Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer

Abstract

Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is rapidly being established as arguably the leading contemporary imaging modality in the management of prostate cancer. Outside of its conventional use in the de novo staging of localized disease and detection of biochemical recurrence, additional applications for the use of PSMA PET are emerging. Uptake of PSMA tracers in other genitourinary malignancies, particularly renal cell carcinoma, has led to new fields of investigation. Therapeutic delivery of radiolabelled PSMA small molecules has shown considerable promise in advanced prostate cancer. The ability to use the same molecule for imaging and therapy — theranostics — enables a highly personalized approach. PSMA PET can also have a considerable influence in the selection and guidance of radiotherapy fields for high-risk and recurrent disease. Intriguingly, changes in intensity of PSMA uptake during systemic therapy might provide early response assessment or novel insight into the biological responses of genitourinary malignancies to treatment. An evolving range of radiolabelled PSMA radiopharmaceuticals is emerging in the multiple facets of modern clinical practice.

Key points

  • Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) has most commonly been used for staging prostate cancer, with most studies in the setting of biochemical recurrence. However, PSMA is not expressed ubiquitously in prostate cancer and PSMA can also be expressed in other solid organ malignancies and benign lesions.

  • The effect of PSMA PET has been demonstrated in both the definitive and salvage radiotherapy setting through modification of treatment fields.

  • As PSMA PET has superior accuracy to choline PET–CT, metastasis-directed therapy (including stereotactic ablative body radiotherapy) can be undertaken in the setting of oligometastatic disease.

  • PSMA theranostics (using radionuclides to target PSMA) has been evaluated in advanced disease with promising results in phase II trials.

  • PSMA PET might have a role as an imaging biomarker in assessing response to systemic therapy.

  • The utility of PSMA PET in other genitourinary malignancies has been studied. It might have a role in metastatic renal cell carcinoma, but there seems to be no role for PSMA PET in urothelial carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The potential utility of PSMA PET in non-standard urological settings.
Fig. 2: A patient with a left-sided renal cell carcinoma solitary pulmonary oligometastasis, subsequently treated with SABR.
Fig. 3: A patient with a solitary L5 spinal metastasis.
Fig. 4: A patient with Gleason 10 metastatic castration-resistant prostate cancer with progressive disease after docetaxel and enzalutamide.
Fig. 5: A patient with high-risk prostate cancer and spinous process osseous metastasis.

Similar content being viewed by others

References

  1. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  2. Ghosh, A. & Heston, W. D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell Biochem. 91, 528–539 (2004).

    CAS  PubMed  Google Scholar 

  3. Lapidus, R. G., Tiffany, C. W., Isaacs, J. T. & Slusher, B. S. Prostate-specific membrane antigen (PSMA) enzyme activity is elevated in prostate cancer cells. Prostate 45, 350–354 (2000).

    CAS  PubMed  Google Scholar 

  4. Ross, J. S. et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 9, 6357–6362 (2003).

    CAS  PubMed  Google Scholar 

  5. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fletcher, J. W. et al. Recommendations on the use of 18F-FDG PET in oncology. J. Nucl. Med. 49, 480–508 (2008).

    PubMed  Google Scholar 

  7. Powles, T., Murray, I., Brock, C., Oliver, T. & Avril, N. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur. Urol. 51, 1511–1521 (2007).

    PubMed  Google Scholar 

  8. Hillner, B. E. et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol. 26, 2155–2161 (2008).

    PubMed  Google Scholar 

  9. Ramdave, S. et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J. Urol. 166, 825–830 (2001).

    CAS  PubMed  Google Scholar 

  10. Albers, P. et al. Testicular cancer (EAU guidelines). Uroweb https://uroweb.org/guideline/testicular-cancer/ (2017).

  11. Reske, S. N. et al. Imaging prostate cancer with 11C-choline PET/CT. J. Nucl. Med. 47, 1249–1254 (2006).

    CAS  PubMed  Google Scholar 

  12. Afshar-Oromieh, A. et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 41, 11–20 (2014).

    CAS  PubMed  Google Scholar 

  13. Afshar-Oromieh, A., Haberkorn, U., Eder, M., Eisenhut, M. & Zechmann, C. M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging 39, 1085–1086 (2012).

    CAS  PubMed  Google Scholar 

  14. Eder, M. et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 23, 688–697 (2012).

    CAS  PubMed  Google Scholar 

  15. Cornford, P. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 71, 630–642 (2017).

    PubMed  Google Scholar 

  16. NCCN. NCCN Guidelines in Oncology. Prostate Cancer. Version 3.2016. NCCN https://www.nccn.org/professionals/physician_gls/ (2016).

  17. Szabo, Z. et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol. Imaging Biol. 17, 565–574 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Giesel, F. L. et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 44, 678–688 (2017).

    CAS  PubMed  Google Scholar 

  19. Zschaeck, S. et al. PSMA-PET based radiotherapy: a review of initial experiences, survey on current practice and future perspectives. Radiat. Oncol. 13, 90 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Ong, W. M., Zargar-Shoshtari, K., Siva, S. & Zargar, H. Prostate specific membrane antigen: the role in salvage lymph node dissection and radio-ligand therapy. Minerva Urol. Nefrol. 70, 450–461 (2018).

    PubMed  Google Scholar 

  21. Van Leeuwen, P. J. et al. 68Ga-PSMA has a high detection rate of prostate cancer recurrence outside the prostatic fossa in patients being considered for salvage radiation treatment. BJU Int. 117, 732–739 (2016).

    PubMed  Google Scholar 

  22. Rauscher, I., Horn, T., Eiber, M., Gschwend, J. E. & Maurer, T. Novel technology of molecular radio-guidance for lymph node dissection in recurrent prostate cancer by PSMA-ligands. World J. Urol. 36, 603–608 (2018).

    CAS  PubMed  Google Scholar 

  23. Maurer, T. et al. (99m)Technetium-based Prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur. Urol. 75, 659–666 (2019).

    PubMed  Google Scholar 

  24. Meershoek, P. et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur. J. Nucl. Med. Mol. Imaging 46, 49–53 (2019).

    CAS  PubMed  Google Scholar 

  25. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J. Clin. Oncol. 26, 1148–1159 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Clarebrough, E., Duncan, C., Christidis, D., Lavoipierre, A. & Lawrentschuk, N. PSMA-PET guided hook-wire localization of nodal metastases in prostate cancer: a targeted approach. World J. Urol. 37, 1251–1254 (2019).

    PubMed  Google Scholar 

  27. Israeli, R. S., Powell, C. T., Corr, J. G., Fair, W. R. & Heston, W. D. Expression of the prostate-specific membrane antigen. Cancer Res. 54, 1807–1811 (1994).

    CAS  PubMed  Google Scholar 

  28. Demirci, E. et al. Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging. Nucl. Med. Commun. 37, 1169–1179 (2016).

    CAS  PubMed  Google Scholar 

  29. Rischpler, C. et al. (68)Ga-PSMA-HBED-CC Uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J. Nucl. Med. 59, 1406–1411 (2018).

    CAS  PubMed  Google Scholar 

  30. Beheshti, M., Rezaee, A. & Langsteger, W. 68Ga-PSMA-HBED uptake on cervicothoracic (stellate) ganglia, a common pitfall on PET/CT. Clin. Nucl. Med. 42, 195–196 (2017).

    PubMed  Google Scholar 

  31. Schwarzenboeck, S. M. et al. PSMA ligands for PET imaging of prostate cancer. J. Nucl. Med. 58, 1545–1552 (2017).

    CAS  PubMed  Google Scholar 

  32. Hofman, M. S., Hicks, R. J., Maurer, T. & Eiber, M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. RadioGraphics 38, 200–217 (2018).

    PubMed  Google Scholar 

  33. Salas Fragomeni, R. A. et al. Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J. Nucl. Med. 59, 871–877 (2018).

    PubMed  Google Scholar 

  34. Baccala, A., Sercia, L., Li, J., Heston, W. & Zhou, M. Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms. Urology 70, 385–390 (2007).

    PubMed  Google Scholar 

  35. Haffner, M. C. et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 40, 1754–1761 (2009).

    CAS  PubMed  Google Scholar 

  36. Maurer, T. et al. Diagnostic efficacy of (68)gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 195, 1436–1443 (2016).

    PubMed  Google Scholar 

  37. Broos, W. A. M., Kocken, M., van der Zant, F. M., Knol, R. J. J. & Wondergem, M. Metastasized 18F-DCFPyL-negative prostatic adenocarcinoma without neuroendocrine differentiation. Clin. Nucl. Med. 43, 120–122 (2018).

    PubMed  Google Scholar 

  38. Usmani, S. et al. Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin. Nucl. Med. 42, 410–413 (2017).

    PubMed  Google Scholar 

  39. Thang, S. P. et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for (177)Lu-labelled PSMA radioligand therapy. Eur. Urol. Oncol. 2, 670–676 (2018).

    PubMed  Google Scholar 

  40. Demirci, E. et al. (68)Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 41, 1461–1462 (2014).

    PubMed  Google Scholar 

  41. Campbell, S. P. et al. Low levels of PSMA expression limit the utility of 18 F-DCFPyL PET/CT for imaging urothelial carcinoma. Ann. Nucl. Med. 32, 69–74 (2018).

    CAS  PubMed  Google Scholar 

  42. Koerber, S. A. et al. (68)Ga-PSMA-11 PET/CT in Primary and recurrent prostate carcinoma: implications for radiotherapeutic management in 121 patients. J. Nucl. Med. 60, 234–240 (2019).

    CAS  Google Scholar 

  43. Emmett, L. et al. Rapid modulation of psma expression by androgen deprivation: serial (68)Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 60, 950–954 (2019).

    CAS  PubMed  Google Scholar 

  44. Prasad, V. et al. Biodistribution of [68Ga] PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol. Imaging Biol. 18, 428–436 (2016).

    CAS  PubMed  Google Scholar 

  45. Sasikumar, A., Joy, A., Nanabala, R., Unni, M. & Tk, P. Complimentary pattern of uptake in 18F-FDG PET/CT and 68Ga-prostate-specific membrane antigen PET/CT in a case of metastatic clear cell renal carcinoma. Clin. Nucl. Med. 41, e517–e519 (2016).

    PubMed  Google Scholar 

  46. Siva, S. et al. Utility of 68 Ga prostate specific membrane antigen - positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. J. Med. Imaging Radiat. Oncol. 61, 372–378 (2017).

    PubMed  Google Scholar 

  47. Kabasakal, E. D. L. & Kanmaz, M. H. B. 68Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 41, 1461–1462 (2014).

    PubMed  Google Scholar 

  48. Rowe, S. P. et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 29, 877–882 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nadebaum, D. P., Hofman, M. S., Mitchell, C. A., Siva, S. & Hicks, R. J. Oligometastatic renal cell carcinoma with sarcomatoid differentiation demonstrating variable imaging phenotypes on (68)ga-psma and (18)f-fdg pet/ct: a case report and review of the literature. Clin. Genitourin. Cancer https://doi.org/10.1016/j.clgc.2017.08.009 (2017).

    Article  PubMed  Google Scholar 

  50. Rhee, H. et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 6, 76 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Yin, Y. et al. Inconsistent detection of sites of metastatic non-clear cell renal cell carcinoma with PSMA-targeted [(18)F]DCFPyL PET/CT. Mol. Imaging Biol. 21, 567–573 (2019).

    PubMed  Google Scholar 

  52. Spatz, S. et al. Comprehensive evaluation of prostate specific membrane antigen expression in the vasculature of renal tumors: implications for imaging studies and prognostic role. J. Urol. 199, 370–377 (2018).

    PubMed  Google Scholar 

  53. Mhawech-Fauceglia, P. et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology 50, 472–483 (2007).

    CAS  PubMed  Google Scholar 

  54. Gala, J.-L. et al. Expression of prostate-specific membrane antigen in transitional cell carcinoma of the bladder: prognostic value? Clin. Cancer Res. 6, 4049–4054 (2000).

    CAS  PubMed  Google Scholar 

  55. Tagawa, S. T. et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 19, 5182–5191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vallabhajosula, S. et al. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin. Cancer Res. 11, 7195s–7200s (2005).

    CAS  PubMed  Google Scholar 

  57. Bander, N. H. et al. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J. Clin. Oncol. 23, 4591–4601 (2005).

    CAS  PubMed  Google Scholar 

  58. Bander, N. H. et al. Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J. Urol. 170, 1717–1721 (2003).

    CAS  PubMed  Google Scholar 

  59. Hofman, M. S. et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 19, 825–833 (2018).

    CAS  PubMed  Google Scholar 

  60. Ahmadzadehfar, H. et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res. 5, 114 (2015).

    PubMed  Google Scholar 

  61. Rahbar, K. et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J. Nucl. Med. 58, 85–90 (2017).

    CAS  PubMed  Google Scholar 

  62. Kratochwil, C. et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-Labeled PSMA-617. J. Nucl. Med. 57, 1170–1176 (2016).

    CAS  PubMed  Google Scholar 

  63. Yadav, M. P. et al. (177)Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. Eur. J. Nucl. Med. Mol. Imaging 44, 81–91 (2017).

    CAS  PubMed  Google Scholar 

  64. Heck, M. M. et al. Systemic radioligand therapy with (177)Lu Labeled prostate specific membrane antigen ligand for imaging and therapy in patients with metastatic castration resistant prostate cancer. J. Urol. 196, 382–391 (2016).

    CAS  PubMed  Google Scholar 

  65. Kulkarni, H. R. et al. PSMA-Based radioligand therapy for metastatic castration-resistant prostate cancer: the bad berka experience since 2013. J. Nucl. Med. 57, 97S–104S (2016).

    CAS  PubMed  Google Scholar 

  66. Baum, R. P. et al. 177Lu-Labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J. Nucl. Med. 57, 1006–1013 (2016).

    CAS  PubMed  Google Scholar 

  67. Fendler, W. P. et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget 8, 3581–3590 (2017).

    PubMed  Google Scholar 

  68. Baum, R. P. & Wahl, R. L. Third theranostics world congress on gallium-68 and PRRT: abstracts. J. Nucl. Med. 56, 2A–30 (2015).

    PubMed  Google Scholar 

  69. Zechmann, C. M. et al. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 41, 1280–1292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kratochwil, C. et al. [(1)(7)(7)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 987–988 (2015).

    PubMed  Google Scholar 

  71. Heck, M. M. et al. Treatment outcome, toxicity, and predictive factors for radioligand therapy with (177)Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur. Urol. 75, 920–926 (2019).

    CAS  PubMed  Google Scholar 

  72. Fendler, W. P. et al. Prostate-specific membrane antigen ligand positron-emission tomography in men with nonmetastatic castration-resistant prostate cancer. Clin. Cancer Res. 25, 7448–7454 (2019).

    PubMed  Google Scholar 

  73. US National Library of Medicine. ClinicalTrials.Gov https://ClinicalTrials.gov/show/NCT03511664 (2019).

  74. Hekman, M. C. H. et al. Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur. Urol. 74, 257–260 (2018).

    PubMed  Google Scholar 

  75. Calais, J. et al. Potential impact of (68)Ga-PSMA-11 PET/CT on the planning of definitive radiation therapy for prostate cancer. J. Nucl. Med. 59, 1714–1721 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Michalski, J. M. et al. Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 76, 361–368 (2010).

    PubMed  Google Scholar 

  77. Zschaeck, S. et al. Intermediate-term outcome after PSMA-PET guided high-dose radiotherapy of recurrent high-risk prostate cancer patients. Radiat. Oncol. 12, 140 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Habl, G. et al. (68) Ga-PSMA-PET for radiation treatment planning in prostate cancer recurrences after surgery: individualized medicine or new standard in salvage treatment. Prostate 77, 920–927 (2017).

    CAS  PubMed  Google Scholar 

  79. Schiller, K. et al. Patterns of failure after radical prostatectomy in prostate cancer - implications for radiation therapy planning after (68)Ga-PSMA-PET imaging. Eur. J. Nucl. Med. Mol. Imaging 44, 1656–1662 (2017).

    CAS  PubMed  Google Scholar 

  80. Frenzel, T. et al. The impact of [(68)Ga]PSMA I&T PET/CT on radiotherapy planning in patients with prostate cancer. Strahlenther. Onkol. 194, 646–654 (2018).

    PubMed  Google Scholar 

  81. Calais, J. et al. (68)Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a psa level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. J. Nucl. Med. 59, 230–237 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tosoian, J. J. et al. Oligometastatic prostate cancer: definitions, clinical outcomes, and treatment considerations. Nat. Rev. Urol. 14, 15–25 (2017).

    CAS  PubMed  Google Scholar 

  83. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Palma, D. A. et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393, 2051–2058 (2019).

    PubMed  Google Scholar 

  85. Ost, P. et al. Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur. Urol. 67, 852–863 (2015).

    PubMed  Google Scholar 

  86. Fossati, N. et al. Identifying the optimal candidate for salvage lymph node dissection for nodal recurrence of prostate cancer: results from a large, multi-institutional analysis. Eur. Urol. 75, 176–183 (2019).

    PubMed  Google Scholar 

  87. Ost, P. et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J. Clin. Oncol. 36, 446–453 (2018).

    CAS  PubMed  Google Scholar 

  88. Siva, S. et al. Stereotactic abative body radiotherapy (SABR) for oligometastatic prostate cancer: a prospective clinical trial. Eur. Urol. 74, 455–462 (2018).

    PubMed  Google Scholar 

  89. Pfister, D. et al. Detection of recurrent prostate cancer lesions before salvage lymphadenectomy is more accurate with (68)Ga-PSMA-HBED-CC than with (18)F-fluoroethylcholine PET/CT. Eur. J. Nucl. Med. Mol. Imaging 43, 1410–1417 (2016).

    PubMed  Google Scholar 

  90. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  91. Even-Sapir, E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J. Nucl. Med. 46, 1356–1367 (2005).

    PubMed  Google Scholar 

  92. Udovicich, C. et al. 68Ga-prostate-specific membrane antigen-positron emission tomography/computed tomography in advanced prostate cancer: current state and future trends. Prostate Int. 5, 125–129 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Miyahira, A. K. et al. Tumor cell heterogeneity and resistance; report from the 2018 coffey-holden prostate cancer academy meeting. Prostate 79, 244–258 (2019).

    PubMed  Google Scholar 

  94. Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 15, 271–286 (2018).

    CAS  PubMed  Google Scholar 

  95. Wang, H. T. et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J. Clin. Oncol. 32, 3383–3390 (2014).

    PubMed  Google Scholar 

  96. Akamatsu, S., Inoue, T., Ogawa, O. & Gleave, M. E. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int. J. Urol. 25, 345–351 (2018).

    CAS  PubMed  Google Scholar 

  97. Tosoian, J. J. et al. Correlation of PSMA-Targeted (18)F-DCFPyL PET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer. Clin. Genitourin. Cancer 15, e65–e68 (2017).

    PubMed  Google Scholar 

  98. Bronsert, P., Reichel, K. & Ruf, J. Loss of PSMA expression in non-neuroendocrine dedifferentiated acinar prostate cancer. Clin. Nucl. Med. 43, 526–528 (2018).

    PubMed  Google Scholar 

  99. Meller, B. et al. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 5, 66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Anton, A. et al. 223PUsing PSMA PET/CT to assess response in metastatic prostate cancer (mPC) patients (pts) receiving upfront chemohormonal therapy. Ann. Oncol. 29, mdy434.011–mdy434.011 (2018).

    Google Scholar 

  101. Seitz, A. K. et al. Preliminary results on response assessment using (68)Ga-HBED-CC-PSMA PET/CT in patients with metastatic prostate cancer undergoing docetaxel chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 45, 602–612 (2018).

    CAS  PubMed  Google Scholar 

  102. Steuber, T. et al. Standard of care versus metastases-directed therapy for pet-detected nodal oligorecurrent prostate cancer following multimodality treatment: a multi-institutional case-control study. Eur. Urol. Focus 5, 1007–1013 (2018).

    PubMed  Google Scholar 

  103. Lohaus, F. et al. Can local ablative radiotherapy revert castration-resistant prostate cancer to an earlier stage of disease? Eur. Urol. 75, 548–551 (2019).

    PubMed  Google Scholar 

  104. Gomez, D. R. et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 37, 1558–1565 (2019).

    CAS  PubMed  Google Scholar 

  105. US National Library of Medicine. ClinicalTrials.Gov https://clinicaltrials.gov/ct2/show/NCT02685397 (2018).

  106. Kranzbuhler, B. et al. Pharmacological upregulation of prostate-specific membrane antigen (PSMA) expression in prostate cancer cells. Prostate 78, 758–765 (2018).

    PubMed  Google Scholar 

  107. Afshar-Oromieh, A. et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 45, 2045–2054 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsui, P., Rubenstein, M. & Guinan, P. Correlation between PSMA and VEGF expression as markers for LNCaP tumor angiogenesis. J. Biomed. Biotechnol. 2005, 287–290 (2005).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.S. is supported through a National Health and Medical Research Council Fellowship APP1122347 and Peter Mac Discovery Partner Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the article content, wrote the manuscript, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Shankar Siva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks T. Maurer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva, S., Udovicich, C., Tran, B. et al. Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat Rev Urol 17, 107–118 (2020). https://doi.org/10.1038/s41585-019-0272-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0272-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer