Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional shifts in microbial mats recapitulate early Earth metabolic transitions

This article has been updated

Abstract

Phototrophic microbial mats dominated terrestrial ecosystems for billions of years, largely causing, through cyanobacterial oxygenic photosynthesis, but also undergoing, the Great Oxidation Event approximately 2.5 billion years ago. Taking a space-for-time approach based on the universality of core metabolic pathways expressed at ecosystem level, we studied gene content and co-occurrence networks in high-diversity metagenomes from spatially close microbial mats along a steep redox gradient. The observed functional shifts suggest that anoxygenic photosynthesis was present but not predominant under early Precambrian conditions, being accompanied by other autotrophic processes. Our data also suggest that, in contrast to general assumptions, anoxygenic photosynthesis largely expanded in parallel with the subsequent evolution of oxygenic photosynthesis and aerobic respiration. Finally, our observations might represent space-for-time evidence that the Wood–Ljungdahl carbon fixation pathway dominated phototrophic mats in early ecosystems, whereas the Calvin cycle probably evolved from pre-existing variants before becoming the dominant contemporary form of carbon fixation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial diversity in microbial mat metagenomes along a redox gradient in a pond from the Salar de Llamara (Atacama Desert, Chile).
Fig. 2: Major energy and carbon metabolisms in Llamara microbial mats based on diagnostic genes.
Fig. 3: Co-occurrence networks of diagnostic KOs involved in major energy and carbon fixation metabolic pathways in Llamara microbial mats from pond LLA9.
Fig. 4: Distribution of key energy and carbon fixation metabolisms in microbial mats across a redox gradient and, probably, time.

Similar content being viewed by others

Data availability

The sequence datasets of the Llamara metagenomes have been deposited in GenBank with the BioProject accession code PRJNA438773 (corresponding to BioSample accessions SAMN08688543 to SAMN08688553). All codes generated for this study are available at Gitlab https://gitlab.com/DeemTeam/LLA9-Metagenomes. To facilitate colour identification in figures, numbers used to build all histograms are provided in the supplementary file Tables_for_Figures.xlsx

Change history

  • 05 November 2018

    In the version of this Article originally published, Supplementary Data 1 was incorrectly linked to Supplementary Table 8, Supplementary Table 1 was incorrectly linked to Supplementary Table 5, Supplementary Table 2 was incorrectly linked to Supplementary Data 1, Supplementary Table 3 was incorrectly linked to Supplementary Table 1, Supplementary Table 4 was incorrectly linked to Supplementary Table 2, Supplementary Table 5 was incorrectly linked to Supplementary Table 3, Supplementary Table 6 was incorrectly linked to Supplementary Table 4, and Supplementary Table 8 was incorrectly linked to Supplementary Table 6. The files have now been replaced to rectify this.

References

  1. Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).

    Article  CAS  Google Scholar 

  2. Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    Article  CAS  Google Scholar 

  3. Knoll, A. H., Bergmann, K. D. & Strauss, J. V. Life: the first two billion years. Phil. Trans. R. Soc. B 371, 20150493 (2016).

    Article  Google Scholar 

  4. Hamilton, T. L., Bryant, D. A. & Macalady, J. L. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18, 325–340 (2016).

    Article  CAS  Google Scholar 

  5. Lenton, T. M. & Daines, S. J. Matworld – the biogeochemical effects of early life on land. New Phytol. 215, 531–537 (2017).

    Article  CAS  Google Scholar 

  6. Andrault, D. et al. Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochem. Persp. Lett. 6, 5–10 (2018).

    Article  Google Scholar 

  7. Bolhuis, H., Cretoiu, M. S. & Stal, L. J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 90, 335–350 (2014).

    CAS  PubMed  Google Scholar 

  8. Des Marais, D. J. Microbial mats and the early evolution of life. Trends Ecol. Evol. 5, 140–144 (1990).

    Article  CAS  Google Scholar 

  9. Paerl, H. W., Pinckney, J. L. & Steppe, T. F. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2, 11–26 (2000).

    Article  CAS  Google Scholar 

  10. Souza, V. et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl Acad. Sci. USA 103, 6565–6570 (2006).

    Article  CAS  Google Scholar 

  11. Goh, F. et al. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 3, 383–396 (2009).

    Article  CAS  Google Scholar 

  12. Myshrall, K. L. et al. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8, 337–354 (2010).

    Article  CAS  Google Scholar 

  13. Saghaï, A. et al. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front. Microbiol. 6, 797 (2015).

    Article  Google Scholar 

  14. Harris, J. K. et al. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J. 7, 50–60 (2013).

    Article  Google Scholar 

  15. Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1284 (2016).

    Article  Google Scholar 

  16. Thiel, V. et al. The dark side of the Mushroom Spring microbial mat: life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Front. Microbiol. 7, 919 (2016).

    Article  Google Scholar 

  17. Saghaï, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405–2421 (2017).

    Article  Google Scholar 

  18. Berlanga, M., Palau, M. & Guerrero, R. Functional stability and community dynamics during spring and autumn seasons over 3 years in Camargue microbial mats. Front. Microbiol. 8, 2619 (2017).

    Article  Google Scholar 

  19. Ruvindy, R., White, R. A.III., Neilan, B. A. & Burns, B. P. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 10, 183–196 (2016).

    Article  CAS  Google Scholar 

  20. Casaburi, G., Duscher, A. A., Reid, R. P. & Foster, J. S. Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis. Environ. Microbiol. 18, 1452–1469 (2016).

    Article  CAS  Google Scholar 

  21. Saghaï, A. et al. Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ. Microbiol. 18, 4990–5004 (2016).

    Article  Google Scholar 

  22. Thiel, V., Hugler, M., Ward, D. M. & Bryant, D. A. The dark side of the Mushroom Spring microbial mat: life in the shadow of chlorophototrophs. II. Metabolic functions of abundant community members predicted from metagenomic analyses. Front. Microbiol. 8, 943 (2017).

    Article  Google Scholar 

  23. Mobberley, J. M. et al. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. FEMS Microbiol. Ecol. 93, e00133–00116 (2017).

    Article  Google Scholar 

  24. Dupraz, C. & Visscher, P. T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13, 429–438 (2005).

    Article  CAS  Google Scholar 

  25. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  Google Scholar 

  26. López-García, P., Zivanovic, Y., Deschamps, P. & Moreira, D. Bacterial gene import and mesophilic adaptation in archaea. Nat. Rev. Microbiol. 13, 447–456 (2015).

    Article  Google Scholar 

  27. Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

    Article  Google Scholar 

  28. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  Google Scholar 

  29. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Article  CAS  Google Scholar 

  30. Schoepp-Cothenet, B. et al. On the universal core of bioenergetics. Biochim. Biophys. Acta 1827, 79–93 (2013).

    Article  CAS  Google Scholar 

  31. Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).

    Article  CAS  Google Scholar 

  32. Kono, T. et al. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea. Nat. Commun. 8, 14007 (2017).

    Article  CAS  Google Scholar 

  33. Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 2005).

    Article  Google Scholar 

  34. Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Article  Google Scholar 

  35. Louca, S. et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015 (2016).

    Article  Google Scholar 

  36. Louca, S. Probing the metabolism of microorganisms. Science 358, 1264–1265 (2017).

    Article  CAS  Google Scholar 

  37. Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 011001 (2013).

    Article  Google Scholar 

  38. Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    Article  CAS  Google Scholar 

  39. Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).

    Article  Google Scholar 

  40. Rocha, E. P. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).

    Article  CAS  Google Scholar 

  41. Grim, S. L. & Dick, G. J. Photosynthetic versatility in the genome of Geitlerinema sp. PCC 9228 (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front. Microbiol. 7, 1546 (2016).

    Article  Google Scholar 

  42. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  Google Scholar 

  43. Nelson, W. C. & Stegen, J. C. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front. Microbiol. 6, 713 (2015).

    Article  Google Scholar 

  44. Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337, 1661–1665 (2012).

    Article  CAS  Google Scholar 

  45. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 2008).

    Article  CAS  Google Scholar 

  46. Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comput. Biol. 8, e1002455 (2012).

    Article  CAS  Google Scholar 

  47. Nunoura, T. et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 359, 559–563 (2018).

    Article  CAS  Google Scholar 

  48. Mall, A. et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 359, 563–567 (2018).

    Article  CAS  Google Scholar 

  49. Sato, T., Atomi, H. & Imanaka, T. Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315, 1003–1006 (2007).

    Article  CAS  Google Scholar 

  50. Wrighton, K. C. et al. RubisCO of a nucleoside pathway known from archaea is found in diverse uncultivated phyla in bacteria. ISME J. 10, 2702–2714 (2016).

    Article  CAS  Google Scholar 

  51. Ślesak, I., Slesak, H. & Kruk, J. C. RubisCO early oxygenase activity: a kinetic and evolutionary perspective. BioEssays 39, 1700071 (2017).

    Article  Google Scholar 

  52. Ducluzeau, A. L. et al. Was nitric oxide the first deep electron sink?. Trends Biochem. Sci. 34, 9–15 (2009).

    Article  CAS  Google Scholar 

  53. Bryant, D. A. & Frigaard, N. U. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496 (2006).

    Article  CAS  Google Scholar 

  54. Norman, A. G., Richards, L. A. & Carlyle, R. E. Microbial thermogenesis in the decomposition of plant materials: Part I. An adiabatic fermentation apparatus. J. Bacteriol. 41, 689–697 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms.Phil. Trans. R. Soc. B 361, 1819–1834 (2006).

    Article  CAS  Google Scholar 

  56. May, B., Young, L. & Moore, A. L. Structural insights into the alternative oxidases: are all oxidases made equal? Biochem. Soc. Trans. 45, 731–740 (2017).

    Article  CAS  Google Scholar 

  57. Miller, C. S., Baker, B. J., Thomas, B. C., Singer, S. W. & Banfield, J. F. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12, R44 (2011).

    Article  CAS  Google Scholar 

  58. Rodriguez, R. L. & Konstantinidis, K. T. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 30, 629–635 (2014).

    Article  Google Scholar 

  59. Cox, M. P., Peterson, D. A. & Biggs, P. J. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 11, 485 (2010).

    Article  Google Scholar 

  60. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  Google Scholar 

  61. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  Google Scholar 

  62. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  Google Scholar 

  63. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article  CAS  Google Scholar 

  64. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  65. Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009).

    Google Scholar 

  66. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    Article  CAS  Google Scholar 

  67. Creevey, C. J., Doerks, T., Fitzpatrick, D. A., Raes, J. & Bork, P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS ONE 6, e22099 (2011).

    Article  CAS  Google Scholar 

  68. Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl Acad. Sci. USA 110, 5540–5545 (2013).

    Article  CAS  Google Scholar 

  69. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    Article  CAS  Google Scholar 

  70. Manor, O. & Borenstein, E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biol. 16, 53 (2015).

    Article  Google Scholar 

  71. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  72. Vegan: Community Ecology Package. R package version 1.17-9 (2011); http://CRAN.R-project.org/package=vegan

  73. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  Google Scholar 

  74. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Rodríguez de la Vega for discussions about bioinformatics tools, J. Friedman for advice on SparCC, A. Abdala for helping with MySQL database reconstruction and E. Merino for help in COG assignation. We also thank I. Aracena (Departamento de Medio Ambiente, Sociedad Química y Minera, Chile), J. M. López-García (Instituto Geológico y Minero de España) and J. M. García-Ruiz’s team (Universidad de Granada) for sampling access, georeferencing, and company during the field trip. This research was funded by the European Research Council grant no. 322669 to P.L.G. under the European Union’s Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-P. and A.S. performed the bioinformatic analyses, analysed the data and wrote a preliminary draft of the manuscript. Y.Z. supervised initial metagenome assembly and annotation. P.D. helped with software installation and use. D.M. and P.L.G. collected the samples and conceived the study. P.L.G. prepared the samples for sequencing, supervised the work, provided hypotheses and wrote the final manuscript.

Corresponding author

Correspondence to Purificación López-García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–11.

Reporting Summary

Supplementary Data 1

Tables with the values used to build colour histograms in the manuscript.

Supplementary Table 1

Assembly and annotation statistics of the 11 metagenomes of the microbial mat layers from Llamara.

Supplementary Table 2

Distribution of clusters of orthologous genes (COGs) in Llamara microbial mats.

Supplementary Table 3

Distribution of PFAMs in the different Llamara microbial mats.

Supplementary Table 4

Distribution of KEGG orthologues (KOs) in the different Llamara microbial mats.

Supplementary Table 5

Single copy gene families (COGs) universally distributed in prokaryotic genomes used to characterize the phylogenetic composition of microbial communities in Llamara microbial mats.

Supplementary Table 6

Single copy gene families (PFAMs) universally distributed in bacteria and archaea used to characterize the phylogenetic composition of prokaryotic communities in Llamara microbial mats.

Supplementary Table 7

Diagnostic KOs used for network analyses.

Supplementary Table 8

Network properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Preciado, A., Saghaï, A., Moreira, D. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat Ecol Evol 2, 1700–1708 (2018). https://doi.org/10.1038/s41559-018-0683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0683-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing