Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional determination and functional specificity of myeloid cells: making sense of diversity

Key Points

  • Innate immune responses to an invading pathogen involve different cell types that have distinct functional properties.

  • Specific transcriptional and post-transcriptional mechanisms affect responses to danger signals in individual cell types.

  • The combinatorial activity of a limited number of transcription factors with broadly overlapping expression profiles is crucial during myeloid cell differentiation.

  • Recent data from single-cell genomics have contributed to revising developmental trajectories in the myeloid compartment.

  • Different myeloid cells can have highly specific responses to the same danger signal.

  • The mechanisms behind distinct functional outcomes in response to similar signals require further investigation.

Abstract

Early responses to invading pathogens and to non-microbial danger signals are mediated by different innate immune and parenchymal tissue cells, which are able to respond to a variety of pathogen- and danger-associated molecular patterns. In most if not all instances, innate immune responses to a given molecule are not uniquely confined to one responding cell type, but instead involve the engagement of different cells with intrinsically distinct properties. In this Review, we discuss the molecular basis of the differentiation of myeloid cells, which is controlled by transcription factors, transcriptional co-regulators and post-transcriptional mechanisms, and examine how the functional specification of the resulting mature immune cells of the myeloid lineage affects their response to danger signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A unique combination of active (or poised-for-activity) enhancers in each specific cell type contributes to the establishment of cell identity.
Figure 2: Transcription factor accessibility regulates gene expression.
Figure 3: Transcriptional modules involved in the differentiation of myeloid cells.
Figure 4: Engagement of receptors by pathogens leads to different outcomes and effector functions in various myeloid cells.

Similar content being viewed by others

References

  1. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004). This study showed for the first time the release of extracellular chromatin traps by neutrophils.

    Article  CAS  PubMed  Google Scholar 

  8. Voehringer, D. Protective and pathological roles of mast cells and basophils. Nat. Rev. Immunol. 13, 362–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotzin, J. J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamassia, N. et al. Molecular mechanisms underlying the synergistic induction of CXCL10 by LPS and IFN-gamma in human neutrophils. Eur. J. Immunol. 37, 2627–2634 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ostuni, R., Natoli, G., Cassatella, M. A. & Tamassia, N. Epigenetic regulation of neutrophil development and function. Semin. Immunol. 28, 83–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  16. Natoli, G. Maintaining cell identity through global control of genomic organization. Immunity 33, 12–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Barozzi, I. et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walsh, J. C. et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17, 665–676 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Rothenberg, E. V. et al. Transcriptional establishment of cell-type identity: dynamics and causal mechanisms of T-cell lineage commitment. Cold Spring Harb. Symp. Quant. Biol. 78, 31–41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giorgetti, L. et al. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell 37, 418–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kueh, H. Y., Champhekar, A., Nutt, S. L., Elowitz, M. B. & Rothenberg, E. V. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673 (2013). In this study, the authors describe the post-transcriptional mechanisms that determine different concentrations of PU.1 in B lymphocytes and macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat. Immunol. 4, 1029–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Reddy, V. A. et al. Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 100, 483–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Carotta, S. et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T. & Ozato, K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13, 155–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki, H. et al. Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125, 358–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mancino, A. et al. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 29, 394–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kronlage, M. et al. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci. Signal. 3, ra55 (2010).

    Article  PubMed  CAS  Google Scholar 

  34. Bours, M. J., Dagnelie, P. C., Giuliani, A. L., Wesselius, A. & Di Virgilio, F. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front. Biosci. (Schol. Ed.) 3, 1443–1456 (2011).

    Google Scholar 

  35. Ulmann, L., Hirbec, H. & Rassendren, F. P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J. 29, 2290–2300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bornstein, C. et al. A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin states. Mol. Cell 56, 749–762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Becker, A. M. et al. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119, 2003–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, D. E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc. Natl Acad. Sci. USA 94, 569–574 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17, 318–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Avellino, R. et al. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 127, 2991–3003 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015). This study revisits the developmental trajectories in the myeloid lineage, combining single-cell RNA sequencing with index sorting.

    Article  CAS  PubMed  Google Scholar 

  43. Gorgoni, B., Maritano, D., Marthyn, P., Righi, M. & Poli, V. C/EBP beta gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J. Immunol. 168, 4055–4062 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Screpanti, I. et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J. 14, 1932–1941 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Yamanaka, R. et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc. Natl Acad. Sci. USA 94, 13187–13192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Person, R. E. et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat. Genet. 34, 308–312 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skokowa, J. et al. LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat. Med. 12, 1191–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Shahlaee, A. H., Brandal, S., Lee, Y. N., Jie, C. & Takemoto, C. M. Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells. J. Immunol. 178, 378–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Qi, X. et al. Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity 39, 97–110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc. Natl Acad. Sci. USA 102, 18105–18110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Montagner, S. et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 15, 1566–1579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwasaki, H. et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20, 3010–3021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai, F. Y. & Orkin, S. H. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89, 3636–3643 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Dwyer, D. F., Barrett, N. A., Austen, K. F. & Immunological Genome Project Consortium. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 17, 878–887 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016). In this study, the authors used single-cell RNA sequencing to characterize the mechanisms that control the differentiation of myeloid precursors into neutrophils or macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Drissen, R. et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Curina, A. et al. High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins. Genes Dev. 31, 399–412 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Escoubet-Lozach, L. et al. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet. 7, e1002401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tong, A. J. et al. A stringent systems approach uncovers gene-specific mechanisms regulating inflammation. Cell 165, 165–179 (2016). In this work, the authors combined genomic and genetic approaches to dissect the specific regulatory requirements of individual inducible genes in the macrophage response to LPS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lamparter, D., Marbach, D., Rueedi, R., Bergmann, S. & Kutalik, Z. Genome-wide association between transcription factor expression and chromatin accessibility reveals regulators of chromatin accessibility. PLoS Comput. Biol. 13, e1005311 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Broske, A. M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Challen, G. A. et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15, 350–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leoni, C. et al. Dnmt3a restrains mast cell inflammatory responses. Proc. Natl Acad. Sci. USA 114, E1490–E1499 (2017). This study shows that DNA methylation-related processes are crucial to restrain mast cell acute and chronic inflammatory responses in vivo and in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cronk, J. C. et al. Methyl-CpG binding protein 2 regulates microglia and macrophage gene expression in response to inflammatory stimuli. Immunity 42, 679–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leoni, C., Vincenzetti, L., Emming, S. & Monticelli, S. Epigenetics of T lymphocytes in health and disease. Swiss Med. Wkly 145, w14191 (2015).

    PubMed  Google Scholar 

  75. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Ko, M. et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. An, J. et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat. Commun. 6, 10071 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lio, C. W. et al. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. eLife 5, e18290 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. de la Rica, L. et al. PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 14, R99 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Forster, A. et al. Dicer is indispensable for the development of murine mast cells. J. Allergy Clin. Immunol. 135, 1077–1080.e4 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Baer, C. et al. Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Fukao, T. et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129, 617–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008). Using mir-223 -deleted mice, this study revealed a key role for miR-223 in the regulation of granulocyte differentiation and activation.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, Q. et al. Down-regulation of microRNA-223 promotes degranulation via the PI3K/Akt pathway by targeting IGF-1R in mast cells. PLoS ONE 10, e0123575 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604–1609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bazzoni, F. et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl Acad. Sci. USA 106, 5282–5287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boldin, M. P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rusca, N. et al. MiR-146a and NF-kappaB1 regulate mast cell survival and T lymphocyte differentiation. Mol. Cell. Biol. 32, 4432–4444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, L. et al. miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209, 1655–1670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O'Connell, R. M., Chaudhuri, A. A., Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010). This study, together with reference 62, provided the first characterization and rational understanding of the macrophage repertoire of enhancers.

    Article  CAS  PubMed  Google Scholar 

  101. Sanjabi, S., Hoffmann, A., Liou, H. C., Baltimore, D. & Smale, S. T. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl Acad. Sci. USA 97, 12705–12710 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sanjabi, S. et al. A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes Dev. 19, 2138–2151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tamassia, N. et al. Cutting edge: an inactive chromatin configuration at the IL-10 locus in human neutrophils. J. Immunol. 190, 1921–1925 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Lekstrom-Himes, J. A., Dorman, S. E., Kopar, P., Holland, S. M. & Gallin, J. I. Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J. Exp. Med. 189, 1847–1852 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Monticelli, S., Lee, D. U., Nardone, J., Bolton, D. L. & Rao, A. Chromatin-based regulation of cytokine transcription in Th2 cells and mast cells. Int. Immunol. 17, 1513–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Motomura, Y. et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40, 758–771 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Simon, D., Simon, H. U. & Yousefi, S. Extracellular DNA traps in allergic, infectious, and autoimmune diseases. Allergy 68, 409–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Mollerherm, H., von Kockritz-Blickwede, M. & Branitzki-Heinemann, K. Antimicrobial activity of mast cells: role and relevance of extracellular DNA traps. Front. Immunol. 7, 265 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. von Kockritz-Blickwede, M. et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111, 3070–3080 (2008).

    Article  PubMed  CAS  Google Scholar 

  113. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Nagase, H. et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 171, 3977–3982 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K. & Dower, S. K. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Matsushima, H., Yamada, N., Matsue, H. & Shimada, S. TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J. Immunol. 173, 531–541 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Choi, H. W. et al. Loss of bladder epithelium induced by cytolytic mast cell granules. Immunity 45, 1258–1269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Piccolo, V. et al. Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18, 530–540 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rosenbauer, F. & Tenen, D. G. Transcription factors in myeloid development: balancing differentiation with transformation. Nat. Rev. Immunol. 7, 105–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Jubb, A. W., Young, R. S., Hume, D. A. & Bickmore, W. A. Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages. J. Immunol. 196, 813–822 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meyer, C. A. & Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Booth, M. J. et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 8, 1841–1851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896.e15 (2016). References 130–132 combined CRISPR–Cas9-mediated screening with single-cell transcriptomics.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the S.M. laboratory on this topic is funded by the Swiss National Science Foundation (156875). Work in the G.N. laboratory on this topic is funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement number 692789) and the Cariplo Foundation (grant 2015–0584).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Monticelli or Gioacchino Natoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Extracellular traps

First reported to be produced by neutrophils, extracellular traps are a meshwork of extruded chromatin fibres (containing DNA and histone proteins) as well as antimicrobial peptides and various enzymes. Subsequently discovered to also be produced by other innate cell types and considered important for immobilizing and killing invading pathogens.

Promoters

Genomic regions usually extending a few hundred base pairs upstream of the transcription start site of a given gene; contain sequence elements (motifs) for transcription factor binding, as well as a 'core promoter' required for the assembly of the RNA polymerase II basal transcription machinery.

Enhancers

Contain arrays of binding sites for transcription factors. They act on transcription by working in conjunction with promoters, but can be located up to 1 Mb from the genes that they regulate.

Histone modifications

Covalent post-translational modifications of the nucleosomal histone proteins around which DNA is wrapped. Including methylation, acetylation and phosphorylation, they occur predominantly at the amino-terminal tails (40 amino acids) of the histone proteins and influence gene transcription.

M1 macrophages

(also known as classically activated macrophages). Distinguished from M2 (alternatively activated macrophages) based on the signals that they receive and the type of effector functions that they elicit. Activated by interferon-γ (IFNγ) and associated with a prototypical pro-inflammatory and microbicidal response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monticelli, S., Natoli, G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat Rev Immunol 17, 595–607 (2017). https://doi.org/10.1038/nri.2017.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing