Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel cortico-intrathalamic circuit for flight behavior

Abstract

Flight, an active fear response to imminent threat, is dependent on the rapid risk assessment of sensory information processed by the cortex. The thalamic reticular nucleus (TRN) filters information between the cortex and the thalamus, but whether it participates in the regulation of flight behavior remains largely unknown. Here, we report that activation of parvalbumin-expressing neurons in the limbic TRN, but not those in the sensory TRN, mediates flight. Glutamatergic inputs from the cingulate cortex (Cg) selectively activate the limbic TRN, which in turn inhibits the intermediodorsal thalamic nucleus (IMD). Activation of this Cg→limbic TRN→IMD circuit results in inhibition of the IMD and produces flight behavior. Conversely, removal of inhibition onto the IMD results in more freezing and less flight, suggesting that the IMD may function as a pro-freeze center. Overall, these findings reveal a novel corticothalamic circuit through the TRN that controls the flight response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activity of PV+ neurons in the limbic TRN, but not those in the sensory TRN, is tightly coupled with the onset of flight behavior.
Fig. 2: PV+ neurons in the limbic TRN, but not those in the sensory TRN, mediate flight.
Fig. 3: Glutamatergic inputs from the Cg to the limbic TRN mediate flight behavior.
Fig. 4: An inhibitory pathway from the limbic TRN to the IMD induces flight behavior.
Fig. 5: The Cg→limbic TRN→IMD circuit regulates flight behavior.

Similar content being viewed by others

Data availability

All relevant data supporting the present study are available from the lead corresponding author upon reasonable request.

Code availability

All relevant codes supporting the present study are available from the lead corresponding author upon reasonable request.

References

  1. Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).

    Article  CAS  Google Scholar 

  2. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  Google Scholar 

  3. Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).

    Article  CAS  Google Scholar 

  4. Keay, K. A. & Bandler, R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25, 669–678 (2001).

    Article  CAS  Google Scholar 

  5. Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    Article  CAS  Google Scholar 

  6. Penzo, M. A. et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature 519, 455–459 (2015).

    Article  CAS  Google Scholar 

  7. Isosaka, T. et al. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163, 1153–1164 (2015).

    Article  CAS  Google Scholar 

  8. Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).

    Article  CAS  Google Scholar 

  9. Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

    Article  CAS  Google Scholar 

  10. Wang, L., Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015).

    Article  CAS  Google Scholar 

  11. Clemence, A. E. & Mitrofanis, J. Cytoarchitectonic heterogeneities in the thalamic reticular nucleus of cats and ferrets. J. Comp. Neurol. 322, 167–180 (1992).

    Article  CAS  Google Scholar 

  12. Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl Acad. Sci. USA 81, 4586–4590 (1984).

    Article  CAS  Google Scholar 

  13. Guillery, R. W., Feig, S. L. & Lozsadi, D. A. Paying attention to the thalamic reticular nucleus. Trends Neurosci. 21, 28–32 (1998).

    Article  CAS  Google Scholar 

  14. Halassa, M. M. & Acsady, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 39, 680–693 (2016).

    Article  CAS  Google Scholar 

  15. Halassa, M. M. et al. State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808–821 (2014).

    Article  CAS  Google Scholar 

  16. Wimmer, R. D. et al. Thalamic control of sensory selection in divided attention. Nature 526, 705–709 (2015).

    Article  CAS  Google Scholar 

  17. Ahrens, S. et al. ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection. Nat. Neurosci. 18, 104–111 (2015).

    Article  CAS  Google Scholar 

  18. Zhu, Y., Jiang, X. & Ji, W. The mechanism of cortico-striato-thalamo-cortical neurocircuitry in response inhibition and emotional responding in attention deficit hyperactivity disorder with comorbid disruptive behavior disorder. Neurosci. Bull. 34, 566–572 (2018).

    Article  Google Scholar 

  19. Marlinski, V., Sirota, M. G. & Beloozerova, I. N. Differential gating of thalamocortical signals by reticular nucleus of thalamus during locomotion. J. Neurosci. 32, 15823–15836 (2012).

    Article  CAS  Google Scholar 

  20. Steriade, M. Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci. 28, 317–324 (2005).

    Article  CAS  Google Scholar 

  21. Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  CAS  Google Scholar 

  22. Zikopoulos, B. & Barbas, H. Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. J. Neurosci. 32, 5338–5350 (2012).

    Article  CAS  Google Scholar 

  23. Pinault, D. The thalamic reticular nucleus: structure, function and concept. Brain Res. Brain Res. Rev. 46, 1–31 (2004).

    Article  Google Scholar 

  24. Zikopoulos, B. & Barbas, H. Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. J. Neurosci. 26, 7348–7361 (2006).

    Article  CAS  Google Scholar 

  25. Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219–223 (2017).

    Article  CAS  Google Scholar 

  26. Han, C. J. et al. Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 100, 13087–13092 (2003).

    Article  CAS  Google Scholar 

  27. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  CAS  Google Scholar 

  28. Nili, U., Goldberg, H., Weizman, A. & Dudai, Y. Fear thou not: activity of frontal and temporal circuits in moments of real-life courage. Neuron 66, 949–962 (2010).

    Article  CAS  Google Scholar 

  29. Makinson, C. D. & Huguenard, J. R. Attentional flexibility in the thalamus: now we’re getting SOMwhere. Nat. Neurosci. 18, 2–4 (2015).

    Article  CAS  Google Scholar 

  30. Clemente-Perez, A. et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 19, 2130–2142 (2017).

    Article  CAS  Google Scholar 

  31. Yang, H. et al. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat. Neurosci. 19, 283–289 (2016).

    Article  CAS  Google Scholar 

  32. Bliss, T. V., Collingridge, G. L., Kaang, B. K. & Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 17, 485–496 (2016).

    Article  CAS  Google Scholar 

  33. Pinault, D. & Deschenes, M. Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol. 391, 180–203 (1998).

    Article  CAS  Google Scholar 

  34. Jones, E. G. Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol. 162, 285–308 (1975).

    Article  CAS  Google Scholar 

  35. Lozsadi, D. A. Organization of cortical afferents to the rostral, limbic sector of the rat thalamic reticular nucleus. J. Comp. Neurol. 341, 520–533 (1994).

    Article  CAS  Google Scholar 

  36. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    Article  CAS  Google Scholar 

  37. Schwarz, L. A. et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524, 88–92 (2015).

    Article  CAS  Google Scholar 

  38. Matyas, F., Lee, J., Shin, H. S. & Acsady, L. The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur. J. Neurosci. 39, 1810–1823 (2014).

    Article  Google Scholar 

  39. Conley, M., Kupersmith, A. C. & Diamond, I. T. The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in galago. Eur. J. Neurosci. 3, 1089–1103 (1991).

    Article  Google Scholar 

  40. Crabtree, J. W. & Killackey, H. P. The topographic organization and axis of projection within the visual sector of the rabbit’s thalamic reticular nucleus. Eur. J. Neurosci. 1, 94–109 (1989).

    Article  Google Scholar 

  41. Crabtree, J. W. The somatotopic organization within the cat’s thalamic reticular nucleus. Eur. J. Neurosci. 4, 1352–1361 (1992).

    Article  Google Scholar 

  42. Montero, V. M., Guillery, R. W. & Woolsey, C. N. Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res. 138, 407–421 (1977).

    Article  CAS  Google Scholar 

  43. McCafferty, C. et al. Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures. Nat. Neurosci. 21, 744–756 (2018).

    Article  CAS  Google Scholar 

  44. Çavdar, S. et al. Comparison of numbers of interneurons in three thalamic nuclei of normal and epileptic rats. Neurosci. Bull. 30, 451–460 (2014).

    Article  Google Scholar 

  45. Yu, K., Garcia da Silva, P., Albeanu, D. F. & Li, B. Central amygdala somatostatin neurons gate passive and active defensive behaviors. J. Neurosci. 36, 6488–6496 (2016).

    Article  CAS  Google Scholar 

  46. Fan, Z. & Hu, H. Medial prefrontal cortex excitation/inhibition balance and schizophrenia-like behaviors regulated by thalamic inputs to interneurons. Biol. Psychiatry 83, 630–631 (2018).

    Article  Google Scholar 

  47. Corcoran, K. A. & Quirk, G. J. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27, 840–844 (2007).

    Article  CAS  Google Scholar 

  48. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  49. Boeke, E. A., Moscarello, J. M., LeDoux, J. E., Phelps, E. A. & Hartley, C. A. Active avoidance: neural mechanisms and attenuation of pavlovian conditioned responding. J. Neurosci. 37, 4808–4818 (2017).

    Article  CAS  Google Scholar 

  50. Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).

    Article  CAS  Google Scholar 

  51. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    Article  CAS  Google Scholar 

  52. Yang, S. B. et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75, 425–436 (2012).

    Article  CAS  Google Scholar 

  53. Li, K. X. et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat. Neurosci. 15, 267–273 (2012).

    Article  CAS  Google Scholar 

  54. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  Google Scholar 

  55. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Academic Press, 2007).

Download references

Acknowledgements

The authors thank J. Hu (Shanghai Technology University, China) for providing the AAV2/9-EF1a-DIO-mGFP virus, E. J. Kremer (IGMM, Montpellier, France) for providing the CAV virus, L. Luo (Stanford, CA, USA) for providing the Flp-dependent AAV helpers. This work was supported by the National Natural Science Foundation of China (grant nos. 31430034, 31871070, and 91432306), the National Key Research and Development Plan of the Ministry of Science and Technology of China (grant no. 2016YF0501000), the Non-Profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (grant nos. 2017PT31038 and 2018PT31041), Funds for Creative Research Groups of China from the National Natural Science Foundation of China (grant no. 81521062), the Program for Changjiang Scholars and Innovative Research Team in University, and the programme of introducing talents of discipline to universities (grant no. B13026) to X.-M.L.

Author information

Authors and Affiliations

Authors

Contributions

P.D. and X.-M.L. designed the project, and P.D. and H.W. performed virus or drug injections, optogenetic behavior, and electrophysiology experiments, and collected and analyzed the data. X.-T.Z. and J.-H.G. helped collect the data. P.D., P.J., X.-F.S., S.L., and Y.H. performed immunohistochemistry and quantitatively analyzed the imaging data. X.-B.H. generated RV and pseudo-RV, and F.-Q.X. supervised the retrograde virus labeling experiments. P.D., Y.L., J.C., S.D., H.W., and X.-M.L. interpreted the results and commented on the manuscript. P.D., H.W., H.L., J.C., and X.-M.L. wrote or edited the manuscript. X.-M.L. supervised all aspects of the project.

Corresponding author

Correspondence to Xiao-Ming Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Neuroscience thanks Laszlo Acsady, Wulf Haubensak, and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16

Reporting Summary

Supplementary Video 1

Fiber photometry recording of limbic TRN PV+ neurons during conditioned flight behavior. A representative trial of conditioned flight behavior in day 3 during fiber photometry recording.

Supplementary Video 2

Inhibition of limbic TRN PV+ neurons during conditioned flight behavior. Optogenetic inhibition of limbic TRN PV+ neurons decrease flight behavior.

Supplementary Video 3

Optogenetic activation of limbic TRN PV+ neurons during conditioned flight behavior. Optogenetic activation of limbic TRN PV+ neurons induce flight behavior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Wang, H., Shen, XF. et al. A novel cortico-intrathalamic circuit for flight behavior. Nat Neurosci 22, 941–949 (2019). https://doi.org/10.1038/s41593-019-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0391-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing