Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The (pro)renin receptor in health and disease

Abstract

The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin–angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid–base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.

Key points

  • The (pro)renin receptor ((P)RR) is a ubiquitously expressed, single-transmembrane receptor protein with a molecular mass of 39 kDa; the carboxy-terminal domain of the (P)RR binds to the vacuolar H+-ATPase (V-ATPase).

  • Ligands that bind to the (P)RR amino-terminal domain include renin, prorenin, partitioning defective homologue 3 (Par3), PDH E1 β-subunit (PDHB), LDL receptor-related protein 6 (LRP6), phosphatase of regenerating liver 1 (PRL1), actin binding LIM protein 2 (abLIM2), capping actin protein of muscle Z-line subunit-α2 (CAPZA2) and vertebrate homologue of flamingo (CELSR).

  • At least three enzymes — furin, ADAM19 and site 1 protease (S1P) — cleave off the amino-terminal domain of the (P)RR to produce soluble (P)RR.

  • In addition to angiotensin II generation, the (P)RR is involved in angiotensin-II-independent formation and function of the V-ATPase, Wnt signalling, the Par3 system, regulation of the tissue renin–angiotensin system (RAS) and tyrosine-phosphorylation-dependent signalling pathways.

  • Physiological functions of the (P)RR include roles in the cell cycle, autophagy, acid–base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure.

  • The (P)RR may participate in the pathogenesis of fibrosis, hypertension, pre-eclampsia, impaired glucose tolerance, diabetic microangiopathy, acute kidney injury, chronic kidney disease, cardiovascular disease, cancer, obesity and various other diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple functions of the (P)RR.
Fig. 2: The roles of the (P)RR and s(P)RR in renal physiology and disease.
Fig. 3: The role of the (P)RR in blood pressure regulation and the development of hypertension.
Fig. 4: Potential role of the (P)RR in hypertensive disorders of pregnancy.

Similar content being viewed by others

References

  1. Nguyen, G. et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J. Clin. Invest. 109, 1417–1427 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nabi, A. H. et al. Prorenin has high affinity multiple binding sites for (pro)renin receptor. Biochim. Biophys. Acta 1794, 1838–1847 (2009).

    CAS  PubMed  Google Scholar 

  3. Cousin, C. et al. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53, 1077–1082 (2009).

    CAS  PubMed  Google Scholar 

  4. Yoshikawa, A. et al. The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens. Res. 34, 599–605 (2011).

    CAS  PubMed  Google Scholar 

  5. Nakagawa, T. et al. Site-1 protease is required for the generation of soluble (pro)renin receptor. J. Biochem. 161, 369–379 (2017).

    CAS  PubMed  Google Scholar 

  6. Kanda, A. et al. Atp6ap2/(pro)renin receptor interacts with Par3 as a cell polarity determinant required for laminar formation during retinal development in mice. J. Neurosci. 33, 19341–19351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanda, A., Noda, K. & Ishida, S. ATP6AP2/(pro)renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 beta subunit. J. Biol. Chem. 290, 9690–9700 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    CAS  PubMed  Google Scholar 

  9. Kinouchi, K. et al. The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ. Res. 107, 30–34 (2010).

    CAS  PubMed  Google Scholar 

  10. Beyenbach, K. W. & Wieczorek, H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577–589 (2006).

    CAS  PubMed  Google Scholar 

  11. Sun-Wada, G. H. et al. The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J. Cell Sci. 119, 4531–4540 (2006).

    CAS  PubMed  Google Scholar 

  12. Trepiccione, F. et al. Renal Atp6ap2/(pro)renin receptor is required for normal vacuolar H+-ATPase function but not for the renin-angiotensin system. J. Am. Soc. Nephrol. 27, 3320–3330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ludwig, J. et al. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J. Biol. Chem. 273, 10939–10947 (1998).

    CAS  PubMed  Google Scholar 

  14. Kinouchi, K. et al. The role of individual domains and the significance of shedding of ATP6AP2/(pro)renin receptor in vacuolar H(+)-ATPase biogenesis. PLOS ONE 8, e78603 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Buechling, T. et al. Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor. Curr. Biol. 20, 1263–1268 (2010).

    CAS  PubMed  Google Scholar 

  16. Cruciat, C. M. et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327, 459–463 (2010).

    CAS  PubMed  Google Scholar 

  17. Hermle, T., Saltukoglu, D., Grunewald, J., Walz, G. & Simons, M. Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr. Biol. 20, 1269–1276 (2010).

    CAS  PubMed  Google Scholar 

  18. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    CAS  PubMed  Google Scholar 

  19. Schafer, S. T. et al. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J. Neurosci. 35, 4983–4998 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hermle, T., Guida, M. C., Beck, S., Helmstadter, S. & Simons, M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J. 32, 245–259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koike, C. et al. Function of atypical protein kinase C lambda in differentiating photoreceptors is required for proper lamination of mouse retina. J. Neurosci. 25, 10290–10298 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki, F. et al. Human prorenin has “gate and handle” regions for its non-proteolytic activation. J. Biol. Chem. 278, 22217–22222 (2003).

    CAS  PubMed  Google Scholar 

  23. Nurun, N. A. et al. Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor. Front. Biosci. 12, 4810–4817 (2007).

    PubMed  Google Scholar 

  24. Li, W., Peng, H., Seth, D. M. & Feng, Y. The prorenin and (pro)renin receptor: new players in the brain renin-angiotensin system? Int. J. Hypertens. 2012, 290635 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Sihn, G., Rousselle, A., Vilianovitch, L., Burckle, C. & Bader, M. Physiology of the (pro)renin receptor: Wnt of change? Kidney Int. 78, 246–256 (2010).

    CAS  PubMed  Google Scholar 

  26. Batenburg, W. W. et al. Renin- and prorenin-induced effects in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor: does (pro)renin-(pro)renin receptor interaction actually occur? Hypertension 58, 1111–1119 (2011).

    CAS  PubMed  Google Scholar 

  27. Feldt, S. et al. Prorenin and renin-induced extracellular signal regulated kinase 1/2 activation in monocytes is not blocked by aliskiren or the handle-region peptide. Hypertension 51, 682–688 (2008).

    CAS  PubMed  Google Scholar 

  28. Li, W. et al. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 65, 352–361 (2015).

    CAS  PubMed  Google Scholar 

  29. Wang, F. et al. Antidiuretic action of collecting duct (pro)renin receptor downstream of vasopressin and PGE2 receptor EP4. J. Am. Soc. Nephrol. 27, 3022–3034 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carney, E. F. Renin-angiotensin system: prorenin receptor: no role in the RAS? Nat. Rev. Nephrol. 12, 315 (2016).

    CAS  PubMed  Google Scholar 

  31. Sakoda, M. et al. (Pro)renin receptor-mediated activation of mitogen-activated protein kinases in human vascular smooth muscle cells. Hypertens. Res. 30, 1139–1146 (2007).

    CAS  PubMed  Google Scholar 

  32. Saris, J. J. et al. Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II. Hypertension 48, 564–571 (2006).

    CAS  PubMed  Google Scholar 

  33. Schefe, J. H. et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ. Res. 99, 1355–1366 (2006).

    CAS  PubMed  Google Scholar 

  34. Zaade, D. et al. Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses. PLOS ONE 8, e57674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Achard, V., Boullu-Ciocca, S., Desbriere, R., Nguyen, G. & Grino, M. Renin receptor expression in human adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R274–R282 (2007).

    CAS  PubMed  Google Scholar 

  36. Advani, A. et al. The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension 54, 261–269 (2009).

    CAS  PubMed  Google Scholar 

  37. Wanka, H. et al. (Pro)renin receptor (ATP6AP2) depletion arrests As4.1 cells in the G0/G1 phase thereby increasing formation of primary cilia. J. Cell. Mol. Med. 21, 1394–1410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bracke, A. et al. ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour. Brain Struct. Funct. 223, 2287–2302 (2018).

    CAS  PubMed  Google Scholar 

  39. Klionsky, D. J. & Emr, S. D. Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gustafsson, A. B. & Gottlieb, R. A. Autophagy in ischemic heart disease. Circ. Res. 104, 150–158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  42. Oshima, Y. et al. Prorenin receptor is essential for normal podocyte structure and function. J. Am. Soc. Nephrol. 22, 2203–2212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Riediger, F. et al. Prorenin receptor is essential for podocyte autophagy and survival. J. Am. Soc. Nephrol. 22, 2193–2202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurauchi-Mito, A. et al. Significant roles of the (pro)renin receptor in integrity of vascular smooth muscle cells. Hypertens. Res. 37, 830–835 (2014).

    CAS  PubMed  Google Scholar 

  45. Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, C. & Siragy, H. M. Autophagy upregulates (pro)renin receptor expression via reduction of P62/SQSTM1 and activation of ERK1/2 signaling pathway in podocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R58–R64 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Mizuguchi, Y., Yatabe, M., Morishima, N., Morimoto, S. & Ichihara, A. Buffering roles of (pro)renin receptor in starvation-induced autophagy of skeletal muscles. Physiol. Rep. 6, e13587 (2018).

    PubMed Central  Google Scholar 

  49. Rujano, M. A. et al. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J. Exp. Med. 214, 3707–3729 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cannata Serio, M., Rujano, M. A. & Simons, M. Mutations in ATP6AP2 cause autophagic liver disease in humans. Autophagy 14, 1088–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8, 124–136 (2006).

    CAS  PubMed  Google Scholar 

  52. Zima, V. et al. Prorenin receptor homologue VHA-20 is critical for intestinal pH regulation, ion and water management and larval development in C. elegans. Folia Biol. 61, 168–177 (2015).

    CAS  Google Scholar 

  53. Lu, X., Garrelds, I. M., Wagner, C. A., Danser, A. H. & Meima, M. E. (Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H(+)-ATPase activity in MDCK. C11 collecting duct cells. Am. J. Physiol. Renal Physiol. 305, F417–F425 (2013).

    CAS  PubMed  Google Scholar 

  54. Lu, X. et al. Identification of the (pro)renin receptor as a novel regulator of low-density lipoprotein metabolism. Circ. Res. 118, 222–229 (2016).

    CAS  PubMed  Google Scholar 

  55. Ren, L. et al. (Pro)renin receptor inhibition reprograms hepatic lipid metabolism and protects mice from diet-induced obesity and hepatosteatosis. Circ. Res. 122, 730–741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lundsgaard, A. M. et al. Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess. Diabetes 66, 2583–2595 (2017).

    CAS  PubMed  Google Scholar 

  57. Yang, K. T. et al. The soluble (pro) renin receptor does not influence lithium-induced diabetes insipidus but does provoke beiging of white adipose tissue in mice. Physiol. Rep. 5, e13410 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Nguyen, G. & Muller, D. N. The biology of the (pro)renin receptor. J. Am. Soc. Nephrol. 21, 18–23 (2010).

    CAS  PubMed  Google Scholar 

  59. Amsterdam, A. et al. Identification of 315 genes essential for early zebrafish development. Proc. Natl Acad. Sci. USA 101, 12792–12797 (2004).

    CAS  PubMed  Google Scholar 

  60. Contrepas, A. et al. A role of the (pro)renin receptor in neuronal cell differentiation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R250–R257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramser, J. et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum. Mol. Genet. 14, 1019–1027 (2005).

    CAS  PubMed  Google Scholar 

  62. Watanabe, N. et al. Association between soluble (Pro)renin receptor concentration in cord blood and small for gestational age birth: a cross-sectional study. PLOS ONE 8, e60036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Terada, T., Urushihara, M., Saijo, T., Nakagawa, R. & Kagami, S. (Pro)renin and (pro)renin receptor expression during kidney development in neonates. Eur. J. Pediatr. 176, 183–189 (2017).

    CAS  PubMed  Google Scholar 

  64. Song, R., Preston, G., Ichihara, A. & Yosypiv, I. V. Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLOS ONE 8, e63835 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, R., Kidd, L., Janssen, A. & Yosypiv, I. V. Conditional ablation of the prorenin receptor in nephron progenitor cells results in developmental programming of hypertension. Physiol. Rep. 6, e13644 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Kaneko, K. et al. Expression of (pro)renin receptor in human erythroid cell lines and its increased protein accumulation by interferon-gamma. Peptides 37, 285–289 (2012).

    CAS  PubMed  Google Scholar 

  67. Narumi, K. et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am. J. Physiol. Renal Physiol. 308, F487–F499 (2015).

    CAS  PubMed  Google Scholar 

  68. Jurewicz, M. et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J. Am. Soc. Nephrol. 18, 1093–1102 (2007).

    CAS  PubMed  Google Scholar 

  69. Geisberger, S. et al. New role for the (pro)renin receptor in T cell development. Blood 126, 504–507 (2015).

    CAS  PubMed  Google Scholar 

  70. Xu, Y., Banerjee, D., Huelsken, J., Birchmeier, W. & Sen, J. M. Deletion of beta-catenin impairs T cell development. Nat. Immunol. 4, 1177–1182 (2003).

    CAS  PubMed  Google Scholar 

  71. Carow, B., Gao, Y., Coquet, J., Reilly, M. & Rottenberg, M. E. lck-driven Cre expression alters T cell development in the thymus and the frequencies and functions of peripheral T cell subsets. J. Immunol. 197, 2261–2268 (2016).

    CAS  PubMed  Google Scholar 

  72. Shan, Z., Cuadra, A. E., Sumners, C. & Raizada, M. K. Characterization of a functional (pro)renin receptor in rat brain neurons. Exp. Physiol. 93, 701–708 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Takahashi, K. et al. Expression of (pro)renin receptor in the human brain and pituitary, and co-localisation with arginine vasopressin and oxytocin in the hypothalamus. J. Neuroendocrinol. 22, 453–459 (2010).

    CAS  PubMed  Google Scholar 

  74. Li, W. et al. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 59, 1188–1194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shan, Z. et al. Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ. Res. 107, 934–938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pitra, S. & Stern, J. E. A-type K(+) channels contribute to the prorenin increase of firing activity in hypothalamic vasopressin neurosecretory neurons. Am. J. Physiol. Heart Circ. Physiol. 313, H548–H557 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Noda, Y., Sohara, E., Ohta, E. & Sasaki, S. Aquaporins in kidney pathophysiology. Nat. Rev. Nephrol. 6, 168–178 (2010).

    CAS  PubMed  Google Scholar 

  78. Ramkumar, N. et al. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am. J. Physiol. Renal Physiol. 309, F48–F56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, F. et al. Prostaglandin E-prostanoid4 receptor mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Hypertension 64, 369–377 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu, X. et al. Soluble (pro)renin receptor via beta-catenin enhances urine concentration capability as a target of liver X receptor. Proc. Natl Acad. Sci. USA 113, E1898–E1906 (2016).

    CAS  PubMed  Google Scholar 

  81. Li, C. et al. Molecular mechanisms of angiotensin II stimulation on aquaporin-2 expression and trafficking. Am. J. Physiol. Renal Physiol. 300, F1255–F1261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, W. et al. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 63, 316–323 (2014).

    CAS  PubMed  Google Scholar 

  83. Zubcevic, J. et al. Nucleus of the solitary tract (pro)renin receptor-mediated antihypertensive effect involves nuclear factor-kappaB-cytokine signaling in the spontaneously hypertensive rat. Hypertension 61, 622–627 (2013).

    CAS  PubMed  Google Scholar 

  84. Cuadra, A. E., Shan, Z., Sumners, C. & Raizada, M. K. A current view of brain renin-angiotensin system: is the (pro)renin receptor the missing link? Pharmacol. Ther. 125, 27–38 (2010).

    CAS  PubMed  Google Scholar 

  85. Danser, A. H. The role of the (pro)renin receptor in hypertensive disease. Am. J. Hypertens. 28, 1187–1196 (2015).

    CAS  PubMed  Google Scholar 

  86. Uijl, E., Ren, L. & Danser, A. H. J. Angiotensin generation in the brain: a re-evaluation. Clin. Sci. 132, 839–850 (2018).

    CAS  PubMed  Google Scholar 

  87. Peng, H. et al. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells. PLOS ONE 8, e58339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Huber, M. J. et al. Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am. J. Physiol. Heart Circ. Physiol. 309, H880–H887 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Peng, H. et al. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am. J. Physiol. Heart Circ. Physiol. 314, H580–H592 (2018).

    PubMed  Google Scholar 

  90. Rong, R. et al. Expression of (pro)renin receptor and its upregulation by high salt intake in the rat nephron. Peptides 63, 156–162 (2015).

    CAS  PubMed  Google Scholar 

  91. Gonzalez, A. A. & Prieto, M. C. Renin and the (pro)renin receptor in the renal collecting duct: role in the pathogenesis of hypertension. Clin. Exp. Pharmacol. Physiol. 42, 14–21 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu, X. et al. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. Am. J. Physiol. Renal Physiol. 310, F1243–F1250 (2016).

    CAS  PubMed  Google Scholar 

  93. Ramkumar, N. et al. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am. J. Physiol. Renal Physiol. 311, F186–F194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Quadri, S. & Siragy, H. M. (Pro)renin receptor contributes to regulation of renal epithelial sodium channel. J. Hypertens. 34, 486–494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Peng, K. et al. Collecting duct (pro)renin receptor targets ENaC to mediate angiotensin II-induced hypertension. Am. J. Physiol. Renal Physiol. 312, F245–F253 (2017).

    CAS  PubMed  Google Scholar 

  96. Wang, F. et al. COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Am. J. Physiol. Renal Physiol. 307, F25–F32 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kaneshiro, Y. et al. Increased expression of cyclooxygenase-2 in the renal cortex of human prorenin receptor gene-transgenic rats. Kidney Int. 70, 641–646 (2006).

    CAS  PubMed  Google Scholar 

  98. Gonzalez, A. A., Luffman, C., Bourgeois, C. R., Vio, C. P. & Prieto, M. C. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (pro)renin receptor in rat renal inner medullary cells. Hypertension 61, 443–449 (2013).

    CAS  PubMed  Google Scholar 

  99. Quadri, S. & Siragy, H. M. Regulation of (pro)renin receptor expression in mIMCD via the GSK-3beta-NFAT5-SIRT-1 signaling pathway. Am. J. Physiol. Renal Physiol. 307, F593–F600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gonzalez, A. A., Womack, J. P., Liu, L., Seth, D. M. & Prieto, M. C. Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am. J. Med. Sci. 348, 416–422 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Riquier-Brison, A. D. M. et al. The macula densa prorenin receptor is essential in renin release and blood pressure control. Am. J. Physiol. Renal Physiol. 315, F521–F534 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sakoda, M. et al. Aliskiren inhibits intracellular angiotensin II levels without affecting (pro)renin receptor signals in human podocytes. Am. J. Hypertens. 23, 575–580 (2010).

    CAS  PubMed  Google Scholar 

  103. Yuan, H., Ren, Z. L., Hu, F. Q., Liang, W. & Ding, G. H. Renin induces apoptosis in podocytes through a receptor-mediated, angiotensin II-independent mechanism. Am. J. Med. Sci. 344, 441–446 (2012).

    PubMed  Google Scholar 

  104. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Peters, J. et al. Lack of cardiac fibrosis in a new model of high prorenin hyperaldosteronism. Am. J. Physiol. Heart Circ. Physiol. 297, H1845–H1852 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Peters, B. et al. Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: absence of prorenin-induced glomerulosclerosis. J. Hypertens. 26, 102–109 (2008).

    CAS  PubMed  Google Scholar 

  107. Mercure, C., Prescott, G., Lacombe, M.-J., Silversides, D. W. & Reudelhuber, T. L. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension 53, 1062–1069 (2009).

    CAS  PubMed  Google Scholar 

  108. He, M. et al. Inhibition of renin/prorenin receptor attenuated mesangial cell proliferation and reduced associated fibrotic factor release. Eur. J. Pharmacol. 606, 155–161 (2009).

    CAS  PubMed  Google Scholar 

  109. Kaneshiro, Y. et al. Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J. Am. Soc. Nephrol. 18, 1789–1795 (2007).

    CAS  PubMed  Google Scholar 

  110. Clavreul, N., Sansilvestri-Morel, P., Magard, D., Verbeuren, T. J. & Rupin, A. (Pro)renin promotes fibrosis gene expression in HEK cells through a Nox4-dependent mechanism. Am. J. Physiol. Renal Physiol. 300, F1310–F1318 (2011).

    CAS  PubMed  Google Scholar 

  111. Saito, S. et al. Indoxyl sulfate-induced activation of (pro)renin receptor is involved in expression of TGF-beta1 and alpha-smooth muscle actin in proximal tubular cells. Endocrinology 155, 1899–1907 (2014).

    PubMed  Google Scholar 

  112. Liu, Y. et al. Interaction between V-ATPase B2 and (pro) renin receptors in promoting the progression of renal tubulointerstitial fibrosis. Sci. Rep. 6, 25035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Miyazaki, N. et al. Expression of prorenin receptor in renal biopsies from patients with IgA nephropathy. Int. J. Clin. Exp. Pathol. 7, 7485–7496 (2014).

    PubMed  PubMed Central  Google Scholar 

  114. Rosendahl, A. et al. Increased expression of (pro)renin receptor does not cause hypertension or cardiac and renal fibrosis in mice. Lab. Invest. 94, 863–872 (2014).

    CAS  PubMed  Google Scholar 

  115. Schlondorff, D. Choosing the right mouse model for diabetic nephropathy. Kidney Int. 77, 749–750 (2010).

    PubMed  Google Scholar 

  116. Ichihara, A. et al. Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 47, 894–900 (2006).

    CAS  PubMed  Google Scholar 

  117. Zhang, J., Noble, N. A., Border, W. A., Owens, R. T. & Huang, Y. Receptor-dependent prorenin activation and induction of PAI-1 expression in vascular smooth muscle cells. Am. J. Physiol. Endocrinol. Metab. 295, E810–E819 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ishii, K. et al. Attenuation of lipopolysaccharide-induced acute lung injury after (pro)renin receptor blockade. Exp. Lung Res. 41, 199–207 (2015).

    CAS  PubMed  Google Scholar 

  119. Oba-Yabana, I. et al. Acidic organelles mediate TGF-beta1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells. Sci. Rep. 8, 2648 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Dong, Y., Kanda, A., Noda, K., Saito, W. & Ishida, S. Pathologic roles of receptor-associated prorenin system in idiopathic epiretinal membrane. Sci. Rep. 7, 44266 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Hirose, T. et al. Gene expression of (pro)renin receptor is upregulated in hearts and kidneys of rats with congestive heart failure. Peptides 30, 2316–2322 (2009).

    CAS  PubMed  Google Scholar 

  122. Ott, C. et al. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet. Genomics 21, 347–349 (2011).

    CAS  PubMed  Google Scholar 

  123. Fox, K. M. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 362, 782–788 (2003).

    CAS  PubMed  Google Scholar 

  124. Brugts, J. J. et al. A pharmacogenetic analysis of determinants of hypertension and blood pressure response to angiotensin-converting enzyme inhibitor therapy in patients with vascular disease and healthy individuals. J. Hypertens. 29, 509–519 (2011).

    CAS  PubMed  Google Scholar 

  125. Morimoto, S. et al. Serum soluble (pro)renin receptor levels in patients with essential hypertension. Hypertens. Res. 37, 642–648 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Burckle, C. A. et al. Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47, 552–556 (2006).

    CAS  PubMed  Google Scholar 

  127. Cooper, S. G. et al. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am. J. Physiol. Heart Circ. Physiol. 314, H796–H804 (2018).

    CAS  PubMed  Google Scholar 

  128. Li, W. et al. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R138–R147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Prieto, M. C. et al. Collecting duct prorenin receptor knockout reduces renal function, increases sodium excretion, and mitigates renal responses in ANG II-induced hypertensive mice. Am. J. Physiol. Renal Physiol. 313, F1243–F1253 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. Prieto, M. C. et al. Enhancement of renin and prorenin receptor in collecting duct of Cyp1a1-Ren2 rats may contribute to development and progression of malignant hypertension. Am. J. Physiol. Renal Physiol. 300, F581–F588 (2011).

    CAS  PubMed  Google Scholar 

  131. Gonzalez, A. A., Lara, L. S., Luffman, C., Seth, D. M. & Prieto, M. C. Soluble form of the (pro)renin receptor is augmented in the collecting duct and urine of chronic angiotensin II-dependent hypertensive rats. Hypertension 57, 859–864 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, F. et al. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med. 13, 278 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Gonzalez, A. A. et al. Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent hypertension. Am. J. Physiol. Renal Physiol. 307, F962–F970 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, L. et al. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J. Hypertens. 35, 1899–1908 (2017).

    CAS  PubMed  Google Scholar 

  135. Amin, M. S. et al. Enhanced expression of epithelial sodium channels in the renal medulla of Dahl S rats. Can. J. Physiol. Pharmacol. 89, 159–168 (2011).

    CAS  PubMed  Google Scholar 

  136. Xu, C. et al. Activation of renal (pro)renin receptor contributes to high fructose-induced salt sensitivity. Hypertension 69, 339–348 (2017).

    CAS  PubMed  Google Scholar 

  137. Nostramo, R. et al. Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R517–R529 (2015).

    CAS  PubMed  Google Scholar 

  138. Recarti, C. et al. Expression and functional role of the prorenin receptor in the human adrenocortical zona glomerulosa and in primary aldosteronism. J. Hypertens. 33, 1014–1022 (2015).

    CAS  PubMed  Google Scholar 

  139. Yamamoto, H. et al. Increased expression of (pro)renin receptor in aldosterone-producing adenomas. Peptides 49, 68–73 (2013).

    CAS  PubMed  Google Scholar 

  140. Jansen, P. M., Hofland, J., van den Meiracker, A. H., de Jong, F. H. & Danser, A. H. Renin and prorenin have no direct effect on aldosterone synthesis in the human adrenocortical cell lines H295R and HAC15. J. Renin Angiotensin Aldosterone Syst. 13, 360–366 (2012).

    CAS  PubMed  Google Scholar 

  141. Mizuguchi, Y. et al. Renoprotective effects of mineralocorticoid receptor blockade in heminephrectomized (pro)renin receptor transgenic rats. Clin. Exp. Pharmacol. Physiol. 37, 569–573 (2010).

    CAS  PubMed  Google Scholar 

  142. Bokuda, K. et al. Greater reductions in plasma aldosterone with aliskiren in hypertensive patients with higher soluble (pro)renin receptor level. Hypertens. Res. 41, 435–443 (2018).

    CAS  PubMed  Google Scholar 

  143. Narita, T. et al. Placental (pro)renin receptor expression and plasma soluble (pro)renin receptor levels in preeclampsia. Placenta 37, 72–78 (2016).

    PubMed  Google Scholar 

  144. Kurlak, L. O., Mistry, H. D., Cindrova-Davies, T., Burton, G. J. & Broughton Pipkin, F. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J. Physiol. 594, 1327–1340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Watanabe, N. et al. Soluble (pro)renin receptor and blood pressure during pregnancy: a prospective cohort study. Hypertension 60, 1250–1256 (2012).

    CAS  PubMed  Google Scholar 

  146. Mikami, Y. et al. Associations between the levels of soluble (pro)renin receptor in maternal and umbilical cord blood and hypertensive disorder of pregnancy. Placenta 57, 129–136 (2017).

    CAS  PubMed  Google Scholar 

  147. Watanabe, N. et al. Prediction of gestational diabetes mellitus by soluble (pro)renin receptor during the first trimester. J. Clin. Endocrinol. Metab. 98, 2528–2535 (2013).

    CAS  PubMed  Google Scholar 

  148. Gokulakrishnan, K. et al. Association of soluble (pro) renin receptor with gestational diabetes mellitus. Endocr. Pract. 21, 7–13 (2015).

    PubMed  Google Scholar 

  149. Bonakdaran, S., Azami, G., Tara, F. & Poorali, L. Soluble (pro) renin receptor is a predictor of gestational diabetes mellitus. Curr. Diabetes Rev. 13, 555–559 (2017).

    CAS  PubMed  Google Scholar 

  150. Sugulle, M. et al. Soluble (pro)renin receptor in preeclampsia and diabetic pregnancies. J. Am. Soc. Hypertens. 11, 644–652 (2017).

    CAS  PubMed  Google Scholar 

  151. Nagai, Y. et al. Possible contribution of the non-proteolytic activation of prorenin to the development of insulin resistance in fructose-fed rats. Exp. Physiol. 94, 1016–1023 (2009).

    CAS  PubMed  Google Scholar 

  152. Fukushima, A. et al. (Pro)renin receptor in skeletal muscle is involved in the development of insulin resistance associated with postinfarct heart failure in mice. Am. J. Physiol. Endocrinol. Metab. 307, E503–E514 (2014).

    CAS  PubMed  Google Scholar 

  153. Rafiq, K., Hitomi, H., Nakano, D., Ichihara, A. & Nishiyama, A. Possible involvement of the (pro)renin receptor-dependent system in the development of insulin resistance. Front. Biosci. 3, 1478–1485 (2011).

    Google Scholar 

  154. Wu, Y. X. et al. Different effect of handle region peptide on beta-cell function in different sexes of rats neonatally treated with sodium L-glutamate. Med. Sci. Monit. Bas. Res. 21, 33–40 (2015).

    Google Scholar 

  155. Yin, G. S. et al. Handle region peptide ameliorating insulin resistance but not beta cell functions in male rats neonatally treated with sodium L-glutamate. Int. J. Endocrinol. 2013, 493828 (2013).

    PubMed  PubMed Central  Google Scholar 

  156. Choi, Y. O. et al. Involvement of vesicular H+-ATPase in insulin-stimulated glucose transport in 3T3-F442A adipocytes. Endocr. J. 54, 733–743 (2007).

    CAS  PubMed  Google Scholar 

  157. Siragy, H. M. & Huang, J. Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity. Exp. Physiol. 93, 709–714 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Tojo, A., Kinugasa, S., Fujita, T. & Wilcox, C. S. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab. Syndr. Obes. 9, 1–10 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ichihara, A. et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J. Clin. Invest. 114, 1128–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Takahashi, H. et al. Regression of nephropathy developed in diabetes by (pro)renin receptor blockade. J. Am. Soc. Nephrol. 18, 2054–2061 (2007).

    CAS  PubMed  Google Scholar 

  161. Ichihara, A., Sakoda, M., Kurauchi-Mito, A., Nishiyama, A. & Itoh, H. Involvement of receptor-bound prorenin in development of nephropathy in diabetic db/db mice. J. Am. Soc. Hypertens. 2, 332–340 (2008).

    PubMed  Google Scholar 

  162. Ichihara, A. et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J. Am. Soc. Nephrol. 17, 1950–1961 (2006).

    CAS  PubMed  Google Scholar 

  163. Matavelli, L. C., Huang, J. & Siragy, H. M. (Pro)renin receptor contributes to diabetic nephropathy by enhancing renal inflammation. Clin. Exp. Pharmacol. Physiol. 37, 277–282 (2010).

    CAS  PubMed  Google Scholar 

  164. Huang, J., Matavelli, L. C. & Siragy, H. M. Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-beta1-connective tissue growth factor signalling cascade. Clin. Exp. Pharmacol. Physiol. 38, 215–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang, J. & Siragy, H. M. Glucose promotes the production of interleukine-1beta and cyclooxygenase-2 in mesangial cells via enhanced (pro)renin receptor expression. Endocrinology 150, 5557–5565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheng, H., Fan, X., Moeckel, G. W. & Harris, R. C. Podocyte COX-2 exacerbates diabetic nephropathy by increasing podocyte (pro)renin receptor expression. J. Am. Soc. Nephrol. 22, 1240–1251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, C. & Siragy, H. M. High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-beta-catenin-snail signaling pathway. PLOS ONE 9, e89233 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Li, C. & Siragy, H. M. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am. J. Physiol. Endocrinol. Metab. 309, E302–E310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Muller, D. N. et al. (Pro)renin receptor peptide inhibitor “handle-region” peptide does not affect hypertensive nephrosclerosis in Goldblatt rats. Hypertension 51, 676–681 (2008).

    CAS  PubMed  Google Scholar 

  170. Feldt, S., Maschke, U., Dechend, R., Luft, F. C. & Muller, D. N. The putative (pro)renin receptor blocker HRP fails to prevent (pro)renin signaling. J. Am. Soc. Nephrol. 19, 743–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Batenburg, W. W. et al. The (pro)renin receptor blocker handle region peptide upregulates endothelium-derived contractile factors in aliskiren-treated diabetic transgenic (mREN2)27 rats. J. Hypertens. 31, 292–302 (2013).

    CAS  PubMed  Google Scholar 

  172. te Riet, L. et al. Deterioration of kidney function by the (pro)renin receptor blocker handle region peptide in aliskiren-treated diabetic transgenic (mRen2)27 rats. Am. J. Physiol. Renal Physiol. 306, F1179–F1189 (2014).

    Google Scholar 

  173. Leckie, B. J. & Bottrill, A. R. A specific binding site for the prorenin propart peptide Arg10-Arg20 does not occur on human endothelial cells. J. Renin Angiotensin Aldosterone Syst. 12, 36–41 (2011).

    CAS  PubMed  Google Scholar 

  174. Peters, J. The (pro)renin receptor and its interaction partners. Pflugers Arch. 469, 1245–1256 (2017).

    CAS  PubMed  Google Scholar 

  175. Kokeny, G. et al. The effect of combined treatment with the (pro)renin receptor blocker HRP and quinapril in type 1 diabetic rats. Kidney Blood Press. Res. 42, 109–122 (2017).

    PubMed  Google Scholar 

  176. Zhang, L. et al. Inhibition of (pro)renin receptor contributes to renoprotective effects of angiotensin II type 1 receptor blockade in diabetic nephropathy. Front. Physiol. 8, 758 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Satofuka, S. et al. (Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation. Diabetes 58, 1625–1633 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Batenburg, W. W. et al. Combined renin inhibition/(pro)renin receptor blockade in diabetic retinopathy—a study in transgenic (mREN2)27 rats. PLOS ONE 9, e100954 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Haque, R., Hur, E. H., Farrell, A. N., Iuvone, P. M. & Howell, J. C. MicroRNA-152 represses VEGF and TGFbeta1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells. Mol. Vis. 21, 224–235 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hase, K., Kanda, A., Hirose, I., Noda, K. & Ishida, S. Systemic factors related to soluble (pro)renin receptor in plasma of patients with proliferative diabetic retinopathy. PLOS ONE 12, e0189696 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Haque, R. et al. Prorenin receptor (PRR)-mediated NADPH oxidase (Nox) signaling regulates VEGF synthesis under hyperglycemic condition in ARPE-19 cells. J. Recept. Signal Transduct. Res. 37, 560–568 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Melnyk, R. A., Tam, J., Boie, Y., Kennedy, B. P. & Percival, M. D. Renin and prorenin activate pathways implicated in organ damage in human mesangial cells independent of angiotensin II production. Am. J. Nephrol. 30, 232–243 (2009).

    CAS  PubMed  Google Scholar 

  183. Su, J. et al. NF-kappaB-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. Am. J. Physiol. Cell Physiol. 313, C612–C620 (2017).

    PubMed  PubMed Central  Google Scholar 

  184. Gonzalez, A. A. et al. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin. Exp. Pharmacol. Physiol. 44, 1134–1144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Krebs, C. et al. Antihypertensive therapy upregulates renin and (pro)renin receptor in the clipped kidney of Goldblatt hypertensive rats. Kidney Int. 72, 725–730 (2007).

    CAS  PubMed  Google Scholar 

  186. Quadri, S. S., Culver, S. & Siragy, H. M. Prorenin receptor mediates inflammation in renal ischemia. Clin. Exp. Pharmacol. Physiol. 45, 133–139 (2018).

    CAS  PubMed  Google Scholar 

  187. Ono, M. et al. Role of intrarenal (pro)renin receptor in ischemic acute kidney injury in rats. Clin. Exp. Nephrol. 19, 185–196 (2015).

    CAS  PubMed  Google Scholar 

  188. Schulman, I. H. et al. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am. J. Nephrol. 32, 249–261 (2010).

    CAS  PubMed  Google Scholar 

  189. Fang, H. et al. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am. J. Physiol. Renal. Physiol. 315, F1759–F1768 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Hirose, T. et al. Increased expression of (pro)renin receptor in the remnant kidneys of 5/6 nephrectomized rats. Regul. Pept. 159, 93–99 (2010).

    CAS  PubMed  Google Scholar 

  191. Ichihara, A. et al. Contribution of nonproteolytically activated prorenin in glomeruli to hypertensive renal damage. J. Am. Soc. Nephrol. 17, 2495–2503 (2006).

    CAS  PubMed  Google Scholar 

  192. Ryuzaki, M. et al. Involvement of activated prorenin in the pathogenesis of slowly progressive nephropathy in the non-clipped kidney of two kidney, one-clip hypertension. Hypertens. Res. 34, 301–307 (2011).

    CAS  PubMed  Google Scholar 

  193. Huang, Y. et al. Enhanced intrarenal receptor-mediated prorenin activation in chronic progressive anti-thymocyte serum nephritis rats on high salt intake. Am. J. Physiol. Renal Physiol. 303, F130–F138 (2012).

    CAS  PubMed  Google Scholar 

  194. Zhang, J., Gu, C., Noble, N. A., Border, W. A. & Huang, Y. Combining angiotensin II blockade and renin receptor inhibition results in enhanced antifibrotic effect in experimental nephritis. Am. J. Physiol. Renal Physiol. 301, F723–F732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Li, Z. et al. (Pro)renin receptor is an amplifier of Wnt/beta-catenin signaling in kidney injury and fibrosis. J. Am. Soc. Nephrol. 28, 2393–2408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Saigusa, T. et al. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease. Physiol. Rep. 3, e12405 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Hamada, K. et al. Serum level of soluble (pro)renin receptor is modulated in chronic kidney disease. Clin. Exp. Nephrol. 17, 848–856 (2013).

    CAS  PubMed  Google Scholar 

  198. Ohashi, N. et al. Plasma soluble (pro)renin receptor reflects renal damage. PLOS ONE 11, e0156165 (2016).

    PubMed  PubMed Central  Google Scholar 

  199. Leung, J. C. et al. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells. Apoptosis 20, 907–920 (2015).

    CAS  PubMed  Google Scholar 

  200. Narumi, K. et al. (Pro)renin receptor is involved in mesangial fibrosis and matrix expansion. Sci. Rep. 8, 16 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    PubMed  Google Scholar 

  202. Jiang, F. et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat. Rev. Cardiol. 11, 413–426 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Connelly, K. A. et al. The cardiac (pro)renin receptor is primarily expressed in myocyte transverse tubules and is increased in experimental diabetic cardiomyopathy. J. Hypertens. 29, 1175–1184 (2011).

    CAS  PubMed  Google Scholar 

  204. Mahmud, H., Sillje, H. H., Cannon, M. V., van Gilst, W. H. & de Boer, R. A. Regulation of the (pro)renin-renin receptor in cardiac remodelling. J. Cell. Mol. Med. 16, 722–729 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, Y. et al. Inhibiting (pro)renin receptor-mediated p38 MAPK signaling decreases hypoxia/reoxygenation-induced apoptosis in H9c2 cells. Mol. Cell. Biochem. 403, 267–276 (2015).

    CAS  PubMed  Google Scholar 

  206. Ellmers, L. J., Rademaker, M. T., Charles, C. J., Yandle, T. G. & Richards, A. M. (Pro)renin receptor blockade ameliorates cardiac injury and remodeling and improves function after myocardial infarction. J. Card. Fail. 22, 64–72 (2016).

    CAS  PubMed  Google Scholar 

  207. Moilanen, A. M. et al. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function. PLOS ONE 7, e41404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hirose, T. et al. Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens. Res. 34, 530–535 (2011).

    CAS  PubMed  Google Scholar 

  209. Fukushima, A. et al. Increased plasma soluble (pro)renin receptor levels are correlated with renal dysfunction in patients with heart failure. Int. J. Cardiol. 168, 4313–4314 (2013).

    PubMed  Google Scholar 

  210. Gong, L. et al. Elevated plasma soluble (pro)renin receptor levels are associated with left ventricular remodeling and renal function in chronic heart faiure patients with reduced ejection fraction. Peptides 111, 152–157 (2018).

    PubMed  Google Scholar 

  211. Ribeiro, A. A. et al. (Pro)renin receptor expression in myocardial infarction in transgenic mice expressing rat tonin. Int. J. Biol. Macromol. 108, 817–825 (2018).

    CAS  PubMed  Google Scholar 

  212. Hayakawa, Y. et al. High salt intake damages the heart through activation of cardiac (pro) renin receptors even at an early stage of hypertension. PLOS ONE 10, e0120453 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Okamoto, C. et al. Excessively low salt diet damages the heart through activation of cardiac (pro) renin receptor, renin-angiotensin-aldosterone, and sympatho-adrenal systems in spontaneously hypertensive rats. PLOS ONE 12, e0189099 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Susic, D., Zhou, X., Frohlich, E. D., Lippton, H. & Knight, M. Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am. J. Physiol. Heart Circ. Physiol. 295, H1117–H1121 (2008).

    CAS  PubMed  Google Scholar 

  215. Rademaker, M. T. et al. Hemodynamic, hormonal, and renal effects of (pro)renin receptor blockade in experimental heart failure. Circ. Heart Fail. 5, 645–652 (2012).

    CAS  PubMed  Google Scholar 

  216. Lian, H. et al. Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice. Int. J. Cardiol. 184, 28–35 (2015).

    PubMed  Google Scholar 

  217. Mahmud, H. et al. Cardiac function and architecture are maintained in a model of cardiorestricted overexpression of the prorenin-renin receptor. PLOS ONE 9, e89929 (2014).

    PubMed  PubMed Central  Google Scholar 

  218. Liu, G. et al. Prorenin induces vascular smooth muscle cell proliferation and hypertrophy via epidermal growth factor receptor-mediated extracellular signal-regulated kinase and Akt activation pathway. J. Hypertens. 29, 696–705 (2011).

    CAS  PubMed  Google Scholar 

  219. Greco, C. M. et al. Chemotactic effect of prorenin on human aortic smooth muscle cells: a novel function of the (pro)renin receptor. Cardiovasc. Res. 95, 366–374 (2012).

    CAS  PubMed  Google Scholar 

  220. Cheng, Y. et al. Effect of oxidized low-density lipoprotein on the expression of the prorenin receptor in human aortic smooth muscle cells. Mol. Med. Rep. 11, 4341–4344 (2015).

    CAS  PubMed  Google Scholar 

  221. Takemitsu, T. et al. Association of (pro)renin receptor mRNA expression with angiotensin-converting enzyme mRNA expression in human artery. Am. J. Nephrol. 30, 361–370 (2009).

    CAS  PubMed  Google Scholar 

  222. Yisireyili, M. et al. Indoxyl sulfate-induced activation of (pro)renin receptor promotes cell proliferation and tissue factor expression in vascular smooth muscle cells. PLOS ONE 9, e109268 (2014).

    PubMed  PubMed Central  Google Scholar 

  223. Amari, Y., Morimoto, S., Nakajima, F., Ando, T. & Ichihara, A. Serum soluble (pro)renin receptor levels in maintenance hemodialysis patients. PLOS ONE 11, e0158068 (2016).

    PubMed  PubMed Central  Google Scholar 

  224. Stransky, L., Cotter, K. & Forgac, M. The function of V-ATPases in cancer. Physiol. Rev. 96, 1071–1091 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Pamarthy, S., Kulshrestha, A., Katara, G. K. & Beaman, K. D. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol. Cancer 17, 41 (2018).

    PubMed  PubMed Central  Google Scholar 

  226. Ohba, K. et al. Expression of (pro)renin receptor in breast cancers and its effect on cancercell proliferation. Biomed. Res. 35, 117–126 (2014).

    CAS  PubMed  Google Scholar 

  227. Ishizuka, E. T., Kanda, A., Kase, S., Noda, K. & Ishida, S. Involvement of the receptor-associated prorenin system in the pathogenesis of human conjunctival lymphoma. Invest. Ophthalmol. Vis. Sci. 56, 74–80 (2014).

    PubMed  Google Scholar 

  228. Shibayama, Y. et al. (Pro)renin receptor is crucial for Wnt/beta-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci. Rep. 5, 8854 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Bradshaw, A. R. et al. Glioblastoma multiforme cancer stem cells express components of the renin-angiotensin system. Front. Surg. 3, 51 (2016).

    PubMed  PubMed Central  Google Scholar 

  230. Featherston, T. et al. Cancer stem cells in moderately differentiated buccal mucosal squamous cell carcinoma express components of the renin-angiotensin system. Front. Surg. 3, 52 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. Delforce, S. J. et al. Expression of renin-angiotensin system (RAS) components in endometrial cancer. Endocr. Connect. 6, 9–19 (2017).

    CAS  PubMed  Google Scholar 

  232. Kouchi, M. et al. (Pro)renin receptor is crucial for glioma development via the Wnt/beta-catenin signaling pathway. J. Neurosurg. 127, 819–828 (2017).

    CAS  PubMed  Google Scholar 

  233. Kreienbring, K. et al. Predictive and prognostic value of sPRR in patients with primary epithelial ovarian cancer. Anal. Cell. Pathol. 2016, 6845213 (2016).

    Google Scholar 

  234. Tan, P. et al. Impact of the prorenin/renin receptor on the development of obesity and associated cardiometabolic risk factors. Obesity 22, 2201–2209 (2014).

    CAS  PubMed  Google Scholar 

  235. Achard, V., Tassistro, V., Boullu-Ciocca, S. & Grino, M. Expression and nutritional regulation of the (pro)renin receptor in rat visceral adipose tissue. J. Endocrinol. Invest. 34, 840–846 (2011).

    CAS  PubMed  Google Scholar 

  236. Tan, P. et al. Prorenin/renin receptor blockade promotes a healthy fat distribution in obese mice. Obesity 24, 1946–1954 (2016).

    CAS  PubMed  Google Scholar 

  237. Shamansurova, Z. et al. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight. Mol. Metab. 5, 959–969 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Wu, C. H. et al. Adipocyte (pro)renin-receptor deficiency induces lipodystrophy, liver steatosis and increases blood pressure in male mice. Hypertension 68, 213–219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  PubMed  Google Scholar 

  240. Ye, J., Gao, Z., Yin, J. & He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007).

    CAS  PubMed  Google Scholar 

  241. Seki, Y., Yatabe, M., Suda, C., Morimoto, S. & Ichihara, A. Elevated (pro)renin receptor expression contributes to maintaining aerobic metabolism in growth hormone deficiency. J. Endocr. Soc. 2, 252–265 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Nishijima, T., Tajima, K., Takahashi, K. & Sakurai, S. Elevated plasma levels of soluble (pro)renin receptor in patients with obstructive sleep apnea syndrome: association with polysomnographic parameters. Peptides 56, 14–21 (2014).

    CAS  PubMed  Google Scholar 

  243. Nishijima, T. et al. Elevated plasma levels of soluble (pro)renin receptor in patients with obstructive sleep apnea syndrome in parallel with the disease severity. Tohoku J. Exp. Med. 238, 325–338 (2016).

    CAS  PubMed  Google Scholar 

  244. Nishijima, T. et al. Decrease of plasma soluble (pro)renin receptor by bariatric surgery in patients with obstructive sleep apnea and morbid obesity. Metab. Syndr. Relat. Disord. 16, 174–182 (2018).

    CAS  PubMed  Google Scholar 

  245. Takahashi, K., Ohba, K., Tajima, K., Nishijima, T. & Sakurai, S. Soluble (pro)renin receptor and obstructive sleep apnea syndrome: oxidative stress in brain? Int. J. Mol. Sci. 18, 1313 (2017).

    PubMed Central  Google Scholar 

  246. Pitra, S., Feng, Y. & Stern, J. E. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol. Metab. 5, 858–868 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Hirano, Y. et al. (Pro)renin receptor blocker improves survival of rats with sepsis. J. Surg. Res. 186, 269–277 (2014).

    CAS  PubMed  Google Scholar 

  248. Siljee, S. et al. Expression of the components of the renin-angiotensin system in venous malformation. Front. Surg. 3, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Satofuka, S. et al. (Pro)renin receptor promotes choroidal neovascularization by activating its signal transduction and tissue renin-angiotensin system. Am. J. Pathol. 173, 1911–1918 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Alcazar, O., Cousins, S. W., Striker, G. E. & Marin-Castano, M. E. (Pro)renin receptor is expressed in human retinal pigment epithelium and participates in extracellular matrix remodeling. Exp. Eye Res. 89, 638–647 (2009).

    CAS  PubMed  Google Scholar 

  251. Wilkinson-Berka, J. L. et al. RILLKKMPSV influences the vasculature, neurons and glia, and (pro)renin receptor expression in the retina. Hypertension 55, 1454–1460 (2010).

    CAS  PubMed  Google Scholar 

  252. Schafer, S. T., Peters, J. & von Bohlen und Halbach, O. The (pro)renin receptor / ATP6ap2 is expressed in the murine hippocampus by adult and newly generated neurons. Restor. Neurol. Neurosci. 31, 225–231 (2013).

    CAS  PubMed  Google Scholar 

  253. Valenzuela, R. et al. Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J. Neuropathol. Exp. Neurol. 69, 1130–1142 (2010).

    CAS  PubMed  Google Scholar 

  254. Goldstein, B., Speth, R. C. & Trivedi, M. Renin-angiotensin system gene expression and neurodegenerative diseases. J. Renin Angiotensin Aldosterone Syst. 17, 1470320316666750 (2016).

    PubMed  PubMed Central  Google Scholar 

  255. Suzuki-Nakagawa, C. et al. Intracellular retention of the extracellular domain of the (pro)renin receptor in mammalian cells. Biosci. Biotechnol. Biochem. 78, 1187–1190 (2014).

    CAS  PubMed  Google Scholar 

  256. Fang, H. et al. (Pro)renin receptor mediates albumin-induced cellular responses: role of site-1 protease-derived soluble (pro)renin receptor in renal epithelial cells. Am. J. Physiol. Cell Physiol. 313, C632–C643 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Suzuki-Nakagawa, C. et al. Participation of the extracellular domain in (pro)renin receptor dimerization. Biochem. Biophys. Res. Commun. 444, 461–466 (2014).

    CAS  PubMed  Google Scholar 

  258. Shinde, S. R. & Maddika, S. Post translational modifications of Rab GTPases. Small GTPases 9, 49–56 (2018).

    CAS  PubMed  Google Scholar 

  259. Burckle, C. & Bader, M. Prorenin and its ancient receptor. Hypertension 48, 549–551 (2006).

    CAS  PubMed  Google Scholar 

  260. Maruyama, N., Segawa, T., Kinoshita, N. & Ichihara, A. Novel sandwich ELISA for detecting the human soluble (pro)renin receptor. Front. Biosci. 5, 583–590 (2013).

    Google Scholar 

  261. Huang, J. & Siragy, H. M. Regulation of (pro)renin receptor expression by glucose-induced mitogen-activated protein kinase, nuclear factor-kappaB, and activator protein-1 signaling pathways. Endocrinology 151, 3317–3325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Ferri, N., Greco, C. M., Maiocchi, G. & Corsini, A. Aliskiren reduces prorenin receptor expression and activity in cultured human aortic smooth muscle cells. J. Renin Angiotensin Aldosterone Syst. 12, 469–474 (2011).

    CAS  PubMed  Google Scholar 

  263. Matavelli, L. C., Huang, J. & Siragy, H. M. In vivo regulation of renal expression of (pro)renin receptor by a low-sodium diet. Am. J. Physiol. Renal Physiol. 303, F1652–F1657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Huang, J. & Siragy, H. M. Sodium depletion enhances renal expression of (pro)renin receptor via cyclic GMP-protein kinase G signaling pathway. Hypertension 59, 317–323 (2012).

    CAS  PubMed  Google Scholar 

  265. Lee, D. Y. et al. DJ-1 regulates the expression of renal (pro)renin receptor via reactive oxygen species-mediated epigenetic modification. Biochim. Biophys. Acta 1850, 426–434 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported in part by a Japan Society for the Promotion of Science (JSPS) KAKENHI grant (16H05316) to A.I. The authors thank C. Miki at Tokyo Women’s Medical University Department of Endocrinology and Hypertension for her clerical assistance.

Reviewer information

Nature Reviews Nephrology thanks S. Ito, T. Nakagawa, J. Peters and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.I. researched the data for the article. A.I. and M.S.Y. wrote the text and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Atsuhiro Ichihara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adherens junctions

Epithelial cell–cell junctions that are composed of cadherins and catenins; the cytoplasmic side of the junction complex is linked to the actin cytoskeleton.

Local tissue RAS

Angiotensin II generation and action in local tissues that operates separately from the circulating renin–angiotensin system (RAS).

Handle region

Prorenin prosegment that binds to the (pro)renin receptor ((P)RR). This binding induces a conformational change in prorenin that exposes its catalytic cleft and leads to its non-proteolytic activation.

A-type K+ channels

Transmembrane, rapidly inactivating voltage-gated potassium channels.

Vasopressin neurons

Hypothalamic neurons that produce vasopressin (also known as antidiuretic hormone (ADH) or arginine vasopressin (AVP)). These neurons release vasopressin from the posterior lobe of the pituitary gland.

Z-disc

A structure that defines the boundaries of a sarcomere, which is the contractile unit of the muscle cell. Thin filaments of actin attach to the Z-disc in muscle cells.

Dyad

A structure in cardiomyocytes that couples transverse tubules to the sarcoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichihara, A., Yatabe, M.S. The (pro)renin receptor in health and disease. Nat Rev Nephrol 15, 693–712 (2019). https://doi.org/10.1038/s41581-019-0160-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0160-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing