Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex dynamics in a two-enzyme reaction network with substrate competition

Abstract

Enzymatic reaction networks capable of generating complex spatiotemporal dynamics are not only the basis of essential biological processes, but also the basic units of synthetic systems with autonomous, adaptive and programmable behaviours. Activation and inhibition have been usually considered as indispensable interactions for the construction of such networks. Here we present an enzymatic reaction network that consists of a flavin adenine dinucleotide-dependent oxidoreductase and a peroxidase that can generate tunable complex dynamics. These include charging/discharging, rectangular and parabolic pulses in a closed system, which are based on delayed and self-adapting substrate competition, rather than on activation or inhibition. Additionally, this system can spontaneously form visible spatiotemporal patterns that arise from reaction-driven Rayleigh–Bénard convection. This work demonstrates that substrate competition could be an alternative path towards constructing biochemical networks with complex dynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of complex dynamic behaviour generated by enzymatic networks under batch conditions.
Fig. 2: Tuning the network output to create various pulse waveforms.
Fig. 3: Pulse response can be reactivated by controlling the oxygen flux.
Fig. 4: The formation and evolution of spatiotemporal patterns.

Similar content being viewed by others

References

  1. van Roekel, H. W. H. et al. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem. Soc. Rev. 44, 7465–7483 (2015).

    Article  Google Scholar 

  2. Kondo, S. & Miura, T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    Article  CAS  Google Scholar 

  3. Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 584–591 (2016).

    Article  Google Scholar 

  4. Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    Article  CAS  Google Scholar 

  5. Vanag, V. K. & Epstein, I. R. Segmented spiral waves in a reaction–diffusion system. Proc. Natl Acad. Sci. USA 100, 14635–14638 (2003).

    Article  CAS  Google Scholar 

  6. Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    Article  CAS  Google Scholar 

  7. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  Google Scholar 

  8. Lim, W. A. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010).

    Article  CAS  Google Scholar 

  9. Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009).

    Article  CAS  Google Scholar 

  10. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  CAS  Google Scholar 

  11. Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).

    Article  CAS  Google Scholar 

  12. Han, D. et al. A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 836–842 (2015).

    Article  Google Scholar 

  13. Okar, D. A., Wu, C. & Lange, A. J. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Adv. Enzyme Regul. 44, 123–154 (2004).

    Article  CAS  Google Scholar 

  14. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  15. Jensen, K. J., Moyer, C. B. & Janes, K. A. Network architecture predisposes an enzyme to either pharmacologic or genetic targeting. Cell Syst. 2, 112–121 (2016).

    Article  CAS  Google Scholar 

  16. Semenov, S. N. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    Article  CAS  Google Scholar 

  17. Nijemeisland, M., Abdelmohsen, L. K. E. A., Huck, W. T. S., Wilson, D. A. & van Hest, J. C. M. A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement. ACS Cent. Sci. 2, 843–849 (2016).

    Article  CAS  Google Scholar 

  18. Kim, S. Y. & Ferrell, J. E. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007).

    Article  CAS  Google Scholar 

  19. Gibson, Q. H., Swoboda, B. E. P. & Massey, V. Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3934 (1964).

    CAS  Google Scholar 

  20. Zhao, J., Lu, C. & Franzen, S. Distinct enzyme–substrate interactions revealed by two- dimensional kinetic comparison between dehaloperoxidase-hemoglobin and horseradish peroxidase. J. Phys. Chem. B 119, 12828–12837 (2015).

    Article  CAS  Google Scholar 

  21. Zhang, Y., Wang, Q. & Hess, H. Increasing enzyme cascade throughput by pH-engineering the microenvironment of individual enzymes. ACS Catal. 7, 2047–2051 (2017).

    Article  CAS  Google Scholar 

  22. Campbell, J. A. Kinetics—early and often. J. Chem. Educ. 40, 578–583 (1963).

    Article  CAS  Google Scholar 

  23. Rajchakit, U. & Limpanuparb, T. Greening the traffic light: air oxidation of vitamin C catalyzed by indicators. J. Chem. Educ. 93, 1486–1489 (2016).

    Article  CAS  Google Scholar 

  24. Belintsev, B. N. Dissipative structures and the problem of biological pattern-formation. Sov. Phys. Usp. 26, 775–800 (1983).

    Article  Google Scholar 

  25. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  Google Scholar 

  26. Manneville, P. in Dynamics of Spatio-temporal Cellular Structures (eds Mutabazi, I., Wesfreid, J. E. & Guyon, E.) 41–46 (Springer, New York, 2006)..

  27. Avnir, D. & Kagan, M. Spatial structures generated by chemical reactions at interface. Nature 307, 717–720 (1984).

    Article  CAS  Google Scholar 

  28. Nagypal, I., Bazsa, G. & Epstein, I. R. Gravity-induced anisotropies in chemical waves. J. Am. Chem. Soc. 108, 3635–3640 (1986).

    Article  CAS  Google Scholar 

  29. Rajchakit, U. & Limpanuparb, T. Rapid blue bottle experiment: autoxidation of benzoin catalyzed by redox indicators. J. Chem. Educ. 93, 1490–1494 (2016).

    Article  CAS  Google Scholar 

  30. Pons, A. J., Sagués, F., Bees, M. A. & Sørensen, P. G. Pattern formation in the methylene-blue−glucose system. J. Phys. Chem. B 104, 2251–2259 (2000).

    Article  CAS  Google Scholar 

  31. Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Article  CAS  Google Scholar 

  32. Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    Article  CAS  Google Scholar 

  33. Das, S. et al. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 8, 14384 (2017).

    Article  CAS  Google Scholar 

  34. Yang, Y., Verzicco, R. & Lohse, D. From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci. USA 113, 69–73 (2016).

    Article  CAS  Google Scholar 

  35. Yang, Y. et al. Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476–491 (2015).

    Article  CAS  Google Scholar 

  36. Rongy, L., Trevelyan, P. M. & de Wit, A. Dynamics of A + B → C reaction fronts in the presence of buoyancy-driven convection. Phys. Rev. Lett. 101, 084503 (2008).

    Article  CAS  Google Scholar 

  37. Rongy, L., Goyal, N., Meiburg, E. & de Wit, A. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J. Chem. Phys. 127, 114710 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency under award no. HDTRA 1-14-1-0051.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and H.H. conceived and designed the research and wrote the manuscript. Y.Z. performed the experiments. S.T. performed the statistical analysis and modelling. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Henry Hess.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figures 1–13, Table 1, Notes 1 and 2, and References

Supplementary Video 1

Demonstration of green bottle experiment (20× speed).

Supplementary Video 2

Evolution of spatiotemporal patterns in the solution with a depth of 2.6 mm (20× speed).

Supplementary Video 3

Evolution of spatiotemporal patterns in the solution with a depth of 7.0 mm (20× speed).

Supplementary Video 4

Evolution of spatiotemporal patterns in the solution with a depth of 8.8 mm (20× speed).

Supplementary Video 5

Visualization of the convective flows by adding tracer particles (real-time movie).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tsitkov, S. & Hess, H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat Catal 1, 276–281 (2018). https://doi.org/10.1038/s41929-018-0053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0053-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing