Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fundamental limits to graphene plasmonics

Abstract

Plasmon polaritons are hybrid excitations of light and mobile electrons that can confine the energy of long-wavelength radiation at the nanoscale. Plasmon polaritons may enable many enigmatic quantum effects, including lasing1, topological protection2,3 and dipole-forbidden absorption4. A necessary condition for realizing such phenomena is a long plasmonic lifetime, which is notoriously difficult to achieve for highly confined modes5. Plasmon polaritons in graphene—hybrids of Dirac quasiparticles and infrared photons—provide a platform for exploring light–matter interaction at the nanoscale6,7. However, plasmonic dissipation in graphene is substantial8 and its fundamental limits remain undetermined. Here we use nanometre-scale infrared imaging to investigate propagating plasmon polaritons in high-mobility encapsulated graphene at cryogenic temperatures. In this regime, the propagation of plasmon polaritons is primarily restricted by the dielectric losses of the encapsulated layers, with a minor contribution from electron–phonon interactions. At liquid-nitrogen temperatures, the intrinsic plasmonic propagation length can exceed 10 micrometres, or 50 plasmonic wavelengths, thus setting a record for highly confined and tunable polariton modes. Our nanoscale imaging results reveal the physics of plasmonic dissipation and will be instrumental in mitigating such losses in heterostructure engineering applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanoscale infrared imaging of surface plasmons in Au/hBN/graphene/hBN encapsulated structures at cryogenic temperature.
Fig. 2: Temperature- and gate-dependent trends in surface plasmon propagation in graphene.
Fig. 3: Plasmonic and electronic transport in high-mobility graphene.

Similar content being viewed by others

References

  1. Lu, Y. J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Jin, D. et al. Infrared topological plasmons in graphene. Phys. Rev. Lett. 118, 245301 (2017); erratum 119, 019901 (2017).

    Article  ADS  PubMed  Google Scholar 

  3. Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  4. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljacic, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    Article  ADS  MathSciNet  PubMed  MATH  CAS  Google Scholar 

  5. Boltasseva, A. & Atwater, H. A. Low-loss plasmonics metamaterials. Science 331, 290–291 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Article  CAS  Google Scholar 

  12. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  14. Atkin, J. H., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    Article  ADS  CAS  Google Scholar 

  15. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article  ADS  CAS  Google Scholar 

  16. Alonso-Gonzalez, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  18. Principi, A. et al. Plasmon losses due to electron-phonon scattering: the case of graphene encapsulated in hexagonal Boron Nitride. Phys. Rev. B 90, 165408 (2014).

    Article  ADS  CAS  Google Scholar 

  19. Hwang, E. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Park, C. H. et al. Electron-phonon interactions and the intrinsic electrical resistivity of graphene. Nano Lett. 14, 1113–1119 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Sohier, T., Calandra, M. & Mauri, F. Density-functional calculation of static screening in two-dimensional materials: the long-wavelength dielectric function of graphene. Phys. Rev. B 91, 165428 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Sun, Z., Basov, D. N. & Fogler, M. M. Universal linear and nonlinear electrodynamics of a Dirac fluid. Proc. Natl Acad. Sci. USA 115, 3285–3289 (2018).

    Article  ADS  PubMed  MathSciNet  CAS  Google Scholar 

  23. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Kumar, R. K. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182 (2017).

    Article  CAS  Google Scholar 

  25. Phan, T. V., Song, J. C. W. & Levitov, L. S. Ballistic heat transfer and energy waves in an electron system. Preprint at https://arxiv.org/abs/1306.4972 (2013).

  26. Lundeberg, M. et al. Tuning quantum non-local effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Science 358, 1303–1306 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2014).

    Google Scholar 

  30. Sun, L. et al. Enhancement of plamonic performance in epitaxial silver at low temperature. Sci. Rep. 7, 8917 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chochol, J. et al. Plasmonic behavior of III–V semiconductor in far-infrared and terahertz range. J. Eur. Opt. Soc.-Rapid 13, 13 (2017).

    Article  Google Scholar 

  32. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Kuzmenko, A. B. RefFIT: software to fit optical spectra, v1.2.95.

  34. Waxenegger, J., Trügler, A. & Hohenester, U. Plasmonics simulations with the MNPBEM toolbox: consideration of substrates and layer structures. Comput. Phys. Commun. 193, 138–150 (2015).

    Article  ADS  CAS  Google Scholar 

  35. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Amorim, B. et al. Novel effects of strains in graphene and other two-dimensional materials. Phys. Rep. 617, 1–54 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Pietronero, L., Strässler, S., Zeller, H. R. & Rice, M. J. Electrical conductivity of a graphite layer. Phys. Rev. B 22, 904–910 (1980).

    Article  ADS  CAS  Google Scholar 

  38. Woods, L. M. & Mahan, G. D. Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes. Phys. Rev. B 61, 10651 (2000).

    Article  ADS  CAS  Google Scholar 

  39. von Oppen, F., Guinea, F. & Mariani, E. Synthetic electric fields and phonon damping in carbon nanotubes and graphene. Phys. Rev. B 80, 075420 (2009).

    Article  ADS  CAS  Google Scholar 

  40. Mariani, E. & von Oppen, F. Temperature-dependent resistivity of suspended graphene. Phys. Rev. B 82, 195403 (2010).

    Article  ADS  CAS  Google Scholar 

  41. Sohier, T. et al. Phonon-limited resistivity of graphene by first-principles calculations: electron–phonon interactions, strain-induced gauge field, and Boltzmann equation. Phys. Rev. B 90, 125414 (2014).

    Article  ADS  CAS  Google Scholar 

  42. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Basko, D. M. & Aleiner, I. L. Interplay of Coulomb and electron–phonon interactions in graphene. Phys. Rev. B 77, 041409 (2008).

    Article  ADS  CAS  Google Scholar 

  44. Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  45. Maslov, D. L. & Chubukov, A. V. Optical response of correleted electron systems. Rep. Prog. Phys. 80, 026503 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Sun, Z., Basov, D. N. & Fogler, M. M. Adiabatic amplification of plasmons and demons in 2D systems. Phys. Rev. Lett. 117, 076805 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Charnukha, A. Frenzel, R. Ribeiro-Palau and A. Sternbach for discussions. Research on Dirac quasiparticle dissipation in graphene was supported by DOE-BES DE-SC0018426. Plasmonic nanoscale imaging at cryogenic temperatures was supported by DOE-BES DE-SC0018218. Work on infrared nanoscale antennas and metasurfaces was supported by AFOSR FA9550-15-1-0478. The development of scanning plasmon interferometry was supported by ONR N00014-15-1-2671. Upgrades of the ultrahigh vacuum scanning probe system were supported by ARO grant W911nf-17-1-0543. D.N.B was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4533. J.H. acknowledges support from ONR N00014-13-1-0662.

Reviewer information

Nature thanks J. Song, A. Zayats and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.X.N. and A.S.M. performed the nanoscale infrared measurements and characterizations. Z.S., L.X., B.-Y.J. and M.M.F. provided theoretical calculations. L.W., J.H. and C.R.D. designed and created the device structures. G.X.N., L.X., K.W.P. and S.S.S. performed far-field optical spectroscopy measurements and characterizations. D.N.B. supervised the project. G.X.N., Z.S., M.M.F. and D.N.B. co-wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to D. N. Basov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 AFM topography and s(ω) image of the hBN/graphene/hBN encapsulated device.

a, AFM topography image. The black dashed line marks the physical edge of graphene. b, c, Room-temperature s(ω) images obtained at Vg = 0 V and Vg = 50 V, respectively. G, graphene.

Extended Data Fig. 2 Plasmonic fringes near a graphene edge at different temperatures.

a, Maps of the near-field amplitude s measured at several temperatures for fixed Vg = 75 V and ω = 886 cm−1. b, Line profiles obtained by averaging over the vertical coordinates in each map. The solid lines are the data and the dash-dotted lines are the simulations.

Extended Data Fig. 3 Gate dependence of plasmon propagation at cryogenic temperature.

a, Near-field amplitude s as a function of the gate voltage and the distance L from the Au launcher at a fixed frequency of ω = 886 cm−1. b, Illustration of the gate sweeping sequence. c, Line profiles (averaged over ~200 nm perpendicular to the propagation direction) of plasmonic interference fringes at different gate voltages.

Extended Data Fig. 4 Optical image of an hBN sample on a SiO2/Si substrate.

The dashed red square marks the approximate location of the region used in the reflectance measurements. The hBN thickness is 17 nm.

Extended Data Fig. 5 Reflectance spectra of the hBN/SiO2/Si structure at T=60–300 K.

af, The black points are the experimental data and the red dashed lines are the fits. The sharp resonance at 1,370 cm−1 is due to the in-plane optical phonon of hBN, and the broad peak at around 1,070 cm−1 is due to the optical phonon of SiO2.

Extended Data Fig. 6 The hBN in-plane phonon parameters versus the temperature.

a, The fitted phonon linewidth γ x . The squares are the data and the dashed line is a guide for the eye. b, The fitted frequency ωtx.

Extended Data Fig. 7 Plasmonic oscillations in the vicinity of the Au launching pads.

a, Illustration of the Au pad (gold, with the triangular mesh used in the simulation) on graphene (honeycomb lattice). The red arrow depicts the direction of the external field. The blue arrow symbolizes launched plasmons. Scale bar, 200 nm. b, An example of the simulated electric field distribution (Ez, imaginary part) just above the graphene layer. The grey rectangle represents the right half of the Au pad. The simulation parameters are λp = 170 nm and Q = 130. c, Comparison of the theoretical fit (blue) and the experimental data (red) for Vg = 75 V and T = 60 K. Both the theoretical and experimental traces are obtained by averaging multiple line cuts inside the 600-nm-wide strip indicated by the white dashed lines in b. The phase shift θ = 112° (see text) was used to align the oscillations.

Extended Data Fig. 8 Device structure and dielectric losses.

a, Schematic of the device, showing the notations for the permittivities and thicknesses of the layers. b, Nano-FTIR spectrum s(ω) obtained with the hBN crystal taken away from the sample edges. c, The contribution γenv of the dielectric environment to the plasmon linewidth as a function of temperature at a frequency of ω = 886 cm−1. The hBN c-axis damping constant is γ z (300 K) = 3.4 cm−1, which is consistent with previous results35.

Extended Data Fig. 9 Electron–phonon scattering processes.

Diagrams of the scattering processes included in equation (12). The wavy, straight and dashed lines represent photons, electrons and phonons, respectively.

Extended Data Fig. 10 Electron–phonon scattering rate as a function of temperature.

ac, Temperature dependence of the plasmonic scattering rate and of the d.c. scattering rate. Solid lines in a and b display the results of parameter-free modelling for electron–phonon scattering contributions (a) and electron–electron scattering contributions (b). Solid lines in c display the results of the sum in a and b, as discussed in the main text.

Extended Data Fig. 11 Plasmon damping rate due to electron–electron scattering as a function of temperature.

The blue solid curve is the plasmon damping rate γee due to electron–electron interactions, computed from equations (17) and (18) for a Fermi energy of \({\varepsilon }_{{\rm{F}}}\equiv \mu (T=0)=0.27\,{\rm{eV}}\). The red solid curve is the electron collision rate Γee from equation (16). The squares and circles are Γee values extracted from recent d.c. transport studies23,24 at a different carrier density, n ≈ 1012 cm−2.

Extended Data Table 1 Phonon oscillator parameters for SiO2
Extended Data Table 2 Phonon oscillator parameters for hBN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, G.X., McLeod, A.S., Sun, Z. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). https://doi.org/10.1038/s41586-018-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0136-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing