Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of haemolysis-induced kidney injury

Abstract

Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron — potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) — and potentially HO2 — represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.

Key points

  • Several human haemolytic conditions result in the presence of large amounts of haemoglobin and haem in the circulation, which overwhelms endogenous scavengers such as haptoglobin and haemopexin.

  • Free haemoproteins present in plasma are filtered by the kidney, exposing the kidney to the injurious effects of haem and iron.

  • The presence of copious quantities of haem in the kidney necessitates clearance of haem; induction of haem oxygenase 1 and ferritin in the kidney protects against haem-induced oxidative stress.

  • However, these mechanisms are not sufficient to avoid pathological outcomes instigated by cell-free haemoglobin, haem and iron during haemolytic conditions such as oxidative stress, nitric oxide depletion, inflammation and cell death.

  • Haemoprotein-induced acute kidney injury is a multifactorial process, involving reactive oxygen species, labile iron and inflammation.

  • Two main approaches exist for the treatment of haemolytic anaemias: treating the underlying disease to prevent the disintegration of red blood cells and mitigating the damage induced by released haemoproteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of toxicity caused by cell-free haemoglobin.
Fig. 2: Effects of haemolysis on systemic inflammation.
Fig. 3: Overview of haemolysis-driven renal inflammation.
Fig. 4: Treatment strategies to prevent haemolysis-induced kidney injury.

Similar content being viewed by others

References

  1. Bancroft, F. W. Anuria following transfusion: effect of decapsulation of both kidneys. Ann. Surg. 81, 733–738 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bywaters, E. G. & Beall, D. Crush injuries with impairment of renal function. Br. Med. J. 1, 427–432 (1941).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rother, R. P., Bell, L., Hillmen, P. & Gladwin, M. T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293, 1653–1662 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Jakeman, G. N., Saul, A., Hogarth, W. L. & Collins, W. E. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology 119 (Pt 2), 127–133 (1999).

    Article  PubMed  Google Scholar 

  6. White, N. J. Anaemia and malaria. Malar. J. 17, 371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ackers, G. K. & Halvorson, H. R. The linkage between oxygenation and subunit dissociation in human hemoglobin. Proc. Natl Acad. Sci. USA 71, 4312–4316 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matheson, B., Razynska, A., Kwansa, H. & Bucci, E. Appearance of dissociable and cross-linked hemoglobins in the renal hilar lymph. J. Lab. Clin. Med. 135, 459–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Nakai, K. et al. Permeability characteristics of hemoglobin derivatives across cultured endothelial cell monolayers. J. Lab. Clin. Med. 132, 313–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Butt, O. I., Buehler, P. W. & D’Agnillo, F. Differential induction of renal heme oxygenase and ferritin in ascorbate and nonascorbate producing species transfused with modified cell-free hemoglobin. Antioxid. Redox Signal. 12, 199–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Donadee, C. et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124, 465–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doherty, D. H. et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16, 672–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Reiter, C. D. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8, 1383–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Yeo, T. W. et al. Greater endothelial activation, Weibel–Palade body release and host inflammatory response to Plasmodium vivax, compared with Plasmodium falciparum: a prospective study in Papua, Indonesia. J. Infect. Dis. 202, 109–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Janka, J. J. et al. Increased pulmonary pressures and myocardial wall stress in children with severe malaria. J. Infect. Dis. 202, 791–800 (2010).

    Article  PubMed  Google Scholar 

  16. Hill, A. et al. Effect of eculizumab on haemolysis-associated nitric oxide depletion, dyspnoea, and measures of pulmonary hypertension in patients with paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 149, 414–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Olson, J. S. et al. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic. Biol. Med. 36, 685–697 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Minneci, P. C. et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J. Clin. Invest. 115, 3409–3417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wesson, D. E. The initiation and progression of sickle cell nephropathy. Kidney Int. 61, 2277–2286 (2002).

    Article  PubMed  Google Scholar 

  20. Hostetter, T. H. Progression of renal disease and renal hypertrophy. Annu. Rev. Physiol. 57, 263–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Hostetter, T. H. Hyperfiltration and glomerulosclerosis. Semin. Nephrol. 23, 194–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Nath, K. A. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am. J. Kidney Dis. 20, 1–17 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int. 67, 404–419 (2005).

    Article  PubMed  Google Scholar 

  24. Baek, J. H. et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J. Clin. Invest. 122, 1444–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrow, J. D. et al. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl Acad. Sci. USA 87, 9383–9387 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takahashi, K. et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 90, 136–141 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nath, K. A., Balla, J., Croatt, A. J. & Vercellotti, G. M. Heme protein-mediated renal injury: a protective role for 21-aminosteroids in vitro and in vivo. Kidney Int. 47, 592–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Balla, J. et al. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl Acad. Sci. USA 90, 9285–9289 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boutaud, O. et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl Acad. Sci. USA 107, 2699–2704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lipiski, M. et al. Human Hp1-1 and Hp2-2 phenotype-specific haptoglobin therapeutics are both effective in vitro and in guinea pigs to attenuate hemoglobin toxicity. Antioxid. Redox Signal. 19, 1619–1633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bunn, H. F. & Jandl, J. H. Exchange of heme among hemoglobins and between hemoglobin and albumin. J. Biol. Chem. 243, 465–475 (1968).

    Article  CAS  PubMed  Google Scholar 

  32. Gattoni, M., Boffi, A., Sarti, P. & Chiancone, E. Stability of the heme-globin linkage in dimers and isolated chains of human hemoglobin. A study of the heme transfer reaction from the immobilized proteins to albumin. J. Biol. Chem. 271, 10130–10136 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Mollan, T. L. et al. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic. Biol. Med. 69, 265–277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Natanson, C., Kern, S. J., Lurie, P., Banks, S. M. & Wolfe, S. M. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299, 2304–2312 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Vincent, S. H. Oxidative effects of heme and porphyrins on proteins and lipids. Semin. Hematol. 26, 105–113 (1989).

    CAS  PubMed  Google Scholar 

  36. Balla, G., Jacob, H. S., Eaton, J. W., Belcher, J. D. & Vercellotti, G. M. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler. Thromb. 11, 1700–1711 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Vercellotti, G. M. et al. Heme and the vasculature: an oxidative hazard that induces antioxidant defenses in the endothelium. Artif. Cells Blood Substit. Immobil. Biotechnol. 22, 207–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Jeney, V. et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood 100, 879–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Balla, G., Vercellotti, G. M., Muller-Eberhard, U., Eaton, J. & Jacob, H. S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab. Invest. 64, 648–655 (1991).

    CAS  PubMed  Google Scholar 

  40. Kumar, S. & Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157, 175–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ryter, S. W. & Tyrrell, R. M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 28, 289–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Tolosano, E., Fagoonee, S., Morello, N., Vinchi, F. & Fiorito, V. Heme scavenging and the other facets of hemopexin. Antiox. Redox Signal. 12, 305–320 (2010).

    Article  CAS  Google Scholar 

  43. Larsen, R. et al. A central role for free heme in the pathogenesis of severe sepsis. Sci. Transl Med. 2, 51ra71 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Hod, E. A. et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood 115, 4284–4292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ponka, P. Cell biology of heme. Am. J. Med. Sci. 318, 241–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wagener, F. A. et al. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol. Rev. 55, 551–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Reeder, B. J. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxid. Redox Signal. 13, 1087–1123 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Hamza, I. & Dailey, H. A. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta 1823, 1617–1632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soares, M. P. & Weiss, G. The Iron age of host-microbe interactions. EMBO Rep. 16, 1482–1500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chance, B. The reactivity of haemoproteins and cytochromes. Biochem. J. 103, 1–18 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mense, S. M. & Zhang, L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16, 681–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Boretti, F. S. et al. Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J. Clin. Invest. 119, 2271–2280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gladwin, M. T., Kanias, T. & Kim-Shapiro, D. B. Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J. Clin. Invest. 122, 1205–1208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Schaer, C. A., Vallelian, F., Imhof, A., Schoedon, G. & Schaer, D. J. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system. J. Leukoc. Biol. 82, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Schaer, D. J. et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin. Blood 107, 373–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Schaer, C. A., Schoedon, G., Imhof, A., Kurrer, M. O. & Schaer, D. J. Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ. Res. 99, 943–950 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kassa, T., Jana, S., Meng, F. & Alayash, A. I. Differential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase-1. FEBS Open Bio. 6, 876–884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ascenzi, P. et al. Hemoglobin and heme scavenging. IUBMB Life 57, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Muller-Eberhard, U. & Cleve, H. Immunoelectrophoretic studies of the beta1-haem-binding globulin (haemopexin) in hereditary haemolytic disorders. Nature 197, 602–603 (1963).

    Article  CAS  PubMed  Google Scholar 

  61. Muller-Eberhard, U. Hemopexin. N. Engl. J. Med. 283, 1090–1094 (1970).

    Article  CAS  PubMed  Google Scholar 

  62. Tolosano, E. & Altruda, F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 21, 297–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Paoli, M. et al. Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two β-propeller domains. Nat. Struct. Biol. 6, 926–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Gutteridge, J. M. & Smith, A. Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem. J. 256, 861–865 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vercellotti, G. M. et al. Hepatic overexpression of hemopexin inhibits inflammation and vascular stasis in murine models of sickle cell disease. Mol. Med. 22, 437–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Potter, D. et al. In vivo fate of hemopexin and heme-hemopexin complexes in the rat. Arch. Biochem. Biophys. 300, 98–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Hvidberg, V. et al. Identification of the receptor scavenging hemopexin-heme complexes. Blood 106, 2572–2579 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, A. & Morgan, W. T. Haem transport to the liver by haemopexin. Receptor-mediated uptake with recycling of the protein. Biochem. J. 182, 47–54 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vinchi, F., Gastaldi, S., Silengo, L., Altruda, F. & Tolosano, E. Hemopexin prevents endothelial damage and liver congestion in a mouse model of heme overload. Am. J. Pathol. 173, 289–299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tolosano, E. et al. Defective recovery and severe renal damage after acute hemolysis in hemopexin-deficient mice. Blood 94, 3906–3914 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Vinchi, F. et al. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 127, 1317–1329 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Muller-Eberhard, U., Javid, J., Liem, H. H., Hanstein, A. & Hanna, M. Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32, 811–815 (1968).

    Article  CAS  PubMed  Google Scholar 

  73. Kutty, R. K. & Maines, M. D. Purification and characterization of biliverdin reductase from rat liver. J. Biol. Chem. 256, 3956–3962 (1981).

    Article  CAS  PubMed  Google Scholar 

  74. Maines, M. D. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Ryter, S. W., Alam, J. & Choi, A. M. K. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Nath, K. A. et al. Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J. Clin. Invest. 90, 267–270 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kovtunovych, G., Eckhaus, M. A., Ghosh, M. C., Ollivierre-Wilson, H. & Rouault, T. A. Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116, 6054–6062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yachie, A. et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129–135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koizumi, S. Human heme oxygenase-1 deficiency: a lesson on serendipity in the discovery of the novel disease. Pediatr. Int. 49, 125–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Tzima, S., Victoratos, P., Kranidioti, K., Alexiou, M. & Kollias, G. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN- β production. J. Exp. Med. 206, 1167–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagener, F. A. et al. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood 98, 1802–1811 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Kapturczak, M. H. et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am. J. Pathol. 165, 1045–1053 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Doré, S. et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl Acad. Sci. USA 96, 2445–2450 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Soares, M. P. et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol. 172, 3553–3563 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Kawamura, K. et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler. Thromb. Vasc. Biol. 25, 155–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Ndisang, J. F., Wu, L., Zhao, W. & Wang, R. Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood 101, 3893–3900 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Beckman, J. D. et al. Inhaled carbon monoxide reduces leukocytosis in a murine model of sickle cell disease. Am. J. Physiol. Heart Circ. Physiol. 297, H1243–H1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Belcher, J. D. et al. Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J. Clin. Invest. 116, 808–816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belcher, J. D. et al. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J. Mol. Med. 88, 665–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Nath, K. A. et al. Age sensitizes the kidney to heme protein-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 304, F317–F325 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Balla, G. et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267, 18148–18153 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Berberat, P. O. et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 17, 1724–1726 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Cozzi, A. et al. Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood 103, 2377–2383 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Gozzelino, R. & Soares, M. P. Coupling heme and iron metabolism via ferritin H chain. Antiox. Redox Signal. 20, 1754–1769 (2013).

    Article  CAS  Google Scholar 

  96. Balla, J. et al. Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol. Nutr. Food Res. 49, 1030–1043 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Robinson, S. R., Dang, T. N., Dringen, R. & Bishop, G. M. Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke. Redox Report 14, 228–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Roche, M., Rondeau, P., Singh, N. R., Tarnus, E. & Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 582, 1783–1787 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Belayev, L. et al. Experimental intracerebral hematoma in the rat: characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Res. 1157, 146–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, P., Wu, J., Gao, Z. & Li, H. Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2 -induced damage. Mol. Cell Biochem. 454, 57–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Monzani, E. et al. Enzymatic properties of human hemalbumin. Biochim. Biophys. Acta 1547, 302–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Huang, Y., Shuai, Y., Li, H. & Gao, Z. Tyrosine residues play an important role in heme detoxification by serum albumin. Biochim. Biophys. Acta 1840, 970–976 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E. & Curry, S. Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct. Biol. 3, 6 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wardell, M. et al. The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 291, 813–819 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Larsen, R., Gouveia, Z., Soares, M. P. & Gozzelino, R. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases. Front. Pharmacol. 3, 77 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Balla, J. et al. Ferriporphyrins and endothelium: a 2-edged sword-promotion of oxidation and induction of cytoprotectants. Blood 95, 3442–3450 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Miller, Y. I. & Shaklai, N. Kinetics of hemin distribution in plasma reveals its role in lipoprotein oxidation. Biochim. Biophys. Acta 1454, 153–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Eskew, J. D., Vanacore, R. M., Sung, L., Morales, P. J. & Smith, A. Cellular protection mechanisms against extracellular heme heme-hemopexin, but not free heme, activates the N-terminal c-Jun kinase. J. Biol. Chem. 274, 638–648 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, G. et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 123, 3818–3827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Belcher, J. D. et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123, 377–390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vinchi, F. et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood 127, 473–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dutra, F. F. et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc. Natl Aacad. Sci. USA 111, E4110–E4118 (2014).

    CAS  Google Scholar 

  113. Li, Q. et al. Heme induces IL-1β secretion through activating NLRP3 in kidney inflammation. Cell Biochem. Biophys. 69, 495–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Fortes, G. B. et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119, 2368–2375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Figueiredo, R. T. et al. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–20229 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Van Avondt, K. et al. Free iron in sera of patients with sickle cell disease contributes to the release of neutrophil extracellular traps. Blood 128, 161 (2016).

    Article  Google Scholar 

  117. Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 569, 236–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Avondt, K. & Hartl, D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur. J. Clin. Invest. 48, e12919 (2018).

    Article  PubMed  Google Scholar 

  119. Van Avondt, K., Maegdefessel, L. & Soehnlein, O. Therapeutic targeting of neutrophil extracellular traps in atherogenic inflammation. Thromb. Haemost. 119, 542–552 (2019).

    Article  PubMed  Google Scholar 

  120. Yang, H. et al. Globin attenuates the innate immune response to endotoxin. Shock 17, 485–490 (2002).

    Article  PubMed  Google Scholar 

  121. Fernandez, P. L. et al. Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J. Biol. Chem. 285, 32844–32851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, T. et al. Synergistic inflammation is induced by blood degradation products with microbial Toll-like receptor agonists and is blocked by hemopexin. J. Infect. Dis. 202, 624–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Lin, T. et al. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J. Immunol. 189, 2017–2022 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Wagener, F. A., Feldman, E., de Witte, T. & Abraham, N. G. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc. Soc. Exp. Biol. Med. 216, 456–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Frimat, M. et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122, 282–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Kolev, M., Le Friec, G. & Kemper, C. Complement-tapping into new sites and effector systems. Nat. Rev. Immunol. 14, 811–820 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I – molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Smith, R. J. et al. New approaches to the treatment of dense deposit disease. J. Am. Soc. Nephrol. 18, 2447–2456 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Zipfel, P. F., Smith, R. J. & Skerka, C. Factor I and factor H deficiency in renal diseases: similar defects in the fluid phase have a different outcome at the surface of the glomerular basement membrane. Nephrol. Dial. Transplant. 24, 385–387 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Thurman, J. M., Ljubanovic, D., Edelstein, C. L., Gilkeson, G. S. & Holers, V. M. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. J. Immunol. 170, 1517–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Danobeitia, J. S., Djamali, A. & Fernandez, L. A. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair 7, 16 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zou, L. et al. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. J. Immunol. 191, 5625–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Miwa, T., Sato, S., Gullipalli, D., Nangaku, M. & Song, W.-C. Blocking properdin, the alternative pathway, and anaphylatoxin receptors ameliorates renal ischemia-reperfusion injury in decay-accelerating factor and CD59 double-knockout mice. J. Immunol. 190, 3552–3559 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Sethi, S. et al. Glomeruli of dense deposit disease contain components of the alternative and terminal complement pathway. Kidney Int. 75, 952–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis — a new look at an old entity. New Engl. J. Med. 366, 1119–1131 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Gou, S.-J., Yuan, J., Chen, M., Yu, F. & Zhao, M.-H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody–associated vasculitis. Kidney Int. 83, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Vernon, K. A. & Cook, H. T. Complement in glomerular disease. Adv. Chronic Kidney Dis. 19, 84–92 (2012).

    Article  PubMed  Google Scholar 

  142. Lesher, A. M. et al. Combination of factor H mutation and properdin deficiency causes severe C3 glomerulonephritis. J. Am. Soc. Nephrol. 24, 53–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, Y. et al. Causes of alternative pathway dysregulation in dense deposit disease. Clin. J. Am. Soc. Nephrol. 7, 265–274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Saraf, S. L. et al. Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br. J. Haematol. 164, 729–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Pawluczkowycz, A. W., Lindorfer, M. A., Waitumbi, J. N. & Taylor, R. P. Hematin promotes complement alternative pathway-mediated deposition of C3 activation fragments on human erythrocytes: potential implications for the pathogenesis of anemia in malaria. J. Immunol. 179, 5543–5552 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Evans, K. J., Hansen, D. S., van Rooijen, N., Buckingham, L. A. & Schofield, L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 107, 1192–1199 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mold, C., Tamerius, J. D. & Phillips, G. Complement activation during painful crisis in sickle cell anemia. Clin. Immunol. Immunopathol. 76, 314–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Chudwin, D. S., Papierniak, C., Lint, T. F. & Korenblit, A. D. Activation of the alternative complement pathway by red blood cells from patients with sickle cell disease. Clin. Immunol. Immunopathol. 71, 199–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Chapin, J., Terry, H. S., Kleinert, D. & Laurence, J. The role of complement activation in thrombosis and hemolytic anemias. Transfus. Apher. Sci. 54, 191–198 (2016).

    Article  PubMed  Google Scholar 

  150. Wang, R. H., Phillips, G., Medof, M. E. & Mold, C. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J. Clin. Invest. 92, 1326–1335 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. de Ciutiis, A., Polley, M. J., Metakis, L. J. & Peterson, C. M. Immunologic defect of the alternate pathway-of-complement activation postsplenectomy: a possible relation between splenectomy and infection. J. Natl Med. Assoc. 70, 667–670 (1978).

    PubMed  PubMed Central  Google Scholar 

  152. Ruiz-Torres, M. P. et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb. Haemost. 93, 443–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Belcher, J. D., Marker, P. H., Weber, J. P., Hebbel, R. P. & Vercellotti, G. M. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 96, 2451–2459 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Deuel, J. W. et al. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Rad. Biol. Med. 89, 931–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Camus, S. M. et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 125, 3805–3814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Roumenina, L. T., Rayes, J., Frimat, M. & Fremeaux-Bacchi, V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol. Rev. 274, 307–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. van Bijnen, S. T., Wouters, D., van Mierlo, G. J., Muus, P. & Zeerleder, S. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab. J. Thromb. Haemost. 13, 2004–2011 (2015).

    Article  PubMed  CAS  Google Scholar 

  159. Zeerleder, S. et al. Administration of C1 inhibitor reduces neutrophil activation in patients with sepsis. Clin. Diagn. Lab. Immunol. 10, 529–535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Martines, A. M. F. et al. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 9, 385–398 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Nath, K. A. et al. Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1. Kidney Int. 59, 106–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. García-Camín, R. M. et al. Molecular mediators of favism-induced acute kidney injury. Clin. Nephrol. 81, 203–209 (2014).

    Article  PubMed  Google Scholar 

  163. Haase, M., Bellomo, R. & Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 55, 2024–2033 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Moreno, J. A. et al. AKI associated with macroscopic glomerular hematuria: clinical and pathophysiologic consequences. Clin. J. Am. Soc. Nephrol. 7, 175–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Vermeulen Windsant, I. C. et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front. Physiol. 5, 340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Vermeulen Windsant, I. C. et al. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 77, 913–920 (2010).

    Article  PubMed  Google Scholar 

  167. Tracz, M. J., Alam, J. & Nath, K. A. Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol. 18, 414–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Kanakiriya, S. K. R. et al. Heme: a novel inducer of MCP-1 through HO-dependent and HO-independent mechanisms. Am. J. Physiol. Renal Physiol. 284, F546–F554 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Nath, K. A. et al. Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am. J. Pathol. 158, 893–903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Qian, Q., Nath, K. A., Wu, Y., Daoud, T. M. & Sethi, S. Hemolysis and acute kidney failure. Am. J. Kidney Dis. 56, 780–784 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ballarín, J. et al. Acute renal failure associated to paroxysmal nocturnal haemoglobinuria leads to intratubular haemosiderin accumulation and CD163 expression. Nephrol. Dial. Transplant. 26, 3408–3411 (2011).

    Article  PubMed  CAS  Google Scholar 

  172. Billings, F. T., Ball, S. K., Roberts, L. J. & Pretorius, M. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic. Biol. Med. 50, 1480–1487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Murray, R. K., Connell, G. E. & Pert, J. H. The role of haptoglobin in the clearance and distribution of extracorpuscular hemoglobin. Blood 17, 45–53 (1961).

    Article  CAS  PubMed  Google Scholar 

  174. Andersen, M. N., Mouritzen, C. V. & Gabrielli, E. R. Mechanisms of plasma hemoglobin clearance after acute hemolysis in dogs: serum haptoglobin levels and selective deposition in liver and kidney. Ann. Surg. 164, 905–912 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Eshbach, M. L., Kaur, A., Rbaibi, Y., Tejero, J. & Weisz, O. A. Hemoglobin inhibits albumin uptake by proximal tubule cells: implications for sickle cell disease. Am. J. Physiol. Cell Physiol. 312, C733–C740 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gburek, J. et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J. Am. Soc. Nephrol. 13, 423–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Nath, K. A. et al. Intracellular targets in heme protein-induced renal injury. Kidney Int. 53, 100–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Gonzalez-Michaca, L., Farrugia, G., Croatt, A. J., Alam, J. & Nath, K. A. Heme: a determinant of life and death in renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 286, F370–F377 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Shiraishi, F. et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 278, F726–F736 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Homsi, E., Janino, P. & de Faria, J. B. L. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 69, 1385–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Singla, S. et al. Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. Am. J. Respir. Cell Mol. Biol. 57, 307–314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sarhan, M., von Mässenhausen, A., Hugo, C., Oberbauer, R. & Linkermann, A. Immunological consequences of kidney cell death. Cell Death Dis. 9, 114 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Fervenza, F. C. et al. Induction of heme oxygenase-1 and ferritin in the kidney in warm antibody hemolytic anemia. Am. J. Kidney Dis. 52, 972–977 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Bolisetty, S. et al. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int. 88, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zarjou, A. et al. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Invest. 123, 4423–4434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Braughler, J. M., Duncan, L. A. & Chase, R. L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J. Biol. Chem. 261, 10282–10289 (1986).

    Article  CAS  PubMed  Google Scholar 

  187. Walter, P. B. et al. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc. Natl Aacad. Sci. U S A 99, 2264–2269 (2002).

    Article  CAS  Google Scholar 

  188. Baliga, R., Ueda, N. & Shah, S. V. Increase in bleomycin-detectable iron in ischaemia/reperfusion injury to rat kidneys. Biochem. J. 291, 901–905 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Haase, M., Haase-Fielitz, A. & Bellomo, R. Cardiopulmonary bypass, hemolysis, free iron, acute kidney injury and the impact of bicarbonate. Contrib. Nephrol. 165, 28–32 (2010).

    Article  PubMed  Google Scholar 

  190. Paller, M. S. Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am. J. Physiol. 255, F539–F544 (1988).

    CAS  PubMed  Google Scholar 

  191. Leaf, D. E. et al. Increased plasma catalytic iron in patients may mediate acute kidney injury and death following cardiac surgery. Kidney Int. 87, 1046–1054 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Leaf, D. E., Rajapurkar, M., Lele, S. S., Mukhopadhyay, B. & Waikar, S. S. Plasma catalytic iron, AKI, and death among critically ill patients. Clin. J. Am. Soc. Nephrol. 9, 1849–1856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Linkermann, A. et al. Regulated cell death in AKI. J. Am. Soc. Nephrol. 25, 2689–2701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Adedoyin, O. et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 314, F702–F714 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Müller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Deuel, J. W. et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis. 7, e2064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Kroot, J. J. C., Tjalsma, H., Fleming, R. E. & Swinkels, D. W. Hepcidin in human iron disorders: diagnostic implications. Clin. Chem. 57, 1650–1669 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Amer, J., Goldfarb, A. & Fibach, E. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytometry Part A 60A, 73–80 (2004).

    Article  Google Scholar 

  201. Chiou, S.-S. et al. Lipid peroxidation and antioxidative status in β-thalassemia major patients with or without hepatitis C virus infection. Clin. Chem. Lab. Med. 44, 1226–1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Livrea, M. A. et al. Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood 88, 3608–3614 (1996).

    Article  CAS  PubMed  Google Scholar 

  203. Walter, P. B. et al. Oxidative stress and inflammation in iron-overloaded patients with β-thalassaemia or sickle cell disease. Br. J. Haematol. 135, 254–263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wolff, N. A. et al. Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J. Cell. Mol. Med. 15, 209–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Leonardi, P. & Ruol, A. Renal hemosiderosis in the hemolytic anemias: diagnosis by means of needle biopsy. Blood 16, 1029–1038 (1960).

    Article  CAS  PubMed  Google Scholar 

  206. Kurts, C., Panzer, U., Anders, H.-J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Betjes, M. G. H. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Hato, T. & Dagher, P. C. How the innate immune system senses trouble and causes trouble. Clin. J. Am. Soc. Nephrol. 10, 1459–1469 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Kimmel, P. L. et al. Immunologic function and survival in hemodialysis patients. Kidney Int. 54, 236–244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pereira, B. J. et al. Plasma levels of IL-1β, TNFα and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 45, 890–896 (1994).

    Article  CAS  PubMed  Google Scholar 

  211. Herbelin, A., Ureña, P., Nguyen, A. T., Zingraff, J. & Descamps-Latscha, B. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int. 39, 954–960 (1991).

    Article  CAS  PubMed  Google Scholar 

  212. Nakanishi, I. et al. Interleukin-8 in chronic renal failure and dialysis patients. Nephrol. Dial. Transplant. 9, 1435–1442 (1994).

    CAS  PubMed  Google Scholar 

  213. Brockhaus, M., Bar-Khayim, Y., Gurwicz, S., Frensdorff, A. & Haran, N. Plasma tumor necrosis factor soluble receptors in chronic renal failure. Kidney Int. 42, 663–667 (1992).

    Article  CAS  PubMed  Google Scholar 

  214. Descamps-Latscha, B. et al. Balance between IL-1β, TNF-α, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J. Immunol. 154, 882–892 (1995).

    CAS  PubMed  Google Scholar 

  215. van Riemsdijk-van Overbeeke, I. C. et al. TNF-α: mRNA, plasma protein levels and soluble receptors in patients on chronic hemodialysis, on CAPD and with end-stage renal failure. Clin. Nephrol. 53, 115–123 (2000).

    PubMed  Google Scholar 

  216. Memoli, B. et al. Role of different dialysis membranes in the release of interleukin-6-soluble receptor in uremic patients. Kidney Int. 58, 417–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  217. Bemelmans, M. H., Gouma, D. J. & Buurman, W. A. Influence of nephrectomy on tumor necrosis factor clearance in a murine model. J. Immunol. 150, 2007–2017 (1993).

    CAS  PubMed  Google Scholar 

  218. Poole, S. et al. Fate of injected interleukin 1 in rats: sequestration and degradation in the kidney. Cytokine 2, 416–422 (1990).

    Article  CAS  PubMed  Google Scholar 

  219. Nath, K. A., Croatt, A. J., Haggard, J. J. & Grande, J. P. Renal response to repetitive exposure to heme proteins: chronic injury induced by an acute insult. Kidney Int. 57, 2423–2433 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Nath, K. A. Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues. Kidney Int. 70, 432–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Morimoto, K. et al. Cytoprotective role of heme oxygenase (HO)-1 in human kidney with various renal diseases. Kidney Int. 60, 1858–1866 (2001).

    Article  CAS  PubMed  Google Scholar 

  222. Shahzad, K. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Martin-Rodriguez, S. et al. TLR4 and NALP3 inflammasome in the development of endothelial dysfunction in uraemia. Eur. J. Clin. Invest. 45, 160–169 (2015).

    Article  PubMed  CAS  Google Scholar 

  224. Erdei, J. et al. Induction of NLRP3 inflammasome activation by heme in human endothelial cells. Oxid. Med. Cell. Longev. 2018, 4310816 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Billings, F. T., Yu, C., Byrne, J. G., Petracek, M. R. & Pretorius, M. Heme oxygenase-1 and acute kidney injury following cardiac surgery. Cardiorenal. Med. 4, 12–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Merle, N. S. et al. Characterization of renal injury and inflammation in an experimental model of intravascular hemolysis. Front. Immunol. 9, 179 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Lim, Y. K. et al. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis. Kidney Int. 58, 1033–1044 (2000).

    Article  CAS  PubMed  Google Scholar 

  228. Herter, J. M., Rossaint, J., Spieker, T. & Zarbock, A. Adhesion molecules involved in neutrophil recruitment during sepsis-induced acute kidney injury. J. Innate Immun. 6, 597–606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Singbartl, K., Green, S. A. & Ley, K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 14, 48–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  230. Kelly, K. J., Williams, W. W., Colvin, R. B. & Bonventre, J. V. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc. Natl Acad. Sci. U S A 91, 812–816 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Takada, M., Nadeau, K. C., Shaw, G. D. & Tilney, N. L. Early cellular and molecular changes in ischemia/reperfusion injury: Inhibition by a selectin antagonist, P-selectin glycoprotein ligand-1. Transplant. Proc. 29, 1324–1325 (1997).

    Article  CAS  PubMed  Google Scholar 

  232. Nath, K. A. et al. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins. Am. J. Physiol. Renal Physiol. 314, F906–F914 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. De Paepe, M. E. & Trudel, M. The transgenic SAD mouse: a model of human sickle cell glomerulopathy. Kidney Int. 46, 1337–1345 (1994).

    Article  PubMed  Google Scholar 

  234. Strauss, J., Pardo, V., Koss, M. N., Griswold, W. & McIntosh, R. M. Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. I. Studies on nature of glomerular-bound antibody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis. Am. J. Med. 58, 382–387 (1975).

    Article  CAS  PubMed  Google Scholar 

  235. Pardo, V., Strauss, J., Kramer, H., Ozawa, T. & McIntosh, R. M. Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. II. Clinicopathologic study of seven patients. Am. J. Med. 59, 650–659 (1975).

    Article  CAS  PubMed  Google Scholar 

  236. Roumenina, L. T. et al. A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood 119, 4182–4191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Merle, N. S. et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 3, 96910 (2018).

    Article  PubMed  Google Scholar 

  238. Thorenz, A. et al. Enhanced activation of interleukin-10, heme oxygenase-1, and AKT in C5aR2-deficient mice is associated with protection from ischemia reperfusion injury–induced inflammation and fibrosis. Kidney Int. 94, 741–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Gueler, F. et al. Complement 5a receptor inhibition improves renal allograft survival. J. Am. Soc. Nephrol. 19, 2302–2312 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Lerolle, N. et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intens. Care Med. 36, 471–478 (2010).

    Article  Google Scholar 

  241. Solez, K., Morel-Maroger, L. & Sraer, J. D. The morphology of ‘acute tubular necrosis’ in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine 58, 362–376 (1979).

    Article  CAS  PubMed  Google Scholar 

  242. Ramesh, G. & Reeves, W. B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ramesh, G. & Reeves, W. B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 285, F610–F618 (2003).

    Article  CAS  PubMed  Google Scholar 

  244. Faubel, S. et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1β, IL-18, IL-6, and neutrophil infiltration in the kidney. J. Pharmacol. Exp. Ther. 322, 8–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  245. Kelly, K. J., Meehan, S. M., Colvin, R. B., Williams, W. W. & Bonventre, J. V. Protection from toxicant-mediated renal injury in the rat with anti-CD54 antibody. Kidney Int. 56, 922–931 (1999).

    Article  CAS  PubMed  Google Scholar 

  246. Porto, B. N. et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem. 282, 24430–24436 (2007).

    Article  CAS  PubMed  Google Scholar 

  247. Monteiro, A. P. T. et al. Leukotriene B4 mediates neutrophil migration induced by heme. J. Immunol. 186, 6562–6567 (2011).

    Article  CAS  PubMed  Google Scholar 

  248. Kelly, K. J. et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J. Clin. Invest. 97, 1056–1063 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Li, L. et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Jang, H. R. & Rabb, H. The innate immune response in ischemic acute kidney injury. Clin. Immunol. 130, 41–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Li, L. & Okusa, M. D. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. Nat. Rev. Nephrol. 2, 432–444 (2006).

    Article  CAS  Google Scholar 

  252. Okusa, M. D. et al. A2A adenosine receptor-mediated inhibition of renal injury and neutrophil adhesion. Am. J. Physiol. Renal Physiol. 279, F809–F818 (2000).

    Article  CAS  PubMed  Google Scholar 

  253. Lauriat, S. & Linas, S. L. The role of neutrophils in acute renal failure. Semin. Nephrol. 18, 498–504 (1998).

    CAS  PubMed  Google Scholar 

  254. Yago, T. et al. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury. J. Exper. Med. 212, 1267–1281 (2015).

    Article  CAS  Google Scholar 

  255. Melnikov, V. Y. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J. Clin. Invest. 110, 1083–1091 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Thornton, M. A., Winn, R., Alpers, C. E. & Zager, R. A. An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am. J. Pathol. 135, 509–515 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Awad, A. S. et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int. 75, 689–698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Takeda, J. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703–711 (1993).

    Article  CAS  PubMed  Google Scholar 

  259. Bessler, M. et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J. 13, 110–117 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Holguin, M. H., Fredrick, L. R., Bernshaw, N. J., Wilcox, L. A. & Parker, C. J. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J. Clin. Invest. 84, 7–17 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hill, A., DeZern, A. E., Kinoshita, T. & Brodsky, R. A. Paroxysmal nocturnal haemoglobinuria. Nat. Rev. Dis. Primers 3, 17028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Moyo, V. M., Mukhina, G. L., Garrett, E. S. & Brodsky, R. A. Natural history of paroxysmal nocturnal haemoglobinuria using modern diagnostic assays. Br. J. Haematol. 126, 133–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  263. Parker, C. et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 106, 3699–3709 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hill, A., Kelly, R. J. & Hillmen, P. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood 121, 4985–4996 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Clark, D. A., Butler, S. A., Braren, V., Hartmann, R. C. & Jenkins, D. J. The kidneys in paroxysmal nocturnal hemoglobinuria. Blood 57, 83–89 (1981).

    Article  CAS  PubMed  Google Scholar 

  266. Rubin, H. Paroxysmal nocturnal hemoglobinuria with renal failure. JAMA 215, 433–436 (1971).

    Article  CAS  PubMed  Google Scholar 

  267. Roumenina, L. T. et al. Alternative complement pathway assessment in patients with atypical HUS. J. Immunol. Methods 365, 8–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  268. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  269. Platt, O. S. et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330, 1639–1644 (1994).

    Article  CAS  PubMed  Google Scholar 

  270. Powars, D. R. et al. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann. Intern. Med. 115, 614–620 (1991).

    Article  CAS  PubMed  Google Scholar 

  271. Darbari, D. S. et al. Severe painful vaso-occlusive crises and mortality in a contemporary adult sickle cell anemia cohort study. PLOS ONE 8, e79923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nath, K. A. & Hebbel, R. P. Sickle cell disease: renal manifestations and mechanisms. Nat. Rev. Nephrol. 11, 161–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Guasch, A., Navarrete, J., Nass, K. & Zayas, C. F. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J. Am. Soc. Nephrol. 17, 2228–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  274. Day, T. G., Drasar, E. R., Fulford, T., Sharpe, C. C. & Thein, S. L. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica 97, 201–205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Tejani, A. et al. Renal lesions in sickle cell nephropathy in children. Nephron 39, 352–355 (1985).

    Article  CAS  PubMed  Google Scholar 

  276. Bhathena, D. B. & Sondheimer, J. H. The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J. Am. Soc. Nephrol. 1, 1241–1252 (1991).

    Article  CAS  PubMed  Google Scholar 

  277. Elfenbein, I. B., Patchefsky, A., Schwartz, W. & Weinstein, A. G. Pathology of the glomerulus in sickle cell anemia with and without nephrotic syndrome. Am. J. Pathol. 77, 357–374 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Falk, R. J. et al. Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N. Engl. J. Med. 326, 910–915 (1992).

    Article  CAS  PubMed  Google Scholar 

  279. Maigne, G. et al. Glomerular lesions in patients with sickle cell disease. Medicine 89, 18–27 (2010).

    Article  PubMed  Google Scholar 

  280. Saraf, S. L. et al. Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models. Transl Res. 197, 1–11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Nath, K. A. et al. Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury. Am. J. Pathol. 166, 963–972 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Green, C. J. et al. The importance of iron, calcium and free radicals in reperfusion injury: an overview of studies in ischaemic rabbit kidneys. Free Radic. Res. Commun. 7, 255–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  283. Kirschner, R. E. & Fantini, G. A. Role of iron and oxygen-derived free radicals in ischemia-reperfusion injury. J. Am. Coll. Surg. 179, 103–117 (1994).

    CAS  PubMed  Google Scholar 

  284. Schaid, T. R. et al. Complement activation in a murine model of sickle cell disease: inhibition of vaso-occlusion by blocking C5 activation. Blood 128, 158 (2016).

    Article  Google Scholar 

  285. Dumas, G. et al. Eculizumab salvage therapy for delayed hemolysis transfusion reaction in sickle cell disease patients. Blood 127, 1062–1064 (2016).

    Article  CAS  PubMed  Google Scholar 

  286. Schein, A., Enriquez, C., Coates, T. D. & Wood, J. C. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J. Magnet. Res. Imaging 28, 698–704 (2008).

    Article  Google Scholar 

  287. Chonat, S. et al. Contribution of alternative complement pathway to delayed hemolytic transfusion reaction in sickle cell disease. Haematologica 103, e483–e485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  289. Gramaglia, I. et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat. Med. 12, 1417–1422 (2006).

    Article  CAS  PubMed  Google Scholar 

  290. Ferreira, A., Balla, J., Jeney, V., Balla, G. & Soares, M. P. A central role for free heme in the pathogenesis of severe malaria: the missing link? J. Mol. Med. 86, 1097–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  291. Seixas, E. et al. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc. Natl Acad. Sci. USA 106, 15837–15842 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Pamplona, A. et al. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat. Med. 13, 703–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  293. Plewes, K. et al. Cell-free hemoglobin mediated oxidative stress is associated with acute kidney injury and renal replacement therapy in severe falciparum malaria: an observational study. BMC Infect. Dis. 17, 313 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Elphinstone, R. E. et al. Alterations in systemic extracellular heme and hemopexin are associated with adverse clinical outcomes in ugandan children with severe malaria. J. Infect. Dis. 214, 1268–1275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Tran, T. H. et al. Blackwater fever in southern Vietnam: a prospective descriptive study of 50 cases. Clin. Infect. Dis. 23, 1274–1281 (1996).

    Article  CAS  PubMed  Google Scholar 

  296. Sypniewska, P. et al. Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis. BMC Med. 15, 147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Ramos, S. et al. Renal control of disease tolerance to malaria. Proc. Natl Acad. Sci. U S A 116, 5681–5686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Charache, S. et al. Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood 79, 2555–2565 (1992).

    Article  CAS  PubMed  Google Scholar 

  299. Charache, S. et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. New Engl. J. Med. 332, 1317–1322 (1995).

    Article  CAS  PubMed  Google Scholar 

  300. Wang, W. C. et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377, 1663–1672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Ware, R. E. et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet 387, 661–670 (2016).

    Article  CAS  PubMed  Google Scholar 

  302. Voskaridou, E. et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood 115, 2354–2363 (2010).

    Article  CAS  PubMed  Google Scholar 

  303. Bartolucci, P. et al. Six months of hydroxyurea reduces albuminuria in patients with sickle cell disease. J. Am. Soc. Nephrol. 27, 1847–1853 (2016).

    Article  CAS  PubMed  Google Scholar 

  304. Oksenberg, D. et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175, 141–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  305. Lehrer-Graiwer, J. et al. GBT440, a potent anti-sickling hemoglobin modifier reduces hemolysis, improves anemia and nearly eliminates sickle cells in peripheral blood of patients with sickle cell disease. Blood 126, 542–542 (2015).

    Article  Google Scholar 

  306. Howard, J. et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood 133, 1865–1878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03036813 (2019).

  308. Vichinsky, E. et al. Results from part a of the hemoglobin oxygen affinity modulation to inhibit hbs polymerization (HOPE) trial (GBT440-031), a placebo-controlled randomized study evaluating voxelotor (GBT440) in adults and adolescents with sickle cell disease. Blood 132, 505–505 (2018).

    Article  Google Scholar 

  309. Blyden, G., Bridges, K. R. & Bronte, L. Case series of patients with severe sickle cell disease treated with voxelotor (GBT440) by compassionate access. Am. J. Hematol. https://doi.org/10.1002/ajh.25139 (2018).

    Article  Google Scholar 

  310. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  311. Ingoglia, G. et al. Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress. Free Radic. Biol. Med. 108, 452–464 (2017).

    Article  CAS  PubMed  Google Scholar 

  312. Graw, J. A. et al. Haptoglobin or hemopexin therapy prevents acute adverse effects of resuscitation after prolonged storage of red cells. Circulation 134, 945–960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Gando, S. & Tedo, I. The effects of massive transfusion and haptoglobin therapy on hemolysis in trauma patients. Surg. Today 24, 785–790 (1994).

    Article  CAS  PubMed  Google Scholar 

  314. Kanamori, Y. et al. The effects of administration of haptoglobin for hemolysis by extracorporeal circulation. Rinsho Kyobu Geka 9, 463–467 (1989).

    CAS  PubMed  Google Scholar 

  315. Imaizumi, H., Tsunoda, K., Ichimiya, N., Okamoto, T. & Namiki, A. Repeated large-dose haptoglobin therapy in an extensively burned patient: case report. J. Emerg. Med. 12, 33–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  316. Yoshioka, T., Sugimoto, T., Ukai, T. & Oshiro, T. Haptoglobin therapy for possible prevention of renal failure following thermal injury: a clinical study. J. Trauma 25, 281–287 (1985).

    Article  CAS  PubMed  Google Scholar 

  317. Hashimoto, K., Nomura, K., Nakano, M., Sasaki, T. & Kurosawa, H. Pharmacological intervention for renal protection during cardiopulmonary bypass. Heart Vessels 8, 203–210 (1993).

    Article  CAS  PubMed  Google Scholar 

  318. Tanaka, K. et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans 37, M482–M483 (1991).

    CAS  PubMed  Google Scholar 

  319. Homann, B., Kult, J. & Weis, K. H. On the use of concentrated haptoglobin in the treatment of a haemolytic transfusion accident of the ABO-system (author’s transl). Anaesthesist 26, 485–488 (1977).

    CAS  PubMed  Google Scholar 

  320. Horai, T., Tanaka, K. & Takeda, M. Coronary artery bypass grafting under cardiopulmonary bypass in a patient with β-thalassemia: report of a case. Surg. Today 36, 538–540 (2006).

    Article  PubMed  Google Scholar 

  321. van Swelm, R. P. L. et al. Renal handling of circulating and renal-synthesized hepcidin and its protective effects against hemoglobin–mediated kidney injury. J. Am. Soc. Nephrol. 27, 2720–2732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Haase-Fielitz, A. et al. Urine hepcidin has additive value in ruling out cardiopulmonary bypass-associated acute kidney injury: an observational cohort study. Crit. Care 15, R186 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Ho, J. et al. Urinary hepcidin-25 and risk of acute kidney injury following cardiopulmonary bypass. Clin. J. Am. Soc. Nephrol. 6, 2340–2346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Prowle, J. R. et al. Greater increase in urinary hepcidin predicts protection from acute kidney injury after cardiopulmonary bypass. Nephrol. Dial. Transplant 27, 595–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  325. Scindia, Y. et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J. Am. Soc. Nephrol. 26, 2800–2814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Young, G.-H. et al. Hemojuvelin modulates iron stress during acute kidney injury: improved by furin inhibitor. Antioxid. Redox Signal. 20, 1181–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Hsieh, Y.-P., Huang, C.-H., Lee, C.-Y., Lin, C.-Y. & Chang, C.-C. Silencing of hepcidin enforces the apoptosis in iron-induced human cardiomyocytes. J. Occup. Med. Toxicol. 9, 11 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Farnaud, S., Patel, A. & Evans, R. W. Modelling of a metal-containing hepcidin. Biometals 19, 527–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  329. Farnaud, S. et al. Identification of an iron–hepcidin complex. Biochem. J. 413, 553–557 (2008).

    Article  CAS  PubMed  Google Scholar 

  330. Gerardi, G. et al. Recombinant human hepcidin expressed in Escherichia coli isolates as an iron containing protein. Blood Cells Mol. Dis. 35, 177–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  331. Roberts, L. J. Inhibition of heme protein redox cycling: reduction of ferryl heme by iron chelators and the role of a novel through-protein electron transfer pathway. Free Radic. Biol. Med. 44, 257–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  332. Sheikh, N. A., Desai, T. R. & Tirgar, P. R. Investigation into iron chelating and antioxidant potential of melilotus officinalis in iron dextran induced iron overloaded Sprague–Dawley rat model. Drug Res. 66, 618–627 (2016).

    Article  CAS  Google Scholar 

  333. Coates, T. D. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic. Biol. Med. 72, 23–40 (2014).

    Article  CAS  Google Scholar 

  334. Sánchez-González, P. D., López-Hernandez, F. J., Morales, A. I., Macías-Nuñez, J. F. & López-Novoa, J. M. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol. Lett. 203, 154–161 (2011).

    Article  PubMed  CAS  Google Scholar 

  335. Groebler, L. K., Liu, J., Shanu, A., Codd, R. & Witting, P. K. Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria. Biochem. J. 435, 669–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  336. Piga, A. G. et al. Deferasirox effect on renal haemodynamic parameters in patients with transfusion-dependent β thalassaemia. Br. J. Haematol. 168, 882–890 (2015).

    Article  CAS  PubMed  Google Scholar 

  337. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01905774 (2015).

  338. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00560820 (2016).

  339. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01459718 (2015).

  340. Ware, K. et al. N-acetylcysteine ameliorates acute kidney injury but not glomerular hemorrhage in an animal model of warfarin-related nephropathy. Am. J. Physiol. Renal Physiol. 304, F1421–F1427 (2013).

    Article  CAS  PubMed  Google Scholar 

  341. Zager, R. A. & Gamelin, L. M. Pathogenetic mechanisms in experimental hemoglobinuric acute renal failure. Am. J. Physiol. 256, F446–F455 (1989).

    CAS  PubMed  Google Scholar 

  342. Zager, R. A. Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab. Invest. 60, 619–629 (1989).

    CAS  PubMed  Google Scholar 

  343. Boutaud, O. & Roberts, L. J. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure. Free Radic. Biol. Med. 51, 1062–1067 (2011).

    Article  CAS  PubMed  Google Scholar 

  344. Huerta-Alardín, A. L., Varon, J. & Marik, P. E. Bench-to-bedside review: rhabdomyolysis – an overview for clinicians. Crit. Care 9, 158 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Groebler, L. K. et al. Cosupplementation with a synthetic, lipid-soluble polyphenol and vitamin C inhibits oxidative damage and improves vascular function yet does not inhibit acute renal injury in an animal model of rhabdomyolysis. Free Radic. Biol. Med. 52, 1918–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  346. Singh, D., Chander, V. & Chopra, K. Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology 201, 143–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  347. Rodrigo, R., Bosco, C., Herrera, P. & Rivera, G. Amelioration of myoglobinuric renal damage in rats by chronic exposure to flavonol-rich red wine. Nephrol. Dial. Transplant. 19, 2237–2244 (2004).

    Article  CAS  PubMed  Google Scholar 

  348. Chander, V., Singh, D. & Chopra, K. Reversal of experimental myoglobinuric acute renal failure in rats by quercetin, a bioflavonoid. Phramacology 73, 49–56 (2005).

    CAS  Google Scholar 

  349. Avramovic, V., Vlahovic, P., Mihailovic, D. & Stefanovic, V. Protective effect of a bioflavonoid proanthocyanidin-BP1 in glycerol-induced acute renal failure in the rat: renal stereological study. Ren. Fail. 21, 627–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  350. Aydogdu, N. et al. Protective effects of L-carnitine on myoglobinuric acute renal failure in rats. Clin. Exper. Pharmacol. Physiol. 33, 119–124 (2006).

    Article  CAS  Google Scholar 

  351. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Korkmaz, B., Horwitz, M. S., Jenne, D. E. & Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 62, 726–759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Li, G. et al. The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats. Int. J. Mol. Med. 38, 767–775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Huber-Lang, M. et al. Double blockade of CD14 and complement C5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice. J. Immunol. 192, 5324–5331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Romay-Penabad, Z. et al. Complement C5-inhibitor rEV576 (coversin) ameliorates in-vivo effects of antiphospholipid antibodies. Lupus 23, 1324–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  356. Weston-Davies, W. H. et al. Clinical and immunological characterisation of coversin, a novel small protein inhibitor of complement C5 with potential as a therapeutic agent in PNH and other complement mediated disorders. Blood 124, 4280 (2014).

    Article  Google Scholar 

  357. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02591862?term=coversin&rank=3 (2018).

  358. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03427060 (2019).

  359. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03829449 (2019).

  360. Kutlar, A. et al. A potent oral P-selectin blocking agent improves microcirculatory blood flow and a marker of endothelial cell injury in patients with sickle cell disease. Am. J. Hematol. 87, 536–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  361. Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  362. Schmidt, C. Q. et al. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. J. Immunol. 190, 5712–5721 (2013).

    Google Scholar 

  363. Jäger, U. et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease: a first-in-human trial. Blood 133, 893–901 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Graça-Souza, A. V., Arruda, M. A. B., de Freitas, M. S., Barja-Fidalgo, C. & Oliveira, P. L. Neutrophil activation by heme: implications for inflammatory processes. Blood 99, 4160–4165 (2002).

    Article  PubMed  Google Scholar 

  365. Colotta, F., Re, F., Polentarutti, N., Sozzani, S. & Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80, 2012–2020 (1992).

    Article  CAS  PubMed  Google Scholar 

  366. Lee, A., Whyte, M. K. B. & Haslett, C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J. Leukocyte Biol. 54, 283–288 (1993).

    Article  CAS  PubMed  Google Scholar 

  367. Hébert, M. J., Takano, T., Holthöfer, H. & Brady, H. R. Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J. Immunol. 157, 3105–3115 (1996).

    PubMed  Google Scholar 

  368. Kettritz, R. et al. Interleukin-8 delays spontaneous and tumor necrosis factor-α-mediated apoptosis of human neutrophils. Kidney Int. 53, 84–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  369. Akgul, C., Moulding, D. A. & Edwards, S. W. Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  370. Maianski, N. A. et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Diff. 11, 143–153 (2004).

    Article  CAS  Google Scholar 

  371. Klein, J. B. et al. Role of extracellular signal-regulated kinase and phosphatidylinositol-3 kinase in chemoattractant and LPS delay of constitutive neutrophil apoptosis. Cell. Signal. 13, 335–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  372. Klein, J. B. et al. Granulocyte-macrophage colony-stimulating factor delays neutrophil constitutive apoptosis through phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways. J. Immunol. 164, 4286–4291 (2000).

    Article  CAS  PubMed  Google Scholar 

  373. Arruda, M. A., Rossi, A. G., de Freitas, M. S., Barja-Fidalgo, C. & Graça-Souza, A. V. Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-κB. J. Immunol. 173, 2023–2030 (2004).

    Article  CAS  PubMed  Google Scholar 

  374. Berends, E. T. M., Kuipers, A., Ravesloot, M. M., Urbanus, R. T. & Rooijakkers, S. H. M. Bacteria under stress by complement and coagulation. FEMS Microbiol. Rev. 38, 1146–1171 (2014).

    Article  CAS  PubMed  Google Scholar 

  375. Joiner, K. A., Brown, E. J. & Frank, M. M. Complement and bacteria: chemistry and biology in host defense. Annu. Rev. Immunol. 2, 461–491 (1984).

    Article  CAS  PubMed  Google Scholar 

  376. Sayegh, E. T., Bloch, O. & Parsa, A. T. Complement anaphylatoxins as immune regulators in cancer. Cancer Med. 3, 747–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Klos, A. et al. The role of the anaphylatoxins in health and disease. Mol. Immunol. 46, 2753–2766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Ehrengruber, M. U., Geiser, T. & Deranleau, D. A. Activation of human neutrophils by C3a and C5A. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FEBS Lett. 346, 181–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  379. Elsner, J., Oppermann, M., Czech, W. & Kapp, A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood 83, 3324–3331 (1994).

    Article  CAS  PubMed  Google Scholar 

  380. Yuen, J. et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front. Immunol. 7, 137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  381. Camous, L. et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 117, 1340–1349 (2011).

    Article  CAS  PubMed  Google Scholar 

  382. Martinelli, S. et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J. Biol. Chem. 279, 44123–44132 (2004).

    Article  CAS  PubMed  Google Scholar 

  383. Palmer, L. J., Damgaard, C., Holmstrup, P. & Nielsen, C. H. Influence of complement on neutrophil extracellular trap release induced by bacteria. J. Periodont. Res. 51, 70–76 (2016).

    Article  CAS  Google Scholar 

  384. Wang, H., Wang, C., Zhao, M.-H. & Chen, M. Neutrophil extracellular traps can activate alternative complement pathways. Clin. Exp. Immunol. 181, 518–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  386. Schneider, A. E., Sándor, N., Kárpáti, É. & Józsi, M. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps. Mol. Immunol. 72, 37–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  387. O’Flynn, J., Dixon, K. O., Faber Krol, M. C., Daha, M. R. & van Kooten, C. Myeloperoxidase directs properdin-mediated complement activation. J. Innate Immun. 6, 417–425 (2014).

    Article  PubMed  CAS  Google Scholar 

  388. Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 47, 446–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  389. Sponsel, H. T. et al. Effect of iron on renal tubular epithelial cells. Kidney Int. 50, 436–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  390. Zager, R. A., Johnson, A. C. M. & Becker, K. Renal cortical hemopexin accumulation in response to acute kidney injury. Am. J. Physiol. Renal Physiol. 303, F1460–F1472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Sears, D. A., Anderson, P. R., Foy, A. L., Williams, H. L. & Crosby, W. H. Urinary iron excretion and renal metabolism of hemoglobin in hemolytic diseases. Blood 28, 708–725 (1966).

    Article  CAS  PubMed  Google Scholar 

  392. Zager, R. A., Foerder, C. & Bredl, C. The influence of mannitol on myoglobinuric acute renal failure: functional, biochemical, and morphological assessments. J. Am. Soc. Nephrol. 2, 848–855 (1991).

    Article  CAS  PubMed  Google Scholar 

  393. Veuthey, T., D’Anna, M. C. & Roque, M. E. Role of the kidney in iron homeostasis: renal expression of prohepcidin, ferroportin, and DMT1 in anemic mice. Am. J. Physiol. Renal Physiol. 295, F1213–F1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  394. Zager, R. A., Vijayan, A. & Johnson, A. C. Proximal tubule haptoglobin gene activation is an integral component of the acute kidney injury “stress response”. Am. J. Physiol. Renal Physiol. 303, F139–F148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Hsiao, P.-J., Wang, S.-C., Wen, M.-C., Diang, L.-K. & Lin, S.-H. Fanconi syndrome and CKD in a patient with paroxysmal nocturnal hemoglobinuria and hemosiderosis. Am. J. Kidney Dis. 55, e1–e5 (2010).

    Article  PubMed  Google Scholar 

  396. Shah, S. V., Baliga, R., Rajapurkar, M. & Fonseca, V. A. Oxidants in chronic kidney disease. J. Am. Soc. Nephrol. 18, 16–28 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.V.A. researched data for and wrote the article. All authors discussed the article’s content and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Kristof Van Avondt or Sacha Zeerleder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Nephrology thanks G. Vercellotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Glossary

Sickle cell disease

(SCD). A β-globin disorder driven by haemoglobin S polymerization and characterized by recurrent vaso-occlusive episodes, the propensity of red blood cells to sickle and neutrophil recruitment. SCD alters renal function and causes various renal manifestations (sickle cell nephropathy).

Thalassaemias

Common inherited monogenic haemoglobin disorders, characterized by an imbalance in the ratio of α-globin to β-globin chains, chronic haemolytic anaemia, ineffective erythropoiesis, compensatory haematopoietic expansion, a state of hypercoagulability and iron overload.

Spherocytosis

Hereditary spherocytosis is a type of congenital haemolytic anaemia that results from genetic mutations in red blood cell membrane or cytoskeletal proteins involved in morphological stability and affects the ability of red blood cells to maintain their normal biconcave shape. The clinical manifestations vary based on the severity of disease and the type of mutation.

Paroxysmal nocturnal haemoglobinuria

(PNH). A clonal haematopoietic disease caused by expansion of a stem cell that harbours a somatic mutation in PIGA. Red blood cells that harbour the mutation are deficient in the complement regulator proteins CD55 and CD59, increasing their susceptibility to intravascular haemolysis due to a failure to regulate the alternative pathway of complement.

Autoimmune haemolytic anaemia

(AIHA). Caused by autoantibodies against red blood cells that can fix complement on the red blood cell surface and trigger haemolysis at excessive or uncompensated rates.

Thrombotic microangiopathies

(TMA). A diverse group of syndromes that can be hereditary or acquired, characterized by vascular damage and capillary thrombosis with typical abnormalities in the endothelium and vessel wall. Clinical features include microangiopathic haemolytic anaemia and a procoagulant state, with or without damage to the kidneys and other organs.

Haemolytic transfusion reaction

A clinical situation that involves transfusion-related ABO incompatibility with brisk complement-mediated lysis of red blood cells.

Chemically induced anaemia

A form of extracorpuscular haemolytic disorder caused by exposure to chemical substances. Haemolytic anaemia induced by chemical agents might be particularly detrimental for people with hereditable haemolytic disorders (e.g. G6PD deficiency) and for people with pre-existing anaemia.

Haemoglobin H disease

The most severe non-fatal form of α-thalassaemia, which occurs when only one normal α-globin gene has been inherited (compound heterozygosity). An insufficiency of α-globin chains results in inadequate formation of HbA (α2β2), resulting in an excess of β-globin chains, which become unstable and precipitate as HbH (β4), causing haemolysis.

Schizont

A stage of the Plasmodium spp. life cycle that occurs following infection of red blood cells with Plasmodium merozoites. The schizont contains 16–32 merozoites and occurs within 40–48 hours of infection. Red blood cell egress releases merozoites into the bloodstream, where the cycle recommences.

Haemoproteins

Proteins that contain a haem prosthetic group and are responsible for containing more than 80% of bioavailable iron in mammals. Based on the capacity of haem-iron to exchange electrons, haemoproteins play an essential role in a variety of vital cellular functions: the major haemoprotein pool in mammals is formed by haemoglobin in red blood cells and myoglobin in muscle cells. Another important compartment involves ubiquitously expressed cytochromes.

Fenton reaction

A reaction that involves the transition of haem-iron from a ferrous to ferric state, generating Hb-Fe3+ (methaemoglobin) and highly reactive hydroxyl radicals. The participation of iron in the production of free radicals via this reaction is potentially cytotoxic.

Favism

By far the most identifiable cause of acute haemolytic anaemia caused by glucose-6-phosphate dehydrogenase (G6PD) deficiency. Haemolysis of G6PD-deficient red blood cells (RBCs) arises because nicotinamide adenine dinucleotide phosphate (NADPH) generation is insufficient to provide antioxidant defence. Following exposure to highly reactive redox compounds released on ingestion of fava beans, G6PD-deficient RBCs cannot withstand the oxidative attack by fava bean glucosides, causing RBC destruction.

Haemin

Haemin can be generated by haem oxidation, and consists of a protoporphyrin IX ring surrounding a single coordinated ferric iron (Fe3+) moiety instead of Fe2+.

Ferritin

Multimeric complexes (~450 kDa) made of ferritin H (heavy) and ferritin L (light) chains. These heteropolymeric nanocage-like structures have ferroxidase activity that catalyses the conversion of Fe2+ into ferric Fe3+, allowing for intracellular storage and neutralization of inert ferric iron.

Ferroportin 1

A 62 kDa transmembrane iron transporter that exports ferrous iron from cells when it accumulates above a threshold level. It is regulated by the iron regulatory hormone hepcidin, which binds ferroportin and induces its internalization and degradation.

Haemosiderosis

Also known as iron storage disease, characterized by accelerated haemosiderin deposition at high cellular iron storage levels, causing an irreversible iron overload.

Infiltrating neutrophils

In the circulation, neutrophils patrol tissues and drive aggressive responses after exposure to danger signals (sterile or triggered by microorganisms). This is accomplished by swift transmigration into the damaged tissue, where infiltrating neutrophils release reactive chemicals and proteases.

Marginating neutrophils

Although intravascular, this pool of neutrophils remains reversibly but intimately associated with the endothelium, resisting the shearing forces of flowing blood.

Clonal haematopoiesis

Uncontrolled expansion and clonal selection of one or more haematopoietic stem cells results in clonal evolution, which can compete with and — as described for PNH —overcome normal haematopoiesis. Selection for specific clones is most likely related to certain somatic mutations at the stem cell level or to changes in the haematopoietic niche.

Haemosiderin

The non-ferritin constituent of iron stores, which accumulates as insoluble, aggregated deposits as the amount of cellular iron increases. It has no physiological role in iron metabolism but can sequester cellular iron waste.

Acute chest syndrome

A form of acute lung injury and the second most common cause of hospital admission in patients with sickle cell disease, in whom it is associated with high mortality. It is caused by a combination of infection, fat embolism and vaso-occlusion of the pulmonary vasculature with subsequent development of a new alveolar pulmonary infiltrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Avondt, K., Nur, E. & Zeerleder, S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 15, 671–692 (2019). https://doi.org/10.1038/s41581-019-0181-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0181-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing