Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Update
  • Published:

Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing

Abstract

DNA preserved in ancient bones, teeth and sediments is typically highly fragmented and present only in minute amounts. Here, we provide a highly versatile silica-based DNA extraction protocol that enables the retrieval of short (≥35 bp) or even ultrashort (≥25 bp) DNA fragments from such material with minimal carryover of substances that inhibit library preparation for high-throughput sequencing. DNA extraction can be performed with either silica spin columns, which offer the most convenient choice for manual DNA extraction, or silica-coated magnetic particles. The latter allow a substantial cost reduction as well as automation on liquid-handling systems. This protocol update replaces a now-outdated version that was published 11 years ago, before high-throughput sequencing technologies became widely available. It has been thoroughly optimized to provide the highest DNA yields from highly degraded samples, as well as fast and easy handling, requiring not more than ~15 min of hands-on time per sample.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: DNA fragment length distribution in libraries prepared from extracts generated with the protocol options described here.
Fig. 3: Boxplots showing the fraction of fragments ≥35 bp in libraries prepared from extracts using the protocol options described here (n = 12).
Fig. 4: Influence of the extraction method on the informative sequence content of the libraries.
Fig. 5: Boxplots showing the influence of the extraction method on library preparation efficiency, as inferred from the conversion rate of the control oligonucleotide that was spiked into each library preparation reaction (n = 6).

Similar content being viewed by others

References

  1. Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

    Article  CAS  Google Scholar 

  2. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

    Article  CAS  Google Scholar 

  3. Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    Article  CAS  Google Scholar 

  4. Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    Article  CAS  Google Scholar 

  5. Höss, M. & Pääbo, S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 21, 3913–3914 (1993).

    Article  Google Scholar 

  6. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007).

    Article  CAS  Google Scholar 

  7. Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

    Article  CAS  Google Scholar 

  8. Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    Article  Google Scholar 

  9. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

    Article  CAS  Google Scholar 

  10. Adler, C. J., Haak, W., Donlon, D. & Cooper, A. Survival and recovery of DNA from ancient teeth and bones. J. Archaeol. Sci. 38, 956–964 (2011).

    Article  Google Scholar 

  11. Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. 279, 4724–4733 (2012).

    Article  CAS  Google Scholar 

  12. Handt, O., Höss, M., Krings, M. & Pääbo, S. Ancient DNA: methodological challenges. Experientia 50, 524–529 (1994).

    Article  CAS  Google Scholar 

  13. Schwarz, C. et al. New insights from old bones: DNA preservation and degradation in permafrost preserved mammoth remains. Nucleic Acids Res. 37, 3215–3229 (2009).

    Article  CAS  Google Scholar 

  14. Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  Google Scholar 

  15. Meyer, M. et al. A high-coverage genome sequence from an Archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  Google Scholar 

  16. Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).

    Article  CAS  Google Scholar 

  17. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  Google Scholar 

  18. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  CAS  Google Scholar 

  19. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  CAS  Google Scholar 

  20. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  CAS  Google Scholar 

  21. Glocke, I. & Meyer, M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 27, 1230–1237 (2017).

    Article  CAS  Google Scholar 

  22. Lipson, M. et al. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science https://doi.org/10.1126/science.aat3188 (2018).

    Article  CAS  Google Scholar 

  23. Korlevic, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).

    Article  CAS  Google Scholar 

  24. Gamba, C. et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459–469 (2016).

    Article  CAS  Google Scholar 

  25. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article  CAS  Google Scholar 

  26. Gutaker, R. M., Reiter, E., Furtwangler, A., Schuenemann, V. J. & Burbano, H. A. Extraction of ultrashort DNA molecules from herbarium specimens. Biotechniques 62, 76–79 (2017).

    Article  CAS  Google Scholar 

  27. de Filippo, C., Meyer, M. & Pruefer, K. Harvesting information from ultra-short ancient DNA sequences. Preprint at https://www.biorxiv.org/content/early/2018/05/10/319277 (2018).

  28. Fu, Q. M. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. USA 110, 2223–2227 (2013).

    Article  CAS  Google Scholar 

  29. Gansauge, M. T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79 (2017).

    Article  CAS  Google Scholar 

  30. Bennett, E. A. et al. Library construction for ancient genomics: single strand or double strand? Biotechniques 56, 289–300 (2014).

    Article  CAS  Google Scholar 

  31. Wales, N. et al. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA. Biotechniques 59, 368–371 (2015).

    Article  CAS  Google Scholar 

  32. Briggs, A. W. & Heyn, P. Preparation of next-generation sequencing libraries. in Methods in Molecular Biology: Ancient DNA, Methods and Protocols, Vol. 840 (eds. Shapiro, B. & Hofreiter, M.) 143–154 (Humana Press, Totowa, NJ, 2012).

  33. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article  Google Scholar 

  34. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624 (2015).

    Article  Google Scholar 

  35. Knapp, M., Clarke, A. C., Horsburgh, K. A. & Matisoo-Smith, E. A. Setting the stage—building and working in an ancient DNA laboratory. Ann. Anat. 194, 3–6 (2012).

    Article  CAS  Google Scholar 

  36. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Pääbo and D. Reich for their support; A. Weihmann and B. Schellbach for performing the sequencing runs; J. Kelso and J. Visagie for help with raw data processing; N. Broomand, M. Ferry, M. Michel, J. Oppenheimer and K. Stewardson for support in the lab; and S. Mallick for bioinformatics processing of initial experiments. We also thank P. Rudan, C. Verna, T. Kutznetsova, K. Post, G. Rabeder, M. Shunkov, R. Roberts, A. Derevianko, R. Miller, J. Stewart and M. Soressi for providing the samples. This work was funded by the Strategic Innovation Fund of the Max Planck Society and ERC grant agreement no. 694707 to S. Pääbo.

Author information

Authors and Affiliations

Authors

Contributions

N.R., I.G., A.A.-P. and M.M. designed experiments. N.R., I.G. and A.A.-P. performed experiments. N.R., I.G. and M.M. analyzed the data and wrote the paper.

Corresponding authors

Correspondence to Nadin Rohland or Isabelle Glocke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

1. Slon, V. et al. Science 356, 605–608 (2017): https://doi.org/10.1126/science.aam9695

2. Meyer, M. et al. Nature 505, 403–406 (2014): https://doi.org/10.1038/nature12788

3. Olalde, I. et al. Nature 555, 190–196 (2018): https://doi.org/10.1038/nature25738

This protocol is an update to: Nat. Protoc. 2, 1756–1762 (2007): https://doi.org/10.1038/nprot.2007.247

Supplementary information

Supplementary Table 1

Summary of sequencing results

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohland, N., Glocke, I., Aximu-Petri, A. et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat Protoc 13, 2447–2461 (2018). https://doi.org/10.1038/s41596-018-0050-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0050-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing