Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational lensing detection of an extremely dense environment around a galaxy cluster

Abstract

Galaxy clusters form at the highest-density nodes of the cosmic web1,2. The clustering of dark matter halos hosting these galaxy clusters is enhanced relative to the general mass distribution, with the matter density beyond the virial region being strongly correlated to the halo mass (halo bias)3. Halo properties other than mass can further enhance the halo clustering (secondary bias)4,5,6,7. Observational campaigns have ascertained the halo bias8,9,10, but efforts to detect this secondary bias for massive halos have been inconclusive11,12,13. Here, we report the analysis of the environment bias in a sample of massive clusters, selected through the Sunyaev–Zel’dovich effect by the Planck mission14,15, focusing on the detection of the environment dark matter correlated to a single cluster, PSZ2 G099.86+58.45. The gravitational lensing signal of the outskirts is very large and can be traced up to 30 megaparsecs with a high signal-to-noise ratio (about 3.4), implying environment matter density in notable excess of the cosmological mean. Our finding reveals this system to be extremely rare in the current paradigm of structure formation and, implies that enhancing mechanisms around high-mass halos can be very effective. Future lensing surveys will probe the surroundings of single haloes, enabling the study of their formation and evolution of structure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visible light and total mass.
Fig. 2: Lensing profile.
Fig. 3: Differential surface density of correlated matter around PSZ2 G099.86+58.45.
Fig. 4: Environment bias of PSZ2LenS.

Similar content being viewed by others

References

  1. Kaiser, N. On the spatial correlations of Abell clusters. Astrophys. J. 284, L9–L12 (1984).

    Article  ADS  Google Scholar 

  2. Sheth, R. K. & Tormen, G. On the environmental dependence of halo formation. Mon. Not. R. Astron. Soc. 350, 1385–1390 (2004).

    Article  ADS  Google Scholar 

  3. Tinker, J. L. et al. The large-scale bias of dark matter halos: numerical calibration and model tests. Astrophys. J. 724, 878–886 (2010).

    Article  ADS  Google Scholar 

  4. Wechsler, R. H., Zentner, A. R., Bullock, J. S., Kravtsov, A. V. & Allgood, B. The dependence of halo clustering on halo formation history, concentration, and occupation. Astrophys. J. 652, 71–84 (2006).

    Article  ADS  Google Scholar 

  5. Dalal, N., White, M., Bond, J. R. & Shirokov, A. Halo assembly bias in hierarchical structure formation. Astrophys. J. 687, 12–21 (2008).

    Article  ADS  Google Scholar 

  6. Li, Y., Mo, H. J. & Gao, L. On halo formation times and assembly bias. Mon. Not. R. Astron. Soc. 389, 1419–1426 (2008).

    Article  ADS  Google Scholar 

  7. Mao, Y.-Y., Zentner, A. R. & Wechsler, R. H. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes. Mon. Not. R. Astron. Soc. 474, 5143–5157 (2018).

    Article  ADS  Google Scholar 

  8. Johnston, D. E. et al. Cross-correlation weak lensing of SDSS galaxy clusters II: cluster density profiles and the mass–richness relation. Preprint at https://arxiv.org/abs/0709.1159 (2007).

  9. Sereno, M. et al. New constraints on σ 8 from a joint analysis of stacked gravitational lensing and clustering of galaxy clusters. Mon. Not. R. Astron. Soc. 449, 4147–4161 (2015).

    Article  ADS  Google Scholar 

  10. Dvornik, A. et al. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups. Mon. Not. R. Astron. Soc. 468, 3251–3265 (2017).

    Article  ADS  Google Scholar 

  11. More, S. et al. Detection of the splashback radius and halo assembly bias of massive galaxy clusters. Astrophys. J. 825, 39 (2016).

    Article  ADS  Google Scholar 

  12. Zu, Y., Mandelbaum, R., Simet, M., Rozo, E. & Rykoff, E. S. On the level of cluster assembly bias in SDSS. Mon. Not. R. Astron. Soc. 470, 551–560 (2017).

    Article  ADS  Google Scholar 

  13. Busch, P. & White, S. D. M. Assembly bias and splashback in galaxy clusters. Mon. Not. R. Astron. Soc. 470, 4767–4781 (2017).

    Article  ADS  Google Scholar 

  14. Planck Collaboration et al. Planck2015 results. XXVII. The second Planck catalogue of Sunyaev–Zeldovich sources. Astron. Astrophys. 594, A27 (2016).

    Article  Google Scholar 

  15. Sereno, M. et al. PSZ2LenS. Weak lensing analysis of the Planck clusters in the CFHTLenS and in the RCSLenS. Mon. Not. R. Astron. Soc. 472, 1946–1971 (2017).

    Article  ADS  Google Scholar 

  16. Oguri, M. & Takada, M. Combining cluster observables and stacked weak lensing to probe dark energy: self-calibration of systematic uncertainties. Phys. Rev. D. 83, 023008 (2011).

    Article  ADS  Google Scholar 

  17. Rossetti, M. et al. Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak - BCG offset. Mon. Not. R. Astron. Soc. 457, 4515–4524 (2016).

    Article  ADS  Google Scholar 

  18. Heymans, C. et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey. Mon. Not. R. Astron. Soc. 427, 146–166 (2012).

    Article  ADS  Google Scholar 

  19. Hildebrandt, H. et al. RCSLenS: the Red Cluster Sequence Lensing Survey. Mon. Not. R. Astron. Soc. 463, 635–654 (2016).

    Article  ADS  Google Scholar 

  20. Erben, T. et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey—imaging data and catalogue products. Mon. Not. R. Astron. Soc. 433, 2545–2563 (2013).

    Article  ADS  Google Scholar 

  21. Miller, L. et al. Bayesian galaxy shape measurement for weak lensing surveys — III. Application to the Canada–France–Hawaii Telescope Lensing Survey. Mon. Not. R. Astron. Soc. 429, 2858–2880 (2013).

    Article  ADS  Google Scholar 

  22. Hildebrandt, H. et al. CFHTLenS: improving the quality of photometric redshifts with precision photometry. Mon. Not. R. Astron. Soc. 421, 2355–2367 (2012).

    Article  ADS  Google Scholar 

  23. Benjamin, J. et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Mon. Not. R. Astron. Soc. 431, 1547–1564 (2013).

    Article  ADS  Google Scholar 

  24. Colberg, J. M., Krughoff, K. S. & Connolly, A. J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 359, 272–282 (2005).

    Article  ADS  Google Scholar 

  25. Eckert, D. et al. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015).

    Article  ADS  Google Scholar 

  26. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article  ADS  Google Scholar 

  27. Meneghetti, M. et al. The MUSIC of CLASH: predictions on the concentration-mass relation. Astrophys. J. 797, 34 (2014).

    Article  ADS  Google Scholar 

  28. Diemer, B., Mansfield, P., Kravtsov, A. V. & More, S. The splashback radius of halos from particle dynamics. II. Dependence on mass, accretion rate, redshift, and cosmology. Astrophys. J. 843, 140 (2017).

    Article  ADS  Google Scholar 

  29. Schneider, P., van Waerbeke, L., Jain, B. & Kruse, G. A new measure for cosmic shear. Mon. Not. R. Astron. Soc. 296, 873–892 (1998).

    Article  ADS  Google Scholar 

  30. Monaco, P. et al. An accurate tool for the fast generation of dark matter halo catalogues. Mon. Not. R. Astron. Soc. 433, 2389–2402 (2013).

    Article  ADS  Google Scholar 

  31. Viola, M. et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data. Mon. Not. R. Astron. Soc. 452, 3529–3550 (2015).

    Article  ADS  Google Scholar 

  32. Oguri, M. et al. Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey. Mon. Not. R. Astron. Soc. 420, 3213–3239 (2012).

    Article  ADS  Google Scholar 

  33. Covone, G., Sereno, M., Kilbinger, M. & Cardone, V. F. Measurement of the halo bias from stacked shear profiles of galaxy clusters. Astrophys. J. Lett. 784, L25 (2014).

    Article  ADS  Google Scholar 

  34. Baltz, E. A., Marshall, P. & Oguri, M. Analytic models of plausible gravitational lens potentials. J. Cosmol. Astropart. Phys. 1, 15 (2009).

    Article  ADS  Google Scholar 

  35. Oguri, M. & Hamana, T. Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies. Mon. Not. R. Astron. Soc. 414, 1851–1861 (2011).

    Article  ADS  Google Scholar 

  36. Sheth, R. K. & Tormen, G. Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999).

    Article  ADS  Google Scholar 

  37. Bhattacharya, S., Habib, S., Heitmann, K. & Vikhlinin, A. Dark matter halo profiles of massive clusters: theory versus observations. Astrophys. J. 766, 32 (2013).

    Article  ADS  Google Scholar 

  38. Eisenstein, D. J. & Hu, W. Power spectra for cold dark matter and its variants. Astrophys. J. 511, 5–15 (1999).

    Article  ADS  Google Scholar 

  39. Hoekstra, H. How well can we determine cluster mass profiles from weak lensing? Mon. Not. R. Astron. Soc. 339, 1155–1162 (2003).

    Article  ADS  Google Scholar 

  40. Smith, R. E. et al. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astron. Soc. 341, 1311–1332 (2003).

    Article  ADS  Google Scholar 

  41. Sereno, M., Giocoli, C., Ettori, S. & Moscardini, L. The mass-concentration relation in lensing clusters: the role of statistical biases and selection effects. Mon. Not. R. Astron. Soc. 449, 2024–2039 (2015).

    Article  ADS  Google Scholar 

  42. Mandelbaum, R., Seljak, U. & Hirata, C. M. A halo mass-concentration relation from weak lensing. J. Cosmol. Astropart. Phys. 8, 006 (2008).

    Article  ADS  Google Scholar 

  43. Okabe, N., Smith, G. P., Umetsu, K., Takada, M. & Futamase, T. LoCuSS: the mass density profile of massive galaxy clusters at z = 0.2. Astrophys. J. 769, L35 (2013).

    Article  ADS  Google Scholar 

  44. Umetsu, K. et al. CLASH: weak-lensing shear-and-magnification analysis of 20 galaxy clusters. Astrophys. J. 795, 163 (2014).

    Article  ADS  Google Scholar 

  45. Jarvis, M. et al. The DES science verification weak lensing shear catalogues. Mon. Not. R. Astron. Soc. 460, 2245–2281 (2016).

    Article  ADS  Google Scholar 

  46. Sereno, M., Fedeli, C. & Moscardini, L. Comparison of weak lensing by NFW and Einasto halos and systematic errors. J. Cosmol. Astropart. Phys. 1, 042 (2016).

    Article  ADS  Google Scholar 

  47. Bridle, S. & King, L. Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements. New J. Phys. 9, 444 (2007).

    Article  ADS  Google Scholar 

  48. Heymans, C. et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. Mon. Not. R. Astron. Soc. 432, 2433–2453 (2013).

    Article  ADS  Google Scholar 

  49. Miyatake, H. et al. The weak lensing signal and the clustering of BOSS galaxies. I. Measurements. Astrophys. J. 806, 1 (2015).

    Article  ADS  Google Scholar 

  50. Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013).

    Article  ADS  Google Scholar 

  51. Munari, E. et al. Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory. Mon. Not. R. Astron. Soc. 465, 4658–4677 (2017).

    Article  ADS  Google Scholar 

  52. Giocoli, C., Meneghetti, M., Bartelmann, M., Moscardini, L. & Boldrin, M. MOKA: a new tool for strong lensing studies. Mon. Not. R. Astron. Soc. 421, 3343–3355 (2012).

    Article  ADS  Google Scholar 

  53. Giocoli, C. et al. Fast weak-lensing simulations with halo model. Mon. Not. R. Astron. Soc. 470, 3574–3590 (2017).

    Article  ADS  Google Scholar 

  54. Snowden, S. L., Mushotzky, R. F., Kuntz, K. D. & Davis, D. S. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).

    Article  ADS  Google Scholar 

  55. Arnaud, K. A. in Astron. Soc. Pacific Conf. Proc. Vol. 101 Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17 (ASP, 1996).

  56. Kuntz, K. D. & Snowden, S. L. The X-ray-emitting components toward ℓ = 111°: the local hot bubble and beyond. Astrophys. J. 674, 209–219 (2008).

    Article  ADS  Google Scholar 

  57. Takey, A., Schwope, A. & Lamer, G. The 2XMMi/SDSS galaxy cluster survey. I. The first cluster sample and X-ray luminosity-temperature relation. Astron. Astrophys. 534, A120 (2011).

    Article  ADS  Google Scholar 

  58. Vikhlinin, A. et al. Chandra cluster cosmology project. II. Samples and X-ray data reduction. Astrophys. J. 692, 1033–1059 (2009).

    Article  ADS  Google Scholar 

  59. Planck Collaboration. Planck intermediate results. XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories. Astron. Astrophys. 586, A139 (2016).

  60. Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  61. Tody, D. in Proc. SPIE Vol. 627: Instrumentation in Astronomy VI (ed. Crawford, D. L.) 733 (SPIE, 1986).

  62. Tonry, J. & Davis, M. A survey of galaxy redshifts. I — Data reduction techniques. Astron. J. 84, 1511–1525 (1979).

    Article  ADS  Google Scholar 

  63. Kennicutt, R. C. Jr. A spectrophotometric atlas of galaxies. Astrophys. J. Suppl. Ser. 79, 255–284 (1992).

    Article  ADS  Google Scholar 

  64. McGreer, I. D. et al. A bright lensed galaxy at z = 5.4 with strong Lyα emission. Preprint at https://arxiv.org/abs/1706.09428 (2017).

  65. Beers, T. C., Flynn, K. & Gebhardt, K. Measures of location and scale for velocities in clusters of galaxies — a robust approach. Astron. J. 100, 32–46 (1990).

    Article  ADS  Google Scholar 

  66. Sifón, C. et al. The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Mon. Not. R. Astron. Soc. 461, 248–270 (2016).

    Article  ADS  Google Scholar 

  67. Evrard, A. E. et al. Virial scaling of massive dark matter halos: why clusters prefer a high normalization cosmology. Astrophys. J. 672, 122–137 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. A. R. Martín for coordinating the spectroscopic campaign and L. D’Avino for suggestions on the rendering of Fig. 1. S.E. and M.S. acknowledge financial support from contracts ASI-INAF I/009/10/0, NARO15 ASI-INAF I/037/12/0, ASI 2015-046-R.0 and ASI-INAF n.2017-14-H.0. C.G. acknowledges support from the Italian Ministry for Education, University, and Research (MIUR) through the SIR individual grant SIMCODE, project number RBSI14P4IH, and the Italian Ministry of Foreign affairs and International Cooperation, Directorate General for Country Promotion for Country Promotion. L.I. acknowledges support from the Spanish research project AYA 2014-58381-P. L.M. acknowledges support from the grants ASI n.I/023/12/0 and PRIN MIUR 2015. A.F., A.S. and R.B. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under AYA 2014-60438-P, ESP2013-48362-C2-1-P and the 2011 Severo Ochoa Program MINECO SEV-2011-0187 projects. This article includes observations made with the Gran Telescopio Canarias (GTC) operated by Instituto de Astrofísica de Canarias (IAC) with telescope time awarded by the CCI International Time Programme at the Canary Islands observatories (programme ITP13-8). The simulations were run on the Marconi supercomputer at Cineca thanks to the projects IsC10_MOKAlen3 and IsC49_ClBra01.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the interpretation and presentation of the results. M.S.: lead author; project concept, planning, and design; writing; lensing, statistical, and cosmological analyses. C.G.: numerical simulations. L.I.: X-ray analysis. F.M. and A.V.: cosmological analysis. S.E. and L.M.: planning and interpretation. G.C.: cluster sample selection. A.F., A.S. and R.B.: galaxy kinematics.

Corresponding author

Correspondence to Mauro Sereno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereno, M., Giocoli, C., Izzo, L. et al. Gravitational lensing detection of an extremely dense environment around a galaxy cluster. Nat Astron 2, 744–750 (2018). https://doi.org/10.1038/s41550-018-0508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0508-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing