Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of hypoxia-inducible factors in metabolic diseases

Abstract

Hypoxia-inducible factors (HIFs), a family of transcription factors activated by hypoxia, consist of three α-subunits (HIF1α, HIF2α and HIF3α) and one β-subunit (HIF1β), which serves as a heterodimerization partner of the HIFα subunits. HIFα subunits are stabilized from constitutive degradation by hypoxia largely through lowering the activity of the oxygen-dependent prolyl hydroxylases that hydroxylate HIFα, leading to their proteolysis. HIF1α and HIF2α are expressed in different tissues and regulate target genes involved in angiogenesis, cell proliferation and inflammation, and their expression is associated with different disease states. HIFs have been widely studied because of their involvement in cancer, and HIF2α-specific inhibitors are being investigated in clinical trials for the treatment of kidney cancer. Although cancer has been the major focus of research on HIF, evidence has emerged that this pathway has a major role in the control of metabolism and influences metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease. Notably increased HIF1α and HIF2α signalling in adipose tissue and small intestine, respectively, promotes metabolic diseases in diet-induced disease models. Inhibition of HIF1α and HIF2α decreases the adverse diet-induced metabolic phenotypes, suggesting that they could be drug targets for the treatment of metabolic diseases.

Key points

  • Obesity triggers hypoxia in adipose tissue and the small intestine, which stabilizes and activates hypoxia-inducible factor (HIF)1α and HIF2α signalling, resulting in adverse metabolic effects, including insulin resistance and non-alcoholic fatty liver disease.

  • Induction of HIF1α in adipocytes, through a suppressor of cytokine signalling 3 (SOCS3)–signal transducer and activator of transcription 3 (STAT3) axis, leads to the upregulation of inflammation and downregulation of adiponectin expression, resulting in insulin resistance.

  • Activation of HIF2α in the small intestine increases expression of sialidase 3, resulting in an elevation of small intestinal and serum levels of ceramides that in turn potentiate obesity-associated metabolic diseases.

  • Genetic or chemical inhibition of HIF1α and HIF2α signalling in adipose tissue and the small intestine ameliorates obesity-associated metabolic diseases, indicating that they could be targeted for treatment of metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypoxia-inducible factor-α proteins are hydroxylated under normoxic conditions by prolyl hydroxylase domain enzymes.
Fig. 2: Hypoxia-inducible factor 1α in adipose tissue.
Fig. 3: Hypoxia-inducible factor 2α in liver glucose metabolism.
Fig. 4: Hypoxia-inducible factor 2α in metabolic disease.

Similar content being viewed by others

References

  1. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).

    CAS  PubMed  Google Scholar 

  3. Hoffman, E. C. et al. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 954–958 (1991).

    CAS  PubMed  Google Scholar 

  4. Ravenna, L., Salvatori, L. & Russo, M. A. HIF3α: the little we know. FEBS J. 283, 993–1003 (2016).

    CAS  PubMed  Google Scholar 

  5. Haase, V. H. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial. Int. 21 (Suppl. 1), S110–S124 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Lisy, K. & Peet, D. J. Turn me on: regulating HIF transcriptional activity. Cell Death Differ. 15, 642–649 (2008).

    CAS  PubMed  Google Scholar 

  7. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  8. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  9. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  10. Labrecque, M. P., Prefontaine, G. G. & Beischlag, T. V. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces. Curr. Mol. Med. 13, 1047–1065 (2013).

    CAS  PubMed  Google Scholar 

  11. Nebert, D. W. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog. Lipid Res. 67, 38–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bersten, D. C., Sullivan, A. E., Peet, D. J. & Whitelaw, M. L. bHLH-PAS proteins in cancer. Nat. Rev. Cancer 13, 827–841 (2013).

    CAS  PubMed  Google Scholar 

  13. Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y., Shao, Z., Zhai, Z., Shen, C. & Powell-Coffman, J. A. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLOS One 4, e6348 (2009).

    PubMed  Google Scholar 

  15. Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W. & McKnight, S. L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramakrishnan, S. K. & Shah, Y. M. Role of intestinal HIF-2α in health and disease. Annu. Rev. Physiol. 78, 301–325 (2016).

    CAS  PubMed  Google Scholar 

  17. Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Dengler, V. L., Galbraith, M. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1–15 (2014).

    CAS  PubMed  Google Scholar 

  19. Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ. Res. 77, 638–643 (1995).

    CAS  PubMed  Google Scholar 

  20. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69 (Suppl. 3), 4–10 (2005).

    CAS  PubMed  Google Scholar 

  21. Arjaans, M. et al. VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside. Oncotarget 7, 21247–21258 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Wallace, E. M. et al. A small-molecule antagonist of HIF2α Is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).

    CAS  PubMed  Google Scholar 

  23. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez-Saez, O., Gajate Borau, P., Alonso-Gordoa, T., Molina-Cerrillo, J. & Grande, E. Targeting HIF-2α in clear cell renal cell carcinoma: A promising therapeutic strategy. Crit. Rev. Oncol. Hematol. 111, 117–123 (2017).

    PubMed  Google Scholar 

  25. Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–1128 (2007).

    CAS  PubMed  Google Scholar 

  26. Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 100, 227–235 (2008).

    CAS  PubMed  Google Scholar 

  27. Pasarica, M. et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58, 718–725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, Y. S. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Regazzetti, C. et al. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58, 95–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jun, J. C. et al. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis. J. Mol. Med. (Berl.) 95, 287–297 (2017).

    CAS  Google Scholar 

  32. Zhang, X. et al. Adipose tissue-specific inhibition of hypoxia-inducible factor 1α induces obesity and glucose intolerance by impeding energy expenditure in mice. J. Biol. Chem. 285, 32869–32877 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Basse, A. L. et al. Regulation of glycolysis in brown adipocytes by HIF-1α. Sci. Rep. 7, 4052 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Matsuura, H. et al. Prolyl hydroxylase domain protein 2 plays a critical role in diet-induced obesity and glucose intolerance. Circulation 127, 2078–2087 (2013).

    CAS  PubMed  Google Scholar 

  35. He, Q. et al. Regulation of HIF-1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am. J. Physiol. Endocrinol. Metab. 300, E877–885 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60, 2484–2495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, K. Y., Gesta, S., Boucher, J., Wang, X. L. & Kahn, C. R.The differential role of Hif1β/Arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab. 14, 491–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Krishnan, J. et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 26, 259–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl Acad. Sci. USA 106, 17910–17915 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, C. et al. Hypoxia-inducible factor 1α regulates a SOCS3-STAT3-adiponectin signal transduction pathway in adipocytes. J. Biol. Chem. 288, 3844–3857 (2013).

    CAS  PubMed  Google Scholar 

  41. Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol. 33, 904–917 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanatani, Y. et al. Effects of pioglitazone on suppressor of cytokine signaling 3 expression: potential mechanisms for its effects on insulin sensitivity and adiponectin expression. Diabetes 56, 795–803 (2007).

    CAS  PubMed  Google Scholar 

  43. Zhang, S. Y. et al. Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage nod-Like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance. EBioMed 31, 202–216 (2018).

    Google Scholar 

  44. Li, Y. et al. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 57, 817–827 (2008).

    CAS  PubMed  Google Scholar 

  45. Pang, Y. et al. Intermedin restores hyperhomocysteinemia-induced macrophage polarization and improves insulin resistance in mice. J. Biol. Chem. 291, 12336–12345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    CAS  PubMed  Google Scholar 

  48. Guentsch, A. et al. PHD2 Is a regulator for glycolytic reprogramming in macrophages. Mol. Cell. Biol. 37, e00236–00216 (2017).

    CAS  PubMed  Google Scholar 

  49. Wang, N., Liang, H. & Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 5, 614 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Han, S. et al. Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front. Immunol. 9, 135 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Boutens, L. et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 61, 942–953 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takikawa, A. et al. HIF-1α in myeloid cells promotes adipose tissue remodeling toward insulin resistance. Diabetes 65, 3649–3659 (2016).

    CAS  PubMed  Google Scholar 

  53. Krishnan, J. et al. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab. 9, 512–524 (2009).

    CAS  PubMed  Google Scholar 

  54. Lu, H., Gao, Z., Zhao, Z., Weng, J. & Ye, J. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Int. J. Obes. (Lond.) 40, 121–128 (2016).

    CAS  Google Scholar 

  55. Gunton, J. E. et al. Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122, 337–349 (2005).

    CAS  PubMed  Google Scholar 

  56. Cheng, K. et al. Hypoxia-inducible factor-1α regulates βcell function in mouse and human islets. J. Clin. Invest. 120, 2171–2183 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stokes, R. A. et al. Hypoxia-inducible factor-1α (HIF-1α) potentiates β-cell survival after islet transplantation of human and mouse islets. Cell Transplant. 22, 253–266 (2013).

    PubMed  Google Scholar 

  58. Zehetner, J. et al. PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic β cells. Genes Dev. 22, 3135–3146 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cantley, J. et al. Deletion of the von hippel-lindau gene in pancreatic β cells impairs glucose homeostasis in mice. J. Clin. Invest. 119, 125–135 (2009).

    CAS  PubMed  Google Scholar 

  60. Zelzer, E. et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J. 17, 5085–5094 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  62. Gorden, D. L. et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kucejova, B. et al. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene 30, 2147–2160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo, B. et al. Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis. FASEB J. https://doi.org/10.1096/fj.201701139R (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Minamishima, Y. A. et al. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol. Cell. Biol. 29, 5729–5741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nath, B. et al. Hepatocyte-specific hypoxia-inducible factor-1α is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53, 1526–1537 (2011).

    CAS  PubMed  Google Scholar 

  67. Nishiyama, Y. et al. HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J. Hepatol. 56, 441–447 (2012).

    CAS  PubMed  Google Scholar 

  68. Ochiai, D. et al. Disruption of HIF-1α in hepatocytes impairs glucose metabolism in diet-induced obesity mice. Biochem. Biophys. Res. Commun. 415, 445–449 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Scott, C. H. et al. Hepatic aryl hydrocarbon receptor nuclear translocator (ARNT) regulates metabolism in mice. PLOS One 12, e0186543 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Ouyang, X. et al. Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis. Cell Metab. 27, 339–350.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee, T. Y., Leu, Y. L. & Wen, C. K. Modulation of HIF-1α and STAT3 signaling contributes to anti-angiogenic effect of YC-1 in mice with liver fibrosis. Oncotarget 8, 86206–86216 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Hwang, S. et al. Hypoxia-inducible factor 1α activates insulin-induced gene 2 (insig-2) transcription for degradation of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase in the liver. J. Biol. Chem. 292, 9382–9393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramakrishnan, S. K. & Shah, Y. M. A central role for hypoxia-inducible factor (HIF)-2α in hepatic glucose homeostasis. Nutr. Healthy Aging 4, 207–216 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rankin, E. B. et al. Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol. Cell. Biol. 29, 4527–4538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rahtu-Korpela, L. et al. Hypoxia-inducible factor prolyl 4-hydroxylase-2 inhibition protects against development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36, 608–617 (2016).

    CAS  PubMed  Google Scholar 

  76. Qu, A. et al. Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54, 472–483 (2011).

    CAS  PubMed  Google Scholar 

  77. Li, D. et al. Hepatic hypoxia-inducible factors inhibit PPARα expression to exacerbate acetaminophen induced oxidative stress and hepatotoxicity. Free Radic. Biol. Med. 110, 102–116 (2017).

    CAS  PubMed  Google Scholar 

  78. Patterson, A. D., Shah, Y. M., Matsubara, T., Krausz, K. W. & Gonzalez, F. J. Peroxisome proliferator-activated receptor α induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology 56, 281–290 (2012).

    CAS  PubMed  Google Scholar 

  79. Kersten, S. Angiopoietin-like 3 in lipoprotein metabolism. Nat. Rev. Endocrinol. 13, 731–739 (2017).

    CAS  PubMed  Google Scholar 

  80. Morello, E. et al. Hypoxia-inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein. Hepatology 67, 2196–2214 (2018).

    CAS  PubMed  Google Scholar 

  81. Bartneck, M. et al. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology 63, 1310–1324 (2016).

    CAS  PubMed  Google Scholar 

  82. Ramakrishnan, S. K. et al. HIF2α Is an essential molecular brake for postprandial hepatic glucagon response independent of insulin signaling. Cell Metab. 23, 505–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Taniguchi, C. M. et al. Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes. Nat. Med. 19, 1325–1330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, K. et al. A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition. Nat. Med. 19, 1331–1337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh, V. et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 22, 983–996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    PubMed  Google Scholar 

  87. Gonzalez, F. J., Jiang, C. & Patterson, A. D. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 51, 845–859 (2016).

    Google Scholar 

  88. Xie, C. et al. Activation of intestinal hypoxia-inducible factor 2α during obesity contributes to hepatic steatosis. Nat. Med. 23, 1298–1308 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Walter, K. M. et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab. 20, 882–897 (2014).

    CAS  PubMed  Google Scholar 

  90. Schonenberger, M. J., Krek, W. & Kovacs, W. J. EPAS1/HIF-2α is a driver of mammalian pexophagy. Autophagy 11, 967–969 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Rahtu-Korpela, L. et al. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63, 3324–3333 (2014).

    CAS  PubMed  Google Scholar 

  92. Garcia-Martin, R. et al. Adipocyte-specific hypoxia-inducible factor 2α deficiency exacerbates obesity-induced brown adipose tissue dysfunction and metabolic dysregulation. Mol. Cell. Biol. 36, 376–393 (2015).

    PubMed  Google Scholar 

  93. Park, J. et al. VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-Iidependent metabolic improvements. Diabetes 66, 1479–1490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, K. H. et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 27, 1309–1326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Takeda, N. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dehn, S. et al. HIF-2α in resting macrophages tempers mitochondrial reactive oxygen species to selectively repress MARCO-dependent phagocytosis. J. Immunol. 197, 3639–3649 (2016).

    CAS  PubMed  Google Scholar 

  98. Semenza, G. L. & Prabhakar, N. R. The role of hypoxia-inducible factors in carotid body (patho) physiology. J. Physiol. https://doi.org/10.1113/JP275696 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yuan, G. et al. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J. Cell. Physiol. 226, 2925–2933 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nanduri, J. et al. Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc. Natl Acad. Sci. USA 106, 1199–1204 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mastrogiannaki, M. et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pinhas-Hamiel, O. et al. Greater prevalence of iron deficiency in overweight and obese children and adolescents. Int. J. Obes. Relat. Metab. Disord. 27, 416–418 (2003).

    CAS  PubMed  Google Scholar 

  103. Shah, Y. M., Matsubara, T., Ito, S., Yim, S. H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 9, 152–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yanoff, L. B. et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. (Lond.) 31, 1412–1419 (2007).

    CAS  Google Scholar 

  105. Cepeda-Lopez, A. C. et al. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am. J. Clin. Nutr. 93, 975–983 (2011).

    CAS  PubMed  Google Scholar 

  106. Simcox, J. A. & McClain, D. A. Iron and diabetes risk. Cell Metab. 17, 329–341 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Safran, M. et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc. Natl Acad. Sci. USA 103, 105–110 (2006).

    CAS  PubMed  Google Scholar 

  108. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Miyagi, T., Wada, T., Yamaguchi, K., Hata, K. & Shiozaki, K. Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J. Biochem. 144, 279–285 (2008).

    CAS  PubMed  Google Scholar 

  110. Xie, C. et al. Metabolic profiling of the novel HIF2α inhibitor PT2385 in vivo and in vitro. Drug Metab. Dispos. 46, 336–345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).

    CAS  PubMed  Google Scholar 

  112. Chaurasia, B. et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation, and metabolism. Cell Metab. 24, 820–834 (2016).

    CAS  PubMed  Google Scholar 

  113. Summers, S. A. & Goodpaster, B. H. CrossTalk proposal: Intramyocellular ceramide accumulation does modulate insulin resistance. J. Physiol. 594, 3167–3170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Summers, S. A. Could ceramides become the new cholesterol? Cell Metab. 27, 276–280 (2018).

    CAS  PubMed  Google Scholar 

  115. Matsubara, T., Li, F. & Gonzalez, F. J. FXR signaling in the enterohepatic system. Mol. Cell Endocrinol. 368, 17–29 (2013).

    CAS  PubMed  Google Scholar 

  116. Khavandgar, Z. & Murshed, M. Sphingolipid metabolism and its role in the skeletal tissues. Cell. Mol. Life Sci. 72, 959–969 (2015).

    CAS  PubMed  Google Scholar 

  117. Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4, 2384 (2013).

    PubMed  Google Scholar 

  118. Xie, C. et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).

    CAS  PubMed  Google Scholar 

  119. Tomita, S., Sinal, C. J., Yim, S. H. & Gonzalez, F. J. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1α. Mol. Endocrinol. 14, 1674–1681 (2000).

    CAS  PubMed  Google Scholar 

  120. Wang, X. L. et al. Ablation of ARNT/HIF1β in liver alters gluconeogenesis, lipogenic gene expression, and serum ketones. Cell Metab. 9, 428–439 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Girer, N. G., Murray, I. A., Omiecinski, C. J. & Perdew, G. H. Hepatic aryl hydrocarbon receptor attenuates fibroblast growth factor 21 expression. J. Biol. Chem. 291, 15378–15387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bhattarai, D., Xu, X. & Lee, K. Hypoxia-inducible factor-1 (HIF-1) inhibitors from the last decade: a “structure-activity relationship” perspective. Med. Res. Rev. 38, 1404–1442 (2017).

    PubMed  Google Scholar 

  123. Lee, K. et al. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. Angew. Chem. Int. Ed Engl. 52, 10286–10289 (2013).

    CAS  PubMed  Google Scholar 

  124. Ban, H. S. et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLOS One 11, e0162568 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Eleftheriadis, T., Pissas, G., Antoniadi, G., Liakopoulos, V. & Stefanidis, I. Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T cells. Exp. Ther. Med. 10, 1959–1966 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yin, S. et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with cofactors p300/CBP. Clin. Cancer Res. 18, 6623–6633 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, W. et al. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. PLOS One 7, e44883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, T. et al. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci. Rep. 4, 3793 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Tsui, L., Chang, S. F., Huang, H. P., Fong, T. H. & Wang, I. J. YC-1 induces lipid droplet formation in RAW 264.7 macrophages. J. Biomed. Sci. 23, 2 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Chin, C. H. et al. YC-1, a potent antithrombotic agent, induces lipolysis through the PKA pathway in rat visceral fat cells. Eur. J. Pharmacol. 689, 1–7 (2012).

    CAS  PubMed  Google Scholar 

  131. Hung, C. C. & Liou, H. H. YC-1, a novel potential anticancer agent, inhibit multidrug-resistant protein via cGMP-dependent pathway. Invest. New Drugs 29, 1337–1346 (2011).

    CAS  PubMed  Google Scholar 

  132. Pugh, C. W. Modulation of the hypoxic response. Adv. Exp. Med. Biol. 903, 259–271 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Cancer Institute Intramural Research Program, the NIH, the National Key Research and Development Program of China (2016YFC0903100), the National Natural Science Foundation of the People’s Republic of China (81522007, 81470554 and 31401011) and the Fundamental Research Funds for the Central Universities: Clinical Medicine Plus X–Young Scholars Project of Peking University (PKU2018LCXQ013).

Author information

Authors and Affiliations

Authors

Contributions

F.J.G. and C.J. researched the data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. C.X. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Frank J. Gonzalez or Changtao Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, F.J., Xie, C. & Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 15, 21–32 (2019). https://doi.org/10.1038/s41574-018-0096-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0096-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing