genetic studies, it has been concluded that blood acetaldehyde accumulation induces unpleasant effects that prevent further alcohol drinking. It is therefore speculated that acetaldehyde exerts opposite hedonic effects depending on the localization of its accumulation. In the periphery, acetaldehyde is primarily aversive, whereas brain acetaldehyde is mainly reinforcing. However, the peripheral effects of acetaldehyde might also be dependent upon its peak blood concentrations and its rate of accumulation, with a narrow range of blood acetaldehyde concentrations being reinforcing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Deitrich RA, Erwin VG (eds). Pharmacological Effects of Ethanol on the Nervous System. CRC Press: Boca Raton, FL, 1996.

    Google Scholar 

  2. Matysiak-Budnik T, Jokelainen K, Karkkainen P, Makisalo H, Ohisalo J, Salaspuro M . Hepatotoxicity and absorption of extrahepatic acetaldehyde in rats. J Pathol 1996; 178: 469–474.

    Article  CAS  PubMed  Google Scholar 

  3. Quertemont E, Tambour S . Is ethanol a pro-drug? Role of acetaldehyde in the central effects of ethanol. Trends Pharmacol Sci 2004; 25: 130–134.

    Article  CAS  PubMed  Google Scholar 

  4. Hunt WA . Role of acetaldehyde in the actions of ethanol on the brain — a review. Alcohol 1996; 13: 147–151.

    Article  CAS  PubMed  Google Scholar 

  5. Smith BR, Aragon CMG, Amit Z . Catalase and the production of brain acetaldehyde: a possible mediator of the psychopharmacological effects of ethanol. Addict Biol 1997; 2: 277–289.

    Article  CAS  PubMed  Google Scholar 

  6. Raskin NH . Alcoholism or acetaldehydism? N Engl J Med 1975; 292: 422–423.

    Article  CAS  PubMed  Google Scholar 

  7. Truitt EB, Walsh MJ . The role of acetaldehyde in the actions of ethanol. In: Kissin H, Begleiter H (eds). The Biology of Alcoholism. Plenum Press: New York, 1971 pp 161–195.

    Chapter  Google Scholar 

  8. Ramchandani VA, Bosron WF, Li TK . Research advances in ethanol metabolism. Pathol Biol 2001; 49: 676–682.

    Article  CAS  PubMed  Google Scholar 

  9. Li TK, Yin SJ, Crabb DW, O'Connor S, Ramchandani VA . Genetic and environmental influences on alcohol metabolism in humans. Alcohol Clin Exp Res 2001; 25: 136–144.

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal DP . Genetic polymorphisms of alcohol metabolizing enzymes. Pathol Biol 2001; 49: 703–709.

    Article  CAS  PubMed  Google Scholar 

  11. Ashmarin IP, Danilova RA, Obukhova MF, Moskvitina TA, Prosorovsky VN . Main ethanol metabolizing alcohol dehydrogenases (ADH I and ADH IV): biochemical functions and the physiological manifestation. FEBS Lett 2000; 486: 49–51.

    Article  CAS  PubMed  Google Scholar 

  12. Duester G, Farres J, Felder MR, Holmes RS, Hoog JO, Pares X et al. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol 1999; 58: 389–395.

    Article  CAS  PubMed  Google Scholar 

  13. Edenberg HJ . Regulation of the mammalian alcohol dehydrogenase genes. Prog Nucleic Acid Res Mol Biol 2000; 64: 295–341.

    Article  CAS  PubMed  Google Scholar 

  14. Moulis JM, Holmquist B, Vallee BL . Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase. Biochemistry 1991; 30: 5743–5749.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SL, Wang MF, Lee AI, Yin SJ . The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett 2003; 544: 143–147.

    Article  CAS  PubMed  Google Scholar 

  16. Yin SJ, Chou CF, Lai CL, Lee SL, Han CL . Human class IV alcohol dehydrogenase: kinetic mechanism, functional roles and medical relevance. Chem Biol Interact 2003; 143–144: 219–227.

    Article  PubMed  CAS  Google Scholar 

  17. Han CL, Liao CS, Wu CW, Hwong CL, Lee AR, Yin SJ . Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family: implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem 1998; 254: 25–31.

    Article  CAS  PubMed  Google Scholar 

  18. Yasunami M, Chen CS, Yoshida A . A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc Natl Acad Sci USA 1991; 88: 7610–7614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieber CS, DeCarli LM . Ethanol oxidation by hepatic microsomes: adaptive increase after ethanol feeding. Science 1968; 162: 917–918.

    Article  CAS  PubMed  Google Scholar 

  20. Asai H, Imaoka S, Kuroki T, Monna T, Funae Y . Microsomal ethanol oxidizing system activity by human hepatic cytochrome P-450s. J Pharmacol Exp Ther 1996; 277: 1004–1009.

    CAS  PubMed  Google Scholar 

  21. Salmela KS, Kessova IG, Tsyrlov IB, Lieber CS . Respective roles of human cytochromes P-4502E1, 1A2, and 3A4 in the hepatic microsomal ethanol oxidizing system. Alcohol Clin Exp Res 1998; 22: 2125–2132.

    Article  CAS  PubMed  Google Scholar 

  22. Lieber CS . Microsomal ethanol-oxidizing system: the first 30 years (1968–1998)—a review. Alcohol Clin Exp Res 1999; 23: 991–1007.

    CAS  PubMed  Google Scholar 

  23. Lieber CS . Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 1997; 257: 59–84.

    Article  CAS  PubMed  Google Scholar 

  24. Lieber CS, Lasker JM, DeCarli LM, Saeli J, Wojtowicz T . Role of acetone, dietary fat, and total energy intake in the induction of the hepatic microsomal ethanol oxidizing system. J Pharmacol Exp Ther 1988; 247: 791–795.

    CAS  PubMed  Google Scholar 

  25. Takahashi T, Lasker JM, Rosman AS, Lieber CS . Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993; 17: 236–245.

    CAS  PubMed  Google Scholar 

  26. Tsutsumi M, Lasker JM, Shimizu M, Rosman AS, Lieber CS . The intralobular distribution of ethanol-inducible P-450IIE1 in rat and human liver. Hepatology 1989; 10: 437–446.

    Article  CAS  PubMed  Google Scholar 

  27. Nuutinen H, Lindros KO, Salaspuro M . Determinants of blood acetaldehyde level during ethanol oxidation in chronic alcoholics. Alcohol Clin Exp Res 1983; 7: 163–168.

    Article  CAS  PubMed  Google Scholar 

  28. Fairbrother KS, Grove J, de Waziers I, Steimel DT, Day CP, Crespi CL et al. Detection and characterization of novel polymorphism in the CYP2E1 gene. Pharmacogenetics 1998; 8: 543–552.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Oscarson M, Johansson I, Yue QY, Dahl ML, Tabone M et al. Genetic polymorphism of human CYP2E1: characterization of two variant alleles. Mol Pharmacol 1997; 51: 370–376.

    CAS  PubMed  Google Scholar 

  30. Itoga S, Nomura F, Harada S, Tsutsumi M, Takase S, Nakai T . Mutations in the exons and exon–intron junction regions of human cytochrome P-4502E1 gene and alcoholism. Alcohol Clin Exp Res 1999; 23: 13s–16s.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi S, Watanabe J, Kawajiri K . Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 1991; 110: 559–565.

    Article  CAS  PubMed  Google Scholar 

  32. Oshino N, Oshino R, Chance B . The characteristics of the peroxidatic reaction in ethanol oxidation. Biochem J 1973; 131: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Handler JA, Thurman RG . Fatty acid-dependent ethanol metabolism. Biochem Biophys Res Commun 1985; 133: 44–51.

    Article  CAS  PubMed  Google Scholar 

  34. Gill K, Menez JF, Lucas D, Deitrich RA . Enzymatic production of acetaldehyde from ethanol in rat brain tissue. Alcohol Clin Exp Res 1992; 16: 910–915.

    Article  CAS  PubMed  Google Scholar 

  35. Zimatkin SM, Deitrich RA . Ethanol metabolism in the brain. Addict Biol 1997; 2: 387–399.

    Article  CAS  PubMed  Google Scholar 

  36. Beckemeier ME, Bora PS . Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol 1998; 30: 2487–2494.

    Article  CAS  PubMed  Google Scholar 

  37. Vasiliou V, Bairoch A, Tipton KF, Nebert DW . Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 1999; 9: 421–434.

    Article  CAS  PubMed  Google Scholar 

  38. Vasiliou V, Pappa A . Polymorphisms of human aldehyde dehydrogenase. Consequences for drug metabolism and disease. Pharmacology 2000; 61: 192–198.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida A, Rzhetsky A, Hsu LC, Chang C . Human aldehyde dehydrogenase family. Eur J Biochem 1998; 251: 549–557.

    Article  CAS  PubMed  Google Scholar 

  40. Harada S . Polymorphism of aldehyde dehydrogenase and its application to alcoholism. Electrophoresis 1989; 10: 652–655.

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida A, Huang IY, Ikawa M . Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA 1984; 81: 258–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet 1992; 88: 344–346.

    Article  CAS  PubMed  Google Scholar 

  43. Zimatkin SM . Histochemical study of aldehyde dehydrogenase in the rat CNS. J Neurochem 1991; 56: 1–11.

    Article  CAS  PubMed  Google Scholar 

  44. Eriksson CJP, Fukunaga T . Human blood acetaldehyde (update 1992). Alcohol Alcohol 1993; 28(Suppl 2): 9–25.

    Google Scholar 

  45. Lindros KO . Human blood acetaldehyde levels: with improved methods, a clearer picture emerges. Alcohol Clin Exp Res 1983; 7: 70–75.

    Article  CAS  PubMed  Google Scholar 

  46. Raskin NH, Sokoloff L . Alcohol dehydrogenase activity in rat brain and liver. J Neurochem 1970; 17: 1677–1687.

    Article  CAS  PubMed  Google Scholar 

  47. Giri PR, Linnoila M, O'Neill JB, Goldman D . Distribution and possible metabolic role of class III alcohol dehydrogenase in the human brain. Brain Res 1989; 481: 131–141.

    Article  CAS  PubMed  Google Scholar 

  48. Cohen G, Sinet PM, Heikkila R . Ethanol oxidation by rat brain in vivo. Alcohol Clin Exp Res 1980; 4: 366–370.

    Article  CAS  PubMed  Google Scholar 

  49. Eysseric H, Gonthier B, Soubeyran A, Bessard G, Saxod R, Barret L . Characterization of the production of acetaldehyde by astrocytes in culture after ethanol exposure. Alcohol Clin Exp Res 1997; 21: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  50. Hamby-Mason R, Chen JJ, Schenker S, Perez A, Henderson GI . Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res 1997; 21: 1063–1072.

    Article  CAS  PubMed  Google Scholar 

  51. Zimatkin SM, Liopo AV, Deitrich RA . Distribution and kinetics of ethanol metabolism in rat brain. Alcohol Clin Exp Res 1998; 22: 1623–1627.

    Article  CAS  PubMed  Google Scholar 

  52. Martinez SE, Vaglenova J, Sabria J, Martinez MC, Farres J, Pares X . Distribution of alcohol dehydrogenase mRNA in the rat central nervous system. Eur J Biochem 2001; 268: 5045–5056.

    CAS  PubMed  Google Scholar 

  53. Hansson T, Tindberg N, Ingelman-Sundberg M, Kohler C . Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience 1990; 34: 451–463.

    Article  CAS  PubMed  Google Scholar 

  54. Anandatheerthavarada HK, Shankar SK, Bhamre S, Boyd MR, Song BJ, Ravindranath V . Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment. Brain Res 1993; 601: 279–285.

    Article  CAS  PubMed  Google Scholar 

  55. Montoliu C, Valles S, Renau-Piqueras J, Guerri C . Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem 1994; 63: 1855–1862.

    Article  CAS  PubMed  Google Scholar 

  56. Sohda T, Shimizu M, Kamimura S, Okumura M . Immunohistochemical demonstration of ethanol-inducible P450 2E1 in rat brain. Alcohol Alcohol 1993; 28(Suppl 1B): 69–75.

    Article  CAS  Google Scholar 

  57. Person RE, Chen H, Fantel AG, Juchau MR . Enzymic catalysis of the accumulation of acetaldehyde from ethanol in human prenatal cephalic tissues: evaluation of the relative contributions of CYP2E1, alcohol dehydrogenase, and catalase/peroxidases. Alcohol Clin Exp Res 2000; 24: 1433–1442.

    Article  CAS  PubMed  Google Scholar 

  58. Samson HH, Czachowski CL, Slawecki CJ . A new assessment of the ability of oral ethanol to function as a reinforcing stimulus. Alcohol Clin Exp Res 2000; 24: 766–773.

    Article  CAS  PubMed  Google Scholar 

  59. Amit Z, Smith BR . A multi-dimensional examination of the positive reinforcing properties of acetaldehyde. Alcohol 1985; 2: 367–370.

    Article  CAS  PubMed  Google Scholar 

  60. Amit Z, Brown ZW, Rockman GE . Possible involvement of acetaldehyde, norepinephine and their tetrahydroisoquinoline derivatives in the regulation of ethanol self-administration. Drug Alcohol Depend 1977; 5–6: 495–500.

    Article  Google Scholar 

  61. Brown ZW, Amit Z, Rockman GE . Intraventricular self-administration of acetaldehyde, but not ethanol, in naive laboratory rats. Psychopharmacology 1979; 64: 271–276.

    Article  CAS  PubMed  Google Scholar 

  62. Myers WD, Ng KT, Marzuki S, Myers RD, Singer G . Alteration of alcohol drinking in the rat by peripherally self-administered acetaldehyde. Alcohol 1984; 1: 229–236.

    Article  CAS  PubMed  Google Scholar 

  63. Myers WD, Ng KT, Singer G . Ethanol preference in rats with a prior history of acetaldehyde self-administration. Experientia 1984; 40: 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  64. Rodd-Henricks ZA, Melendez RI, Zaffaroni A, Goldstein A, McBride WJ, Li TK . The reinforcing effects of acetaldehyde in the posterior ventral tegmental area of alcohol-preferring rats. Pharmacol Biochem Behav 2002; 72: 55–64.

    Article  CAS  PubMed  Google Scholar 

  65. Quertemont E, De Witte P . Conditioned stimulus preference after acetaldehyde but not ethanol injections. Pharmacol Biochem Behav 2001; 68: 449–454.

    Article  CAS  PubMed  Google Scholar 

  66. Smith BR, Amit Z, Splawinsky J . Conditioned place preference induced by intraventricular infusions of acetaldehyde. Alcohol 1984; 1: 193–195.

    Article  CAS  PubMed  Google Scholar 

  67. Asin KE, Wirtshafter D, Tabakoff B . Failure to establish a conditioned place preference with ethanol in rats. Pharmacol Biochem Behav 1985; 22: 169–173.

    Article  CAS  PubMed  Google Scholar 

  68. Cunningham CL . Spatial aversion conditioning with ethanol. Pharmacol Biochem Behav 1981; 14: 263–264.

    Article  CAS  PubMed  Google Scholar 

  69. Quertemont E, Goffaux V, Vlaminck AM, Wolf C, De Witte P . Oral taurine supplementation modulates ethanol-conditioned stimulus preference. Alcohol 1998; 16: 201–206.

    Article  CAS  PubMed  Google Scholar 

  70. Amit Z, Aragon CM . Catalase activity measured in rats naive to ethanol correlates with later voluntary ethanol consumption: possible evidence for a biological marker system of ethanol intake. Psychopharmacology 1988; 95: 512–515.

    Article  CAS  PubMed  Google Scholar 

  71. Aragon CM, Sternklar G, Amit Z . A correlation between voluntary ethanol consumption and brain catalase activity in the rat. Alcohol 1985; 2: 353–356.

    Article  CAS  PubMed  Google Scholar 

  72. Gill K, Liu Y, Deitrich RA . Voluntary alcohol consumption in BXD recombinant inbred mice: relationship to alcohol metabolism. Alcohol Clin Exp Res 1996; 20: 185–190.

    Article  CAS  PubMed  Google Scholar 

  73. Aragon CM, Amit Z . The effect of 3-amino-1,2,4-triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology 1992; 31: 709–712.

    Article  CAS  PubMed  Google Scholar 

  74. Koechling UM, Amit Z . Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice. Alcohol 1994; 11: 235–239.

    Article  CAS  PubMed  Google Scholar 

  75. Rotzinger S, Smith BR, Amit Z . Catalase inhibition attenuates the acquisition of ethanol and saccharin–quinine consumption in laboratory rats. Behav Pharmacol 1994; 5: 203–209.

    Article  CAS  PubMed  Google Scholar 

  76. Tampier L, Quintanilla ME, Mardones J . Effects of aminotriazole on ethanol, water, and food intake and on brain catalase in UChA and UChB rats. Alcohol 1995; 12: 341–344.

    Article  CAS  PubMed  Google Scholar 

  77. Eriksson CJP . The aversive effect of acetaldehyde on alcohol drinking behavior in the rat. Alcohol Clin Exp Res 1980; 4: 107–111.

    Article  CAS  PubMed  Google Scholar 

  78. Isse T, Oyama T, Kitagawa K, Matsuno K, Matsumoto A, Yoshida A et al. Diminished alcohol preference in transgenic mice lacking aldehyde dehydrogenase activity. Pharmacogenetics 2002; 12: 621–626.

    Article  CAS  PubMed  Google Scholar 

  79. Koivisto T, Eriksson CJ . Hepatic aldehyde and alcohol dehydrogenase in alcohol-preferring and alcohol-avoiding rat lines. Biochem Pharmacol 1994; 48: 1551–1558.

    Article  CAS  PubMed  Google Scholar 

  80. Sinclair JD, Lindros KO . Suppression of alcohol drinking with brain aldehyde dehydrogenase inhibition. Pharmacol Biochem Behav 1981; 14: 377–383.

    Article  CAS  PubMed  Google Scholar 

  81. Escarabajal MD, De Witte P, Quertemont E . Role of acetaldehyde in ethanol-induced conditioned taste aversion in rats. Psychopharmacology 2003; 167: 130–136.

    Article  CAS  PubMed  Google Scholar 

  82. Dick DM, Foroud T . Candidate genes for alcohol dependence: a review of genetic evidence from human studies. Alcohol Clin Exp Res 2003; 27: 868–879.

    Article  PubMed  Google Scholar 

  83. Whitfield JB . Meta-analysis of the effects of alcohol dehydrogenase genotype on alcohol dependence and alcoholic liver disease. Alcohol Alcohol 1997; 32: 613–619.

    Article  CAS  PubMed  Google Scholar 

  84. Thomasson HR, Beard JD, Li TK . ADH2 gene polymorphisms are determinants of alcohol pharmacokinetics. Alcohol Clin Exp Res 1995; 19: 1494–1499.

    Article  CAS  PubMed  Google Scholar 

  85. Thomasson HR, Crabb DW, Edenberg HJ, Li TK, Hwu HG, Chen CC et al. Low frequency of the ADH2*2 allele among Atayal natives of Taiwan with alcohol use disorders. Alcohol Clin Exp Res 1994; 18: 640–643.

    Article  CAS  PubMed  Google Scholar 

  86. Borras E, Coutelle C, Rosell A, Fernandez-Muixi F, Broch M, Crosas B et al. Genetic polymorphism of alcohol dehydrogenase in Europeans: the ADH2*2 allele decreases the risk for alcoholism and is associated with ADH3*1. Hepatology 2000; 31: 984–989.

    Article  CAS  PubMed  Google Scholar 

  87. Osier, MV, Pakstis AJ, Soodyall H, Comas D, Goldman D, Odunsi A et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am J Genet 2002; 71: 84–99.

    CAS  Google Scholar 

  88. Wall TL, Garcia-Andrade C, Thomasson HR, Carr LG, Ehlers CL . Alcohol dehydrogenase polymorphisms in Native Americans: identification of the ADH2*3 allele. Alcohol Alcohol 1997; 32: 129–132.

    Article  CAS  PubMed  Google Scholar 

  89. Carr LG, Foroud T, Stewart T, Castellucio P, Edenberg HJ, Li TK . Influence of ADH1B polymorphism on alcohol use and its subjective effects in a Jewish population. Am J Med Genet 2002; 112: 138–143.

    Article  PubMed  Google Scholar 

  90. Neumark YD, Friedlander Y, Thomasson HR, Li TK . Association of the ADH2*2 allele with reduced ethanol consumption in Jewish men in Israel: a pilot study. J Stud Alcohol 1998; 59: 133–139.

    Article  CAS  PubMed  Google Scholar 

  91. Chambers GK, Marshall SJ, Robinson GM, Maguire S, Newton-Howes J, Chong NL . The genetics of alcoholism in Polynesians: alcohol and aldehyde dehydrogenase genotypes in young men. Alcohol Clin Exp Res 2002; 26: 949–955.

    Article  CAS  PubMed  Google Scholar 

  92. Chen WJ, Loh EW, Hsu YP, Chen CC, Yu JM, Cheng AT . Alcohol-metabolising genes and alcoholism among Taiwanese Han men: independent effect of ADH2, ADH3 and ALDH2. Br J Psychiatry 1996; 168: 762–767.

    Article  CAS  PubMed  Google Scholar 

  93. Higuchi S . Polymorphisms of ethanol metabolizing enzyme genes and alcoholism. Alcohol Alcohol 1994; 29(Suppl 2): 29–34.

    CAS  Google Scholar 

  94. Higuchi S, Matsushita S, Murayama M, Takagi S, Hayashida M . Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry 1995; 152: 1219–1221.

    Article  CAS  PubMed  Google Scholar 

  95. Higuchi S, Matsushita S, Muramatsu T, Murayama M, Hayashida M . Alcohol and aldehyde dehydrogenase genotypes and drinking behavior in Japanese. Alcohol Clin Exp Res 1996; 20: 493–497.

    Article  CAS  PubMed  Google Scholar 

  96. Maezawa Y, Yamauchi M, Toda G, Suzuki H, Sakurai S . Alcohol-metabolizing enzyme polymorphisms and alcoholism in Japan. Alcohol Clin Exp Res 1995; 19: 951–954.

    Article  CAS  PubMed  Google Scholar 

  97. Muramatsu T, Wang ZC, Fang YR, Hu KB, Yan H, Yamada K et al. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior of Chinese living in Shangai. Hum Genet 1995; 96: 151–154.

    Article  CAS  PubMed  Google Scholar 

  98. Ogurtsov PP, Garmash IV, Miandina GI, Guschin AE, Itkes AV, Moiseev VS . Alcohol dehydrogenase ADH2-1 and ADH2-2 allelic isoforms in the Russian population correlate with type of alcoholic disease. Addict Biol 2001; 6: 377–383.

    Article  CAS  PubMed  Google Scholar 

  99. Osaka R, Nanakorn S, Sakata R, Nishiyori A, Shibata A, Nakamura J et al. Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes and male alcohol use disorders in Khon kaen, north-east Thailand. Psychiatry Clin Neurosci 2003; 57: 37–45.

    Article  CAS  PubMed  Google Scholar 

  100. Shen YC, Fan JH, Edenberg HJ, Li TK, Cui YH, Wang YF et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol Clin Exp Res 1997; 21: 1272–1277.

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka F, Shiratori Y, Yokosuka O, Imazeki F, Tsukada Y, Omata M . High incidence of ADH2*1/ALDH2*1 genes among Japanase alcohol dependents and patients with alcoholic liver disease. Hepatology 1996; 23: 234–239.

    Article  CAS  PubMed  Google Scholar 

  102. Thomasson HR, Edenberg HJ, Crabb DW, Mai XL, Jerome RE, Li TK et al. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet 1991; 48: 677–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Thomasson HR, Crabb DW, Edenberg HJ, Li TK . Alcohol and aldehyde dehydrogenase polymorphisms and alcoholism. Behav Genet 1993; 23: 131–136.

    Article  CAS  PubMed  Google Scholar 

  104. Whitfield JB, Nightingale BN, Bucholz KK, Madden PA, Heath AC, Martin NG . ADH genotypes and alcohol use and dependence in Europeans. Alcohol Clin Exp Res 1998; 22: 1463–1469.

    Article  CAS  PubMed  Google Scholar 

  105. Hasin D, Aharonovitch E, Liu X, Mamman Z, Matseoane K, Carr L et al. Alcohol and ADH2 in Israel: Ashkenasis, Sephardics, and recent Russian immigrants. Am J Psychiatry 2002; 159: 1432–1434.

    Article  PubMed  Google Scholar 

  106. Tanaka F, Shiratori Y, Yokosuka O, Imazeki F, Tsukada Y, Omata M . Polymorphism of alcohol-metabolizing genes affects drinking behavior and alcoholic liver disease in Japanese men. Alcohol Clin Exp Res 1997; 21: 596–601.

    Article  CAS  PubMed  Google Scholar 

  107. Wall TL, Carr LG, Ehlers CL . Protective association of genetic variation in alcohol dehydrogenase with alcohol dependence in Native American Mission Indians. Am J Psychiatry 2003; 160: 41–46.

    Article  PubMed  Google Scholar 

  108. Ehlers CL, Gilder DA, Harris L, Carr L . Association of the ADH2*3 allele with a negative family history of alcoholism in African American young adults. Alcohol Clin Exp Res 2001; 25: 1773–1777.

    Article  CAS  PubMed  Google Scholar 

  109. Yin SJ . Alcohol dehydrogenase: enzymology and metabolism. Alcohol Alcohol 1994; 29(Suppl 2): 113–119.

    CAS  Google Scholar 

  110. Mizoi Y, Yamamoto K, Ueno Y, Fukunage T, Harada S . Involvement of genetic polymorphism of alcohol and aldehyde dehydrogenases in individual variation of alcohol metabolism. Alcohol Alcohol 1994; 29: 707–710.

    CAS  PubMed  Google Scholar 

  111. Neumark YD, Friedlander Y, Durst R, Leitersdorf E, Jaffe D, Ramchandani VA et al. Alcohol dehydrogenase polymorphisms influence alcohol-elimination rates in a male Jewish population. Alcohol Clin Exp Res 2004; 28: 10–14.

    Article  CAS  PubMed  Google Scholar 

  112. Peng GS, Yin JH, Wang MF, Lee JT, Hsu YD, Yin SJ . Alcohol sensitivity in Taiwanese men with different alcohol and aldehyde dehydrogenase genotypes. J Formos Med Assoc 2002; 101: 769–774.

    PubMed  Google Scholar 

  113. Chen WJ, Chen CC, Yu JM, Cheng AT . Self-reported flushing and genotypes of ALDH2, ADH2, and ADH3 among Taiwanese Han. Alcohol Clin Exp Res 1998; 22: 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  114. Chen CC, Lu RB, Chen YC, Wang MF, Chang YC, Li TK et al. Interaction between the functional polymorphisms of the alcohol–metabolism genes in protection against alcoholism. Am J Hum Genet 1999; 65: 795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Higuchi S, Muramatsu T, Matsushita S, Murayama M, Hayashida M . Polymorphisms of ethanol-oxidizing enzymes in alcoholics with inactive ALDH2. Hum Genet 1996; 97: 431–434.

    Article  CAS  PubMed  Google Scholar 

  116. Peng GS, Wang MF, Chen CY, Luu SU, Chou HC, Li TK et al. Involvement of acetaldehyde for full protection against alcoholism by homozygosity of the variant allele of mitochondrial aldehyde dehydrogenase gene in Asians. Pharmacogenetics 1999; 9: 463–476.

    CAS  PubMed  Google Scholar 

  117. Agarwal DP, Goedde HW . Pharmacogenetics of alcohol metabolism and alcoholism. Pharmacogenetics 1992; 2: 48–62.

    Article  CAS  PubMed  Google Scholar 

  118. Konishi T, Calvillo M, Leng AS, Feng J, Lee T, Lee H et al. The ADH3*2 and CYP2E1 c2 alleles increase the risk of alcoholism in Mexican American men. Exp Mol Pathol 2003; 74: 183–189.

    Article  CAS  PubMed  Google Scholar 

  119. Pares X, Farres J, Pares A, Soler X, Panes J, Ferre JL et al. Genetic polymorphism of liver alcohol dehydrogenase in Spanish subjects: significance of alcohol consumption and liver disease. Alcohol Alcohol 1994; 29: 701–705.

    CAS  PubMed  Google Scholar 

  120. Osier M, Pakstis AJ, Kidd JR, Lee JF, Yin SJ, Ko HC et al. Linkage disequilibrium at the ADH2 and ADH3 loci and risk of alcoholism. Am J Hum Genet 1999; 64: 1147–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mulligan CJ, Robin RW, Osier MV, Sambuughin N, Goldfarb LG, Kittles RA et al. Allelic variation at alcohol metabolism genes (ADH1B, ADH1C, ALDH2) and alcohol dependence in an American Indian population. Hum Genet 2003; 113: 325–336.

    Article  CAS  PubMed  Google Scholar 

  122. Osier MV, Pakstis AJ, Goldman D, Edenberg HJ, Kidd JR, Kidd KK . A proline–threonine substitution in codon 351 of ADH1C is common in Native Americans. Alcohol Clin Exp Res 2002; 26: 1759–1763.

    Article  CAS  PubMed  Google Scholar 

  123. Edenberg HJ . The collaborative study on the genetics of alcoholism: an update. Alcohol Res Health 2002; 26: 214–218.

    PubMed  PubMed Central  Google Scholar 

  124. Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 1998; 81: 207–215.

    Article  CAS  PubMed  Google Scholar 

  125. Saccone NL, Kwon JM, Corbett J, Goate A, Rochberg N, Edenberg HJ et al. A genome screen of maximum number of drinks as an alcoholism phenotype. Am J Med Genet 2000; 96: 632–637.

    Article  CAS  PubMed  Google Scholar 

  126. Edenberg HJ, Jerome RE, Li M . Polymorphism of the human alcohol dehydrogenase 4 (ADH4) promoter affects gene expression. Pharmacogenetics 1999; 9: 25–30.

    Article  CAS  PubMed  Google Scholar 

  127. Iida A, Saito S, Sekine A, Kondo K, Mishima C, Kitamura Y et al. Thirteen single-nucleotide polymorphisms (SNPs) in the alcohol dehydrogenase 4 (ADH4) gene locus. J Hum Genet 2002; 47: 74–76.

    Article  CAS  PubMed  Google Scholar 

  128. Harada S, Agarwal DP, Nomura F, Higuchi S . Metabolic and ethnic determinants of alcohol drinking habits and vulnerability to alcohol-related disorder. Alcohol Clin Exp Res 2001; 25: 71S–75S.

    Article  CAS  PubMed  Google Scholar 

  129. Carr LG, Yi IS, Li TK, Yin SJ . Cytochrome P4502E1 genotypes, alcoholism, and alcoholic cirrhosis in Han Chinese and Atayal natives of Taiwan. Alcohol Clin Exp Res 1996; 20: 43–46.

    Article  CAS  PubMed  Google Scholar 

  130. Pastorelli R, Bardazzi G, Saieva C, Cerri A, Gestri D, Allamani A et al. Genetic determinants of alcohol addiction and metabolism: a survey in Italy. Alcohol Clin Exp Res 2001; 25: 221–227.

    Article  CAS  PubMed  Google Scholar 

  131. Chao YC, Young TH, Tang HS, Hsu CT . Alcoholism and alcoholic organ damage and genetic polymorphisms of alcohol metabolizing enzymes in Chinese patients. Hepatology 1997; 25: 112–117.

    Article  CAS  PubMed  Google Scholar 

  132. Sun F, Tsuritani I, Yamada Y . Contribution of genetic polymorphisms in ethanol-metabolizing enzymes to problem drinking behavior in middle-aged Japanese men. Behav Genet 2002; 32: 229–236.

    Article  PubMed  Google Scholar 

  133. Tsutsumi M, Takada A, Wang JS . Genetic polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. Gastroenterology 1994; 107: 1430–1435.

    Article  CAS  PubMed  Google Scholar 

  134. Koechling UM, Amit Z . Relationship between blood catalase activity and drinking history in a human population, a possible biological marker of the affinity to consume alcohol. Alcohol Alcohol 1992; 27: 181–188.

    CAS  PubMed  Google Scholar 

  135. Koechling UM, Amit Z, Negrete JC . Family history of alcoholism and the mediation of alcohol intake by catalase: further evidence for catalase as a marker of the propensity to ingest alcohol. Alcohol Clin Exp Res 1995; 19: 1096–1104.

    Article  CAS  PubMed  Google Scholar 

  136. Kee JY, Kim MO, You IY, Chai JY, Hong ES, An SC et al. Effects of genetic polymorphisms of ethanol-metabolizing enzymes on alcohol drinking behaviors. Taehan Kan Hakhoe Chi 2003; 9: 89–97.

    PubMed  Google Scholar 

  137. Bosron WF, Li TK . Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology 1986; 6: 502–510.

    Article  CAS  PubMed  Google Scholar 

  138. Harada S, Agarwal DP, Goedde HW, Tagaki S, Ishikawa B . Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet 1982; 2: 827.

    Article  CAS  PubMed  Google Scholar 

  139. Nakamura K, Iwahashi K, Matsuo Y, Miyatake R, Ichikawa Y, Suwaki H . Characteristics of Japanese alcoholics with the atypical aldehyde dehydrogenase 2*2. I. A comparison of the genotypes of ALDH2, ADH2, ADH3, and cytochrome P-4502E1 between alcoholics and nonalcoholics. Alcohol Clin Exp Res 1996; 20: 52–55.

    Article  CAS  PubMed  Google Scholar 

  140. Sun F, Tsuritani I, Honda R, Ma ZY, Yamada Y . Association of genetic polymorphisms of alcohol-metabolizing enzymes with excessive alcohol consumption in Japanese men. Hum Genet 1999; 105: 295–300.

    Article  CAS  PubMed  Google Scholar 

  141. Takeshita T, Maruyama S, Morimoto K . Relevance of both daily hassles and the ALDH2 genotype to problem drinking among Japanese male workers. Alcohol Clin Exp Res 1998; 22: 115–120.

    Article  CAS  PubMed  Google Scholar 

  142. Takeshita T, Morimoto K, Mao X, Hashimoto T, Furuyama J . Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Hum Genet 1994; 94: 217–223.

    CAS  PubMed  Google Scholar 

  143. Takeshita T, Morimoto K . Self-reported alcohol-associated symptoms and drinking behavior in three ALDH2 genotypes among Japanese university students. Alcohol Clin Exp Res 1999; 23: 1065–1069.

    Article  CAS  PubMed  Google Scholar 

  144. Tu GC, Israel Y . Alcohol consumption by orientals in North America is predicted largely by a single gene. Behav Genet 1995; 25: 59–65.

    Article  CAS  PubMed  Google Scholar 

  145. Wall TL, Shea SH, Chan KK, Carr LG . A genetic association with the development of alcohol and other substance use behavior in Asian Americans. J Abnorm Psychol 2001; 110: 173–178.

    Article  CAS  PubMed  Google Scholar 

  146. Harada S, Okubo T, Nakamura T, Fujii C, Nomura F, Higuchi S et al. A novel polymorphism (−357 G/A) of the ALDH2 gene: linkage disequilibrium and an association with alcoholism. Alcohol Clin Exp Res 1999; 23: 958–962.

    CAS  PubMed  Google Scholar 

  147. Novoradovsky A, Tsai SJ, Goldfarb L, Peterson R, Long JC, Goldman D . Mitochondrial aldehyde dehydrogenase polymorphism in Asian and American Indian populations: detection of new ALDH2 alleles. Alcohol Clin Exp Res 1995; 19: 1105–1110.

    Article  CAS  PubMed  Google Scholar 

  148. Peterson RJ, Goldman D, Long JC . Effects of worldwide population subdivision on ALDH2 linkage disequilibrium. Gen Res 1999; 9: 844–852.

    Article  CAS  Google Scholar 

  149. Peterson RJ, Goldman D, Long JC . Nucleotide sequence diversity in non-coding regions of ALDH2 as revealed by restriction enzyme and SSCP analysis. Hum Genet 1999; 104: 177–187.

    Article  CAS  PubMed  Google Scholar 

  150. Enomoto N, Takase S, Yasuhara M, Takada A . Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res 1991; 15: 141–144.

    Article  CAS  PubMed  Google Scholar 

  151. Luu SU, Wang MF, Lin DL, Kao MH, Chen ML, Chiang CH et al. Ethanol and acetaldehyde metabolism in Chinese with different aldehyde dehydrogenase-2 genotypes. Proc Natl Sci Counc Repub China B 1995; 19: 129–136.

    CAS  PubMed  Google Scholar 

  152. Wall TL, Peterson CM, Peterson KP, Johnson ML, Thomasson HR, Cole M et al. Alcohol metabolism in Asian-American men with genetic polymorphisms of aldehyde dehydrogenase. Ann Intern Med 1997; 127: 376–379.

    Article  CAS  PubMed  Google Scholar 

  153. Vakevainen S, Tillonen J, Salaspuro M . 4-methylpyrazole decreases salivary acetaldehyde levels in ALDH2-deficient subjects but not in subjects with normal ALDH2. Alcohol Clin Exp Res 2001; 25: 829–834.

    Article  CAS  PubMed  Google Scholar 

  154. Eriksson CJP . The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol Clin Exp Res 2001; 25: 15S–32S.

    Article  CAS  PubMed  Google Scholar 

  155. Luczak SE, Elvine-Kreis B, Shea SH, Carr LG, Wall TL . Genetic risk for alcoholism relates to level of response to alcohol in Asian-American men and women. J Stud Alcohol 2002; 63: 74–82.

    Article  PubMed  Google Scholar 

  156. Von Wartburg JP . Acute aldehyde syndrome and chronic aldehydism. Mutat Res 1987; 186: 249–259.

    Article  CAS  PubMed  Google Scholar 

  157. Harada S, Agarwal DP, Goedde HW . Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet 1981; 2: 982.

    Article  CAS  PubMed  Google Scholar 

  158. Shibuya A, Yasunami M, Yoshida A . Genotype of alcohol dehydrogenase and aldehyde dehydrogenase loci in Japanese alcohol flushers and nonflushers. Hum Genet 1989; 82: 14–16.

    Article  CAS  PubMed  Google Scholar 

  159. Chen YC, Lu RB, Peng GS, Wang MF, Wang HK, Ko HC et al. Alcohol metabolism and cardiovascular response in an alcoholic patient homozygous for the ALDH2*2 variant gene allele. Alcohol Clin Exp Res 1999; 23: 1853–1860.

    Article  CAS  PubMed  Google Scholar 

  160. Murayama M, Matsushita S, Muramatsu T, Higuchi S . Clinical characteristics and disease course of alcoholics with inactive aldehyde dehydrogenase-2. Alcohol Clin Exp Res 1998; 22: 524–527.

    Article  CAS  PubMed  Google Scholar 

  161. Kristenson H . How to get the best out of Antabuse. Alcohol Alcohol 1995; 30: 775–783.

    CAS  PubMed  Google Scholar 

  162. Chick J, Gough K, Falkowski W, Kershaw P, Hore B, Mehta B et al. Disulfiram treatment of alcoholism. Br J Psychiatry 1992; 161: 84–89.

    Article  CAS  PubMed  Google Scholar 

  163. Peachey JE . A review of the clinical use of disulfiram and calcium carbimide in alcoholism treatment. J Clin Psychopharmacol 1981; 1: 368–375.

    Article  CAS  PubMed  Google Scholar 

  164. Peachey JE, Annis HM, Bornstein ER, Sykora K, Maglana SM, Shamai S . Calcium carbimide in alcoholism treatment. Part 1: a placebo-controlled, double-blind clinical trial of short-term efficacy. Br J Addict 1989; 84: 877–887.

    Article  CAS  PubMed  Google Scholar 

  165. Johnsen J, Stowell A, Morland J . Clinical responses in relation to blood acetaldehyde levels. Pharmacol Toxicol 1992; 70: 41–45.

    Article  CAS  PubMed  Google Scholar 

  166. Peachey JE, Zilm DH, Robinson GM, Jacob M, Cappell H . A placebo-controlled double-blind comparative clinical study of the disulfiram- and calcium carbimide-acetaldehyde mediated ethanol reactions in socialdrinkers. Alcohol Clin Exp Res 1983; 7: 180–187.

    Article  CAS  PubMed  Google Scholar 

  167. Brown ZW, Amit Z, Smith BR, Sutherland EA, Selvaggi N . Alcohol-induced euphoria enhanced by disulfiram and calcium carbimide. Alcohol Clin Exp Res 1983; 7: 276–278.

    Article  CAS  PubMed  Google Scholar 

  168. Chevens LC . Antabuse addiction. BMJ 1953; 1: 1450–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Minto A, Roberts F . Temposil, a new drug in the treatment of alcoholism. J Ment Sci 1960; 106: 288–295.

    Article  CAS  PubMed  Google Scholar 

  170. Peachey JE, Brien JF, Loomis CW, Rogers BJ . A study of the calcium carbimide–ethanol interaction in man: symptom responses. Alcohol Clin Exp Res 1980; 4: 322–329.

    Article  CAS  PubMed  Google Scholar 

  171. Wall TL, Thomasson HR, Schuckit MA, Ehlers CL . Subjective feelings of alcohol intoxication in Asians with genetic variations of ALDH2 alleles. Alcohol Clin Exp Res 1992; 16: 991–995.

    Article  CAS  PubMed  Google Scholar 

  172. Gill K, Eagle Elk M, Liu Y, Deitrich RA . An examination of ALDH2 genotypes, alcohol metabolism and the flushing response in Native Americans. J Stud Alcohol 1999; 60: 149–158.

    Article  CAS  PubMed  Google Scholar 

  173. Quertemont E . Discriminative stimulus effects of ethanol with a conditioned taste aversion procedure: lack of acetaldehyde substitution. Behav Pharmacol 2003; 14: 343–350.

    Article  CAS  PubMed  Google Scholar 

  174. Quertemont E, Grant KA . Role of acetaldehyde in the discriminative stimulus effects of ethanol. Alcohol Clin Exp Res 2002; 26: 812–817.

    Article  CAS  PubMed  Google Scholar 

  175. Hyman SE, Malenka RC . Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2002; 2: 695–703.

    Article  CAS  Google Scholar 

  176. Di Chiara G . Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 2002; 137: 75–114.

    Article  CAS  PubMed  Google Scholar 

  177. Foddai M, Dosia G, Spiga S, Diana M . Acetaldehyde increases dopaminergic neuronal activity in the VTA. Neuropsychopharmacology 2003; 29: 530–536.

    Article  CAS  Google Scholar 

  178. Jamal M, Ameno K, Ameno S, Okada N, Ijiri I . In vivo study of salsolinol produced by a high concentration of acetaldehyde in the striatum and nucleus accumbens of free-moving rats. Alcohol Clin Exp Res 2003; 27: 79s–84s.

    Article  CAS  PubMed  Google Scholar 

  179. Rodd ZA, Bell RL, Zhang Y, Goldstein A, Zaffaroni A, McBride WJ et al. Salsolinol produces reinforcing effects in the nucleus accumbens shell of alcohol-preferring (P) rats. Alcohol Clin Exp Res 2003; 27: 440–449.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belgian National Funds for Scientific Research (FNRS). We wish to thank Sophie Tambour for her help in preparing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Quertemont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quertemont, E. Genetic polymorphism in ethanol metabolism: acetaldehyde contribution to alcohol abuse and alcoholism. Mol Psychiatry 9, 570–581 (2004). https://doi.org/10.1038/sj.mp.4001497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001497

Keywords

This article is cited by

Search

Quick links