Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic dehydrogenative decarboxyolefination of carboxylic acids

Abstract

Alkenes are among the most versatile building blocks and are widely used for the production of polymers, detergents and synthetic lubricants. Currently, alkenes are sourced from petroleum feedstocks such as naphtha. In light of the necessity to invent sustainable production methods, multiple approaches to making alkenes from abundant fatty acids have been evaluated. However, all attempts so far have required at least one stoichiometric additive, which is an obstruction for applications at larger scales. Here, we report an approach to making olefins from carboxylic acids, in which every additional reaction constituent can be used as a catalyst. We show how abundant fatty acids can be converted to alpha-olefins, and expand the method to include structurally complex carboxylic acids, giving access to synthetically versatile intermediates. Our approach is enabled by the cooperative interplay between a cobalt catalyst, which functions as a proton reduction catalyst, and a photoredox catalyst, which mediates oxidative decarboxylation; coupling both processes enables catalytic conversion of carboxylic acids to olefins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of catalytic dehydrogenative decarboxyolefination of carboxylic acids.
Fig. 2: Mechanism experiments.

Similar content being viewed by others

Data availability

Crystallographic data for structure 1 reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition number 1831368. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Lappin, G. R. & Sauer, J. D. Alpha Olefins Applications Handbook (Marcel Dekker, New York, 1989).

  2. Grubbs, R. H. in Handbook of Metathesis Vol. 2 (ed. Grubbs, R. H.) 1–4 (Wiley, Weinheim, 2003).

  3. Horváth, I. T. Introduction: sustainable chemistry. Chem. Rev. 118, 369–371 (2018).

    Article  Google Scholar 

  4. Miller, J. A., Nelson, J. A. & Byrne, M. P. A highly catalytic and selective conversion of carboxylic acids to 1-alkenes of one less carbon atom. J. Org. Chem. 58, 18–20 (1993).

    Article  CAS  Google Scholar 

  5. Gooßen, L. J. & Rodríguez, N. A mild and efficient protocol for the conversion of carboxylic acids to olefins by a catalytic decarbonylative elimination reaction. Chem. Commun. 724–725 (2004)..

  6. Maetani, S., Fukuyama, T., Suzuki, N., Ishihara, D. & Ryu, I. Efficient iridium-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to internal or terminal alkenes. Organometallics 30, 1389–1394 (2011).

    Article  CAS  Google Scholar 

  7. Maetani, S., Fukuyama, T., Suzuki, N., Ishiharab, D. & Ryu, I. Iron-catalyzed decarbonylation reaction of aliphatic carboxylic acids leading to α-olefins. Chem. Commun. 48, 2552–2554 (2012).

    Article  CAS  Google Scholar 

  8. John, A. et al. Nickel catalysts for the dehydrative decarbonylation of carboxylic acids to alkenes. Organometallics 35, 2391–2400 (2016).

    Article  CAS  Google Scholar 

  9. John, A., Hillmyer, M. A. & Tolman, W. B. Anhydride-additive-free nickel-catalyzed deoxygenation of carboxylic acids to olefins. Organometallics 36, 506–509 (2017).

    Article  CAS  Google Scholar 

  10. Chatterjee, A. & Jensen, V. R. A heterogeneous catalyst for the transformation of fatty acids to α-olefins. ACS Catal. 7, 2543–2547 (2017).

    Article  CAS  Google Scholar 

  11. Edwards, J. T. et al. Decarboxylative alkenylation. Nature 545, 213–218 (2017).

    Article  CAS  Google Scholar 

  12. Li, C. et al. Decarboxylative borylation. Science 356, eaam7355 (2017).

    Article  Google Scholar 

  13. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  CAS  Google Scholar 

  14. Tlahuext-Aca, A., Candish, L., Garza-Sanchez, R. A. & Glorius, F. Decarboxylative olefination of activated aliphatic acids enabled by dual organophotoredox/copper catalysis. ACS Catal. 8, 1715–1719 (2018).

    Article  CAS  Google Scholar 

  15. Grant, J. L., Hsieh, C. H. & Makris, T. M. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J. Am. Chem. Soc. 137, 4940–4943 (2015).

    Article  CAS  Google Scholar 

  16. Dennig, A. et al. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew. Chem. Int. Ed. 54, 8819–8822 (2015).

    Article  CAS  Google Scholar 

  17. Bacha, J. D. & Kochi, J. K. Alkenes from acids by oxidative decarboxylation. Tetrahedron 24, 2215–2226 (1968).

    Article  CAS  Google Scholar 

  18. Lande, S. S. & Kochi, J. K. Formation and oxidation of alkyl radicals by cobalt (iii) complexes. J. Am. Chem. Soc. 90, 5196–5207 (1968).

    Article  CAS  Google Scholar 

  19. Anderson, J. M. & Kochi, J. K. Silver(i)-catalyzed oxidative decarboxylation of acids by peroxydisulfate. The role of silver(ii). J. Am. Chem. Soc. 92, 1651–1659 (1970).

    Article  CAS  Google Scholar 

  20. Du, P. & Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012).

    Article  CAS  Google Scholar 

  21. Artero, V., Chavarot-Kerlidou, M. & Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 50, 7238–7266 (2011).

    Article  CAS  Google Scholar 

  22. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  Google Scholar 

  23. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  Google Scholar 

  24. Zheng, Y.-W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

    Article  CAS  Google Scholar 

  25. Zhang, G. et al. Anti-Markovnikov oxidation of β-alkyl styrenes with H2O as the terminal oxidant. J. Am. Chem. Soc. 138, 12037–12040 (2016).

    Article  CAS  Google Scholar 

  26. Niu, L. et al. Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles. Nat. Commun. 8, 14226 (2017).

    Article  Google Scholar 

  27. Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007).

    Article  CAS  Google Scholar 

  28. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  Google Scholar 

  29. Pattenden, G. Cobalt-mediated radical reactions in organic synthesis. Chem. Soc. Rev. 17, 361–382 (1988).

    Article  CAS  Google Scholar 

  30. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp 3sp 3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  Google Scholar 

  31. Bloom, S. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 10, 205–211 (2018).

    Article  CAS  Google Scholar 

  32. Griffin, J. D., Zeller, M. A. & Nicewicz, D. A. Hydrodecarboxylation of carboxylic and malonic acid derivatives via organic photoredox catalysis: substrate scope and mechanistic insight. J. Am. Chem. Soc. 137, 11340–11348 (2015).

    Article  CAS  Google Scholar 

  33. Schrauzer, G. N., Sibert, J. W. & Windgassen, R. J. Photochemical and thermal cobalt–carbon bond cleavage in alkylcobalamins and related organometallic compounds. A comparative study. J. Am. Chem. Soc. 90, 6681–6688 (1968).

    Article  CAS  Google Scholar 

  34. Shen, R. & Porco, J. A. Jr. Synthesis of enamides related to the salicylate antitumor macrolides using copper-mediated vinylic substitution. Org. Lett. 2, 1333–1336 (2000).

    Article  CAS  Google Scholar 

  35. Jiang, L., Job, G. E., Klapars, A. & Buchwald, S. L. Copper-catalyzed coupling of amides and carbamates with vinyl halides. Org. Lett. 5, 3667–3669 (2003).

    Article  CAS  Google Scholar 

  36. Grubbs, R. H. Handbook of Metathesis (Wiley, Weinheim, 2003).

  37. Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Deege, M. S. Sterling and H. Hinrichs (Max-Planck-Institut für Kohlenforschung) for liquid chromatography analysis, and G. Breitenbruch (Max-Planck-Institut für Kohlenforschung) for HPLC purification. We thank J. Rust and H. Lee (Max-Planck-Institut für Kohlenforschung) for X-ray crystallographic analysis, and M. Blumenthal, D. Kampen, S. Marcus, D. Richter and D. Margold (Max-Planck-Institut für Kohlenforschung) for mass spectrometry. We thank S. Ruthe (Max-Planck-Institut für Kohlenforschung) for gas chromatography analysis. We thank W. S. Ham (Max-Planck-Institut für Kohlenforschung) for help with quantum yield measurements. We thank H. Zhou (Max-Planck-Institut für Kohlenforschung) for help with enantiomertic excess measurements.

Author information

Authors and Affiliations

Authors

Contributions

X.S. developed the conceptual approach to the project and optimized the dehydrogenative decarboxyolefination reaction. X.S. and J.C. synthesized the starting materials. X.S. explored the substrate scope and conducted the mechanistic studies. X.S. and T.R. analysed the data and wrote the manuscript. X.S., J.C. and T.R. prepared the Supplementary Information. T.R. directed the project.

Corresponding author

Correspondence to Tobias Ritter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary experimental data, synthetic procedures, chemical compound characterization data and supplementary figures

Crystallographic data

CIF for compound 1; CCDC reference: 1831368

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, J. & Ritter, T. Catalytic dehydrogenative decarboxyolefination of carboxylic acids. Nature Chem 10, 1229–1233 (2018). https://doi.org/10.1038/s41557-018-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0142-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing