Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbial metabolites in obesity, NAFLD and T2DM

Abstract

Evidence is accumulating that the gut microbiome is involved in the aetiology of obesity and obesity-related complications such as nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes mellitus (T2DM). The gut microbiota is able to ferment indigestible carbohydrates (for example, dietary fibre), thereby yielding important metabolites such as short-chain fatty acids and succinate. Numerous animal studies and a handful of human studies suggest a beneficial role of these metabolites in the prevention and treatment of obesity and its comorbidities. Interestingly, the more distal colonic microbiota primarily ferments peptides and proteins, as availability of fermentable fibre, the major energy source for the microbiota, is limited here. This proteolytic fermentation yields mainly harmful products such as ammonia, phenols and branched-chain fatty acids, which might be detrimental for host gut and metabolic health. Therefore, a switch from proteolytic to saccharolytic fermentation could be of major interest for the prevention and/or treatment of metabolic diseases. This Review focuses on the role of products derived from microbial carbohydrate and protein fermentation in relation to obesity and obesity-associated insulin resistance, T2DM and NAFLD, and discusses the mechanisms involved.

Key points

  • Gut microbial metabolites such as short-chain fatty acids (SCFAs) and succinate, which are derived from the fermentation of dietary fibre, have important metabolic functions.

  • SCFAs and succinate might prevent obesity by increasing energy expenditure, increasing anorexic hormone production and improving appetite regulation.

  • SCFAs have a crucial role in gut homeostasis, adipose tissue and liver substrate metabolism and function, through which they can prevent the progression of type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD).

  • The site of microbial SCFA production in the colon might be an important determinant for the aforementioned beneficial effects.

  • The microbial metabolites derived from protein fermentation, which are mainly produced in the distal colon, are most often considered detrimental for gut integrity and metabolic health.

  • Providing mixtures of dietary fibres to increase distal colonic microbial carbohydrate fermentation and thereby inhibit protein fermentation might be a putative target to ameliorate obesity, T2DM and NAFLD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microbial communities and microbiological networks involved in saccharolytic and proteolytic metabolite production.
Fig. 2: Metabolites derived from carbohydrate fermentation in relation to body weight control.
Fig. 3: The relationship of metabolites derived from protein and carbohydrate fermentation and interorgan crosstalk with insulin resistance and type 2 diabetes mellitus.

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight. WHO http://www.who.int/mediacentre/factsheets/fs311/en/ (2018).

  2. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Google Scholar 

  3. Zheng, Y., Ley, S. & Hu, F. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98 (2017).

    PubMed  Google Scholar 

  4. Seuring, T., Archangelidi, O. & Suhrcke, M. The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics 33, 811–831 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Tremmel, M., Gerdtham, U.-G., Nilsson, P. M. & Saha, S. Economic burden of obesity: a systematic literature review. Int. J. Environ. Res. Public Health 14, E435 (2017).

    PubMed  Google Scholar 

  6. Corpeleijn, E., Saris, W. & Blaak, E. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes. Rev. 10, 178–193 (2009).

    CAS  PubMed  Google Scholar 

  7. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    PubMed  Google Scholar 

  8. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–343 (2017).

    CAS  PubMed  Google Scholar 

  9. Stinkens, R., Goossens, G. H., Jocken, J. W. & Blaak, E. E. Targeting fatty acid metabolism to improve glucose metabolism. Obes. Rev. 16, 715–757 (2015).

    CAS  PubMed  Google Scholar 

  10. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  PubMed Central  Google Scholar 

  11. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  12. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    PubMed  Google Scholar 

  13. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    CAS  PubMed  Google Scholar 

  14. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  Google Scholar 

  15. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1478 (2008).

    CAS  PubMed  Google Scholar 

  16. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    CAS  PubMed  Google Scholar 

  18. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).

    CAS  PubMed  Google Scholar 

  19. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  20. Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. (Lond.) 41, 1099 (2017).

    CAS  Google Scholar 

  21. Cani, P. D., Joly, E., Horsmans, Y. & Delzenne, N. M. Oligofructose promotes satiety in healthy human: a pilot study. Eur. J. Clin. Nutr. 60, 567–572 (2006).

    CAS  PubMed  Google Scholar 

  22. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    CAS  PubMed  Google Scholar 

  23. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  24. den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408 (2015).

    Google Scholar 

  25. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    CAS  PubMed  Google Scholar 

  26. Lu, Y. et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci. Rep. 6, 37589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. De Vadder, F. et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 24, 151–157 (2016).

    PubMed  Google Scholar 

  28. Mollica, M. P. et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 66, 1405–1418 (2017).

    CAS  PubMed  Google Scholar 

  29. Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2017).

    PubMed  Google Scholar 

  30. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Robertson, M. D., Bickerton, A. S., Dennis, A. L., Vidal, H. & Frayn, K. N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 82, 559–567 (2005).

    CAS  PubMed  Google Scholar 

  32. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    CAS  PubMed  Google Scholar 

  33. Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    CAS  PubMed  Google Scholar 

  34. van der Beek, C. M. et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130, 2073–2082 (2016).

    Google Scholar 

  35. Bouter, K. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl Gastroenterol. 9, 155 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

    CAS  PubMed  Google Scholar 

  37. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    CAS  PubMed  Google Scholar 

  38. Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    PubMed  Google Scholar 

  39. Sonnenburg, J. L. & Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cani, P. D., Osto, M., Geurts, L. & Everard, A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3, 279–288 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt, T. S., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    CAS  PubMed  Google Scholar 

  44. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    CAS  PubMed  Google Scholar 

  45. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    CAS  PubMed  Google Scholar 

  47. Cummings, J., Pomare, E., Branch, W., Naylor, C. & Macfarlane, G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Beaumont, M. et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. 32, 6681–6693 (2018).

    CAS  PubMed Central  Google Scholar 

  50. Okamoto, M. et al. Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem. Biophys. Res. Commun. 442, 227–233 (2013).

    CAS  PubMed  Google Scholar 

  51. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    CAS  PubMed  Google Scholar 

  52. Venema, K. Microbial metabolites produced by the colonic microbiota as drivers for immunomodulation in the host. FASEB J. 27 (Suppl. 1), 643.12–643.13 (2013).

    Google Scholar 

  53. Pylkas, A. M., Juneja, L. R. & Slavin, J. L. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J. Med. Food 8, 113–116 (2005).

    CAS  PubMed  Google Scholar 

  54. El Oufir, L. et al. Relationships between transit time in man and in vitro fermentation of dietary fiber by fecal bacteria. Eur. J. Clin. Nutr. 54, 603–609 (2000).

    Google Scholar 

  55. Serena, C. et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J. 12, 1642–1657 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bloemen, J. G. et al. Short chain fatty acids exchange: is the cirrhotic, dysfunctional liver still able to clear them? Clin. Nutr. 29, 365–369 (2010).

    CAS  PubMed  Google Scholar 

  57. Bloemen, J. G. et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 28, 657–661 (2009).

    CAS  PubMed  Google Scholar 

  58. Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J. Physiol. 595, 541–555 (2017).

    CAS  PubMed  Google Scholar 

  59. Neis, E. P. et al. Distal versus proximal intestinal short-chain fatty acid release in man. Gut https://doi.org/10.1136/gutjnl-2018-316161 (2018).

    Article  PubMed  Google Scholar 

  60. Swanson, K. S. et al. Fructooligosaccharides and Lactobacillus acidophilus modify bowel function and protein catabolites excreted by healthy humans. J. Nutr. 132, 3042–3050 (2002).

    CAS  PubMed  Google Scholar 

  61. Pieper, R. et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr. 142, 661–667 (2012).

    CAS  PubMed  Google Scholar 

  62. Geypens, B. A. et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41, 70–76 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Macfarlane, G., Gibson, G. & Cummings, J. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).

    CAS  PubMed  Google Scholar 

  64. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond.) 39, 424–429 (2015).

    CAS  Google Scholar 

  66. Reimer, R. A. et al. A human cellular model for studying the regulation of glucagon-like peptide-1 secretion. Endocrinology 142, 4522–4528 (2001).

    CAS  PubMed  Google Scholar 

  67. Larraufie, P. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8, 74 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, J. et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 295, E1160–E1166 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Forbes, S. et al. Selective FFA2 agonism appears to act via intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 64, 3763–3771 (2015).

    CAS  PubMed  Google Scholar 

  70. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soliman, M. et al. Inverse regulation of leptin mRNA expression by short-and long-chain fatty acids in cultured bovine adipocytes. Domest. Anim. Endocrinol. 33, 400–409 (2007).

    CAS  PubMed  Google Scholar 

  72. Al-Lahham, S. H. et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest. 40, 401–407 (2010).

    CAS  PubMed  Google Scholar 

  73. Freeland, K. R. & Wolever, T. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 103, 460–466 (2010).

    CAS  PubMed  Google Scholar 

  74. Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130–135 (2018).

    CAS  PubMed  Google Scholar 

  75. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G1127 (2013).

    CAS  PubMed  Google Scholar 

  76. Byrne, C. S. et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 104, 5–14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gulanski, B. I. et al. Increased brain transport and metabolism of acetate in hypoglycemia unawareness. J. Clin. Endocrinol. Metab. 98, 3811–3820 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sahuri-Arisoylu, M. et al. Reprogramming of hepatic fat accumulation and’browning’of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. (Lond.) 40, 955–963 (2016).

    CAS  Google Scholar 

  80. Kondo, T., Kishi, M., Fushimi, T. & Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agr. Food Chem. 57, 5982–5986 (2009).

    CAS  Google Scholar 

  81. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    PubMed  Google Scholar 

  82. Teixeira, T. F. et al. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br. J. Nutr. 109, 914–919 (2013).

    CAS  PubMed  Google Scholar 

  83. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  84. den Besten, G. et al. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome. PLOS ONE 9, e107392 (2014).

    Google Scholar 

  85. Pauline, K.-B. & Rimm, E. B. Whole grain consumption and weight gain: a review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc. Nutr. Soc. 62, 25–29 (2003).

    Google Scholar 

  86. Thompson, S. V., Hannon, B. A., An, R. & Holscher, H. D. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 106, 1514–1528 (2017).

    CAS  PubMed  Google Scholar 

  87. Wanders, A. J. et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes. Rev. 12, 724–739 (2011).

    CAS  PubMed  Google Scholar 

  88. Parnell, J. A. & Reimer, R. A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89, 1751–1759 (2009).

    CAS  PubMed  Google Scholar 

  89. Cani, P. D. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236–1243 (2009).

    CAS  PubMed  Google Scholar 

  90. Daud, N. M. et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity 22, 1430–1438 (2014).

    CAS  PubMed  Google Scholar 

  91. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  92. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kondo, T., Kishi, M., Fushimi, T., Ugajin, S. & Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci. Biotechnol. Biochem. 73, 1837–1843 (2009).

    CAS  PubMed  Google Scholar 

  94. Meex, R. C. & Watt, M. J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 13, 509–520 (2017).

    CAS  PubMed  Google Scholar 

  95. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, H.-B., Wang, P.-Y., Wang, X., Wan, Y.-L. & Liu, Y.-C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57, 3126–3135 (2012).

  97. Pussinen, P. J., Havulinna, A. S., Lehto, M., Sundvall, J. & Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34, 392–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jayashree, B. et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol. Cell. Biochem. 388, 203–210 (2014).

    CAS  PubMed  Google Scholar 

  99. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS  PubMed  Google Scholar 

  102. Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    CAS  PubMed  Google Scholar 

  103. Yamashita, H. et al. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 71, 1236–1243 (2007).

    CAS  PubMed  Google Scholar 

  104. Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y. & Kadowaki, T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A (y) mice. Biochem. Biophys. Res. Commun. 344, 597–604 (2006).

    CAS  PubMed  Google Scholar 

  105. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    CAS  PubMed  Google Scholar 

  106. Nair, S., Cope, K., Terence, R. H. & Diehl, A. M. Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96, 1200–1204 (2001).

    CAS  PubMed  Google Scholar 

  107. Zhu, L., Baker, R. D., Zhu, R. & Baker, S. S. Gut microbiota produce alcohol and contribute to NAFLD. Gut 65, 1232 (2016).

    CAS  PubMed  Google Scholar 

  108. Xu, J. et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J. Hepatol. 55, 673–682 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Baker, S. S., Baker, R. D., Liu, W., Nowak, N. J. & Zhu, L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLOS ONE 5, e9570 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Rao, R., Seth, A. & Sheth, P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G881–G884 (2004).

    CAS  PubMed  Google Scholar 

  111. Shen, Z. et al. Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1047–G1053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Blanco, A. M., Perez-Arago, A., Fernandez-Lizarbe, S. & Guerri, C. Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J. Neurochem. 106, 625–639 (2008).

    CAS  PubMed  Google Scholar 

  113. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yao, C., Muir, J. & Gibson, P. Insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 43, 181–196 (2016).

    CAS  PubMed  Google Scholar 

  115. Andriamihaja, M. et al. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1030–G1037 (2010).

    CAS  PubMed  Google Scholar 

  116. Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

    PubMed  Google Scholar 

  117. Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl Acad. Sci. USA 107, 228–233 (2010).

    CAS  PubMed  Google Scholar 

  118. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science 357, 806–810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, B. et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci. Rep. 6, 32002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mouzaki, M. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127 (2013).

    CAS  PubMed  Google Scholar 

  121. Silva, H. E. et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci. Rep. 8, 1466 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Daubioul, C., Horsmans, Y., Lambert, P., Danse, E. & Delzenne, N. M. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur. J. Clin. Nutr. 59, 723–726 (2005).

    CAS  PubMed  Google Scholar 

  123. Malaguarnera, M. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci. 57, 545–553 (2012).

    PubMed  Google Scholar 

  124. DeFronzo, R. et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    CAS  PubMed  Google Scholar 

  125. Aberdein, N., Schweizer, M. & Ball, D. Sodium acetate decreases phosphorylation of hormone sensitive lipase in isoproterenol-stimulated 3T3-L1 mature adipocytes. Adipocyte 3, 121–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Jocken, J. W. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. (Lausanne) 8, 372 (2017).

    Google Scholar 

  127. Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLOS Biol. 11, e1001485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fernandes, J., Vogt, J. & Wolever, T. M. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur. J. Clin. Nutr. 66, 1029–1034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ohira, H. et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J. Atheroscler. Thromb. 20, 425–442 (2013).

    CAS  PubMed  Google Scholar 

  130. Al-Lahham, S.a. et al. Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects. Eur. J. Clin. Invest. 42, 357–364 (2012).

    CAS  PubMed  Google Scholar 

  131. Yamashita, H. et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73, 570–576 (2009).

    CAS  PubMed  Google Scholar 

  132. Priyadarshini, M. et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol. 29, 1055–1066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. McNelis, J. C. et al. GPR43 potentiates β-cell function in obesity. Diabetes 64, 3203–3217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Veprik, A., Laufer, D., Weiss, S., Rubins, N. & Walker, M. D. GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states. FASEB J. 30, 3860–3869 (2016).

    CAS  PubMed  Google Scholar 

  135. Pingitore, A. et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 19, 257–265 (2017).

    CAS  PubMed  Google Scholar 

  136. Tannahill, G. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Holmes, A. J. et al. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 25, 140–151 (2017).

    CAS  PubMed  Google Scholar 

  138. Wu, L. et al. Pancreatic islet overproduction of H 2 S and suppressed insulin release in Zucker diabetic rats. Lab. Invest. 89, 59–67 (2009).

    CAS  PubMed  Google Scholar 

  139. Yang, G., Yang, W., Wu, L. & Wang, R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J. Biol. Chem. 282, 16567–16576 (2007).

    CAS  PubMed  Google Scholar 

  140. Zhang, L. et al. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology 154, 114–126 (2013).

    CAS  PubMed  Google Scholar 

  141. Jain, S. K. et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid. Redox Signal. 12, 1333–1338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Koppe, L. et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J. Am. Soc. Nephrol. 24, 88–99 (2013).

    CAS  PubMed  Google Scholar 

  143. Müller, M., Canfora, E. E. & Blaak, E. E. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients 10, E275 (2018).

    PubMed  Google Scholar 

  144. Dewulf, E. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    CAS  PubMed  Google Scholar 

  145. Vulevic, J., Juric, A., Tzortzis, G. & Gibson, G. R. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 143, 324–331 (2013).

    CAS  PubMed  Google Scholar 

  146. Canfora, E. E. & Blaak, E. E. The role of polydextrose in body weight control and glucose regulation. Curr. Opin. Clin. Nutr. Metab. Care 18, 395–400 (2015).

    CAS  PubMed  Google Scholar 

  147. Canfora, E. E. & van der Beek, C. M. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153, 87–97 (2017).

    CAS  PubMed  Google Scholar 

  148. Liu, F. et al. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci. Rep. 7, 11789 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Canfora, E. E. & Blaak, E. E. Acetate: a diet-derived key metabolite in energy metabolism: good or bad in context of obesity and glucose homeostasis? Curr. Opin. Clin. Nutr. Metab. Care 20, 477–483 (2017).

    CAS  PubMed  Google Scholar 

Download references

Review criteria

PubMed and Google Scholar were searched for relevant topics, using the search terms “SCFA”, “acetate”, “butyrate”, “propionate”, “succinate”, “dietary fibre”, probiotics”, “BCFA”, “ethanol”, “indoles”,”amines”, “sulfate”, “choline”, “bile acids” and “proteolytic fermentation” in combination with “intestinal concentrations”, “blood concentrations”, “microbiota”, “fermentation”, “intestinal homeostasis”, “obesity”, “NASH”, NAFLD”, “weight”, “satiety”, “type 2 diabetes”, “insulin sensitivity”, “insulin resistance”, “glycaemic control”, “glucose-lowering mechanisms”, “energy metabolism”, “inflammation”, “treg”, “vagal activity”, “cardiovascular disease” and “metabolic control”, without publication time constraints. References cited in this article include English-language original research and in some specific case reviews by experts in the field.

Reviewer information

Nature Reviews Endocrinology thanks G. Frost and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided a substantial contribution to the discussion of content; E.E.C. researched data for the article and wrote the article; and R.C.R.M., K.V. and E.E.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ellen E. Blaak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canfora, E.E., Meex, R.C.R., Venema, K. et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15, 261–273 (2019). https://doi.org/10.1038/s41574-019-0156-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0156-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing