Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

Abstract

Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2,3,4,5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-angular-resolution image of the W43-MM1 cloud, revealing a rich population of cores.
Fig. 2: W43-MM1 CMFs challenging the relationship between the CMF and IMF.
Fig. 3: Mean estimated dust temperatures for cores.

Similar content being viewed by others

References

  1. Offner, S. S. R. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C, P. & Henning, Th.) 53–75 (Univ. Arizona Press, Tucson, 2014).

  2. Motte, F., André, P. & Neri, R. The initial conditions of star formation in the Rho Ophiuchi main cloud: wide-field millimeter continuum mapping. Astron. Astrophys. 336, 150–172 (1998).

    ADS  Google Scholar 

  3. Testi, L. & Sargent, A. I. Star formation in clusters: a survey of compact millimeter-wave sources in the Serpens Core. Astrophys. J. Lett. 508, L91–L94 (1998).

    Article  ADS  Google Scholar 

  4. Enoch, M. L. et al. The mass distribution and lifetime of prestellar cores in Perseus, Serpens, and Ophiuchus. Astrophys. J. 684, 1240–1259 (2008).

    Article  ADS  Google Scholar 

  5. Könyves, V. et al. A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey. Astron. Astrophys. 584, A91 (2015).

    Article  Google Scholar 

  6. Nguyen Luong, Q. et al. Low-velocity shocks traced by extended SiO emission along the W43 ridges: witnessing the formation of young massive clusters. Astrophys. J. 775, 88 (2013).

    Article  ADS  Google Scholar 

  7. Louvet, F. et al. The W43-MM1 mini-starburst ridge, a test for star formation efficiency models. Astron. Astrophys. 570, A15 (2014).

    Article  Google Scholar 

  8. Bastian, N., Covey, K. R. & Meyer, M. R. A universal stellar initial mass function? A critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).

    Article  ADS  Google Scholar 

  9. Kroupa, P. et al. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt, T. D. & Gilmore, G.) 115 (Springer, Dordrecht, 2013).

  10. Harayama, Y., Eisenhauer, F. & Martins, F. The initial mass function of the massive star-forming region NGC 3603 from near-infrared adaptive optics observations. Astrophys. J. 675, 1319–1342 (2008).

    Article  ADS  Google Scholar 

  11. Maia, F. F. S., Moraux, E. & Joncour, I. Young and embedded clusters in Cygnus-X: evidence for building up the initial mass function? Mon. Not. R. Astron. Soc. 458, 3027–3046 (2016).

    Article  ADS  Google Scholar 

  12. Motte, F., Bontemps, S. & Louvet, F. High-mass star and massive cluster formation in the Milky Way. Annu. Rev. Astron. Astrophys. https://doi.org/10.1146/annurev-astro-091916-055235 (2018).

  13. André, P. et al. From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt survey. Astron. Astrophys. 518, L102 (2010).

    Article  ADS  Google Scholar 

  14. Bontemps, S., Motte, F., Csengeri, T. & Schneider, N. Fragmentation and mass segregation in the massive dense cores of Cygnus X. Astron. Astrophys. 524, A18 (2010).

    Article  ADS  Google Scholar 

  15. Zhang, Q., Wang, K., Lu, X. & Jiménez-Serra, I. Fragmentation of molecular clumps and formation of a protocluster. Astrophys. J. 804, 141 (2015).

    Article  ADS  Google Scholar 

  16. Cheng, Y. et al. The core mass function in the massive protocluster G286.21+0.17 revealed by ALMA. Astrophys. J. 853, 160 (2018).

    Article  ADS  Google Scholar 

  17. Motte, F., Schilke, P. & Lis, D. C. From massive protostars to a giant H ii region: submillimeter imaging of the Galactic ministarburst W43. Astrophys. J. 582, 277–291 (2003).

    Article  ADS  Google Scholar 

  18. Nguyen Luong, Q. et al. W43: the closest molecular complex of the Galactic bar? Astron. Astrophys. 529, A41 (2011).

    Article  Google Scholar 

  19. Louvet, F. et al. Tracing extended low-velocity shocks through SiO emission. Case study of the W43-MM1 ridge. Astron. Astrophys. 595, A122 (2016).

    Article  Google Scholar 

  20. Men’shchikov, A. et al. A multi-scale, multi-wavelength source extraction method: getsources. Astron. Astrophys. 542, A81 (2012).

    Article  Google Scholar 

  21. Maíz Apellániz, J. & Úbeda, L. Numerical biases on initial mass function determinations created by binning. Astrophys. J. 629, 873–880 (2005).

    Article  ADS  Google Scholar 

  22. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    Article  ADS  Google Scholar 

  23. Marsh, K. A., Whitworth, A. P. & Lomax, O. Temperature as a third dimension in column-density mapping of dusty astrophysical structures associated with star formation. Mon. Not. R. Astron. Soc. 454, 4282–4292 (2015).

    Article  ADS  Google Scholar 

  24. Herpin, F. et al. The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra: high turbulence and accretion luminosity. Astron. Astrophys. 542, A76 (2012).

    Article  Google Scholar 

  25. Sridharan, T. K. et al. Hot core, outflows, and magnetic fields in W43-MM1 (G30.79 FIR 10). Astrophys. J. Lett. 783, L31 (2014).

    Article  ADS  Google Scholar 

  26. Motte, F. & André, P. The circumstellar environment of low-mass protostars: a millimeter continuum mapping survey. Astron. Astrophys. 365, 440–464 (2001).

    Article  ADS  Google Scholar 

  27. Hatchell, J. & Fuller, G. A. Star formation in Perseus. IV. Mass-dependent evolution of dense cores. Astron. Astrophys. 482, 855–863 (2008).

    Article  ADS  Google Scholar 

  28. Swift, J. J. & Williams, J. P. On the evolution of the dense core mass function. Astrophys. J. 679, 552–556 (2008).

    Article  ADS  Google Scholar 

  29. Csengeri, T. et al. The ATLASGAL survey: a catalog of dust condensations in the Galactic plane. Astron. Astrophys. 565, A75 (2014).

    Article  Google Scholar 

  30. Clark, P. C., Klessen, R. S. & Bonnell, I. A. Clump lifetimes and the initial mass function. Mon. Not. R. Astron. Soc. 379, 57–62 (2007).

    Article  ADS  Google Scholar 

  31. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) 376, 127 (Astronomical Society of the Pacific, 2007).

  32. Rau, U. & Cornwell, T. J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 532, A71 (2011).

    Article  ADS  Google Scholar 

  33. Hennemann, M. et al. The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astron. Astrophys. 543, L3 (2012).

    Article  ADS  Google Scholar 

  34. Men’shchikov, A. A multi-scale filament extraction method: getfilaments. Astron. Astrophys. 560, A63 (2013).

    Article  Google Scholar 

  35. Ossenkopf, V. & Henning, T. Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994).

    ADS  Google Scholar 

  36. Tigé, J. et al. The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS. Astron. Astrophys. 602, A77 (2017).

    Article  Google Scholar 

  37. Bracco, A. et al. Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA. Astron. Astrophys. 604, A52 (2017).

    Article  Google Scholar 

  38. Reid, M. A. & Wilson, C. D. High-mass star formation. III. The functional form of the submillimeter clump mass function. Astrophys. J. 650, 970–984 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper makes use of the following ALMA data: #2013.1.01365.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This project has received funding from the European Union’s Horizon 2020 research and innovation programme StarFormMapper under grant agreement number 687528. This work was supported by the Programme National de Physique Stellaire and Physique et Chimie du Milieu Interstellaire of CNRS/INSU (with INC/INP/IN2P3), co-funded by CEA and CNES. A.P.W. gratefully acknowledges the support of a consolidated grant (ST/K00926/1) from the UK Science and Technology Funding Council. T.C. acknowledges support from the Deutsche Forschungsgemeinschaft via the SPP (priority programme) 1573 ‘Physics of the ISM’. A.J.M. has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (MagneticYSOs, grant agreement number 679937).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and F.L. led the project. E.C., T.N., F.M. and A.J.M. reduced the ALMA data. F.L. ran getsources and the CASA simulator. T.C. ran MRE-GaussClumps. K.A.M. ran PPMAP. S.B. and A.M. performed the Monte Carlo simulations. F.M., T.N. and F.L. analysed the CMF results. F.M. and A.P.W. wrote the manuscript. F.M., S.B., F.L., Q.N.L., A.J.M. and P.S. contributed to the ALMA proposal. All authors discussed the results and implications and commented on the manuscript.

Corresponding authors

Correspondence to F. Motte, T. Nony or F. Louvet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary Tables 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motte, F., Nony, T., Louvet, F. et al. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst. Nat Astron 2, 478–482 (2018). https://doi.org/10.1038/s41550-018-0452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0452-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing